THE CONSERVATION OF NUMBER PRINCIPLE IN REAL ALGEBRAIC GEOMETRY ## W. KUCHARZ Department of Mathematics and Statistics University of New Mexico, Albuquerque, New Mexico 87131-1141 U.S.A. e-mail: kucharz@math.unm.edu (Received 7 December, 2001; accepted 8 November, 2002) **Abstract.** The classical conservation of number principle is an important result in algebraic geometry. We present a version of this principle suitable for the study of topological properties of real algebraic varieties. Our self-contained topological proof does not depend on the intersection theory of algebraic cycles. Some applications are included. 2000 Mathematics Subject Classification. 14P25, 14C25. **1. Introduction and results.** The goal of this note is to give self-contained topological proofs of certain results in real algebraic geometry, which heretofore required techniques of intersection theory (Chow rings, algebraic equivalence of cycles, etc.) [1, 8, 9]. The main results are a suitable version of the conservation of number principle (Theorem 1.4) and an application of this principle concerning topological properties of fibers of a real algebraic morphism (Theorem 1.7). Throughout this note the term *real algebraic variety* designates a locally ringed space isomorphic to an algebraic subset of \mathbb{R}^n , for some n, endowed with the Zariski topology and the sheaf of \mathbb{R} -valued regular functions. Morphisms between real algebraic varieties will be called *regular maps*. Basic facts on real algebraic varieties and regular maps can be found in [4]. Every real algebraic variety carries also the Euclidean topology, which is determined by the usual metric topology on \mathbb{R} . Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology. Given a compact real algebraic variety X, we denote by $H_d^{\mathrm{alg}}(X, \mathbb{Z}/2)$ the subgroup of the homology group $H_d(X, \mathbb{Z}/2)$ generated by the homology classes of d-dimensional Zariski closed subsets of X [2, 3, 4, 6]. Assuming that X is nonsingular, we let $H_{\mathrm{alg}}^c(X, \mathbb{Z}/2)$ denote the inverse image of $H_d^{\mathrm{alg}}(X, \mathbb{Z}/2)$ under the Poincaré duality isomorphism $$D_X: H^c(X, \mathbb{Z}/2) \to H_d(X, \mathbb{Z}), \ D_X(\alpha) = \alpha \cap [X],$$ where $c + d = \dim X$ and [X] is the fundamental class of X. The groups $H_d^{\rm alg}(-,\mathbb{Z}/2)$ and $H_{\rm alg}^c(-,\mathbb{Z}/2)$ have the expected functorial properties: If $f:X\to Y$ is a regular map between compact nonsingular real algebraic varieties, then the induced homomorphisms $$f_*: H_*(X, \mathbb{Z}/2) \to H_*(Y, \mathbb{Z}/2), f^*: H^*(Y, \mathbb{Z}/2) \to H^*(X, \mathbb{Z}/2)$$ satisfy $$f_*(H_d^{\mathrm{alg}}(X,\mathbb{Z}/2)) \subseteq H_d^{\mathrm{alg}}(Y,\mathbb{Z}/2), f^*(H_{\mathrm{alg}}^c(Y,\mathbb{Z}/2)) \subseteq H_{\mathrm{alg}}^c(X,\mathbb{Z}/2).$$ Furthermore. $$H^*_{\mathrm{alg}}(X, \mathbb{Z}/2) = \bigoplus_{c>0} H^c_{\mathrm{alg}}(X, \mathbb{Z}/2)$$ is a subring of the cohomology ring $H^*(X, \mathbb{Z}/2)$. Proofs of these facts are in [2, 3, 6] ([2, 3] contain topological proofs). Assume that X is compact and nonsingular. A cohomology class α in $H^k_{alg}(X, \mathbb{Z}/2)$ is said to be algebraically equivalent to 0 if there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class σ in $H_{\text{alg}}^k(X \times T, \mathbb{Z}/2)$ such that $\alpha = \sigma_{t_1} - \sigma_{t_0}$, where given t in T, one defines $i_t : X \to \mathbb{Z}/2$ $X \times T$ by $i_t(x) = (x, t)$ for all x in X, and sets $\sigma_t = i_t^*(\sigma)$. We denote by $\mathrm{Alg}^k(X)$ the set of all cohomology classes in $H^k_{alg}(X, \mathbb{Z}/2)$ that are algebraically equivalent to 0. EXAMPLE 1.1. Let X be a compact nonsingular irreducible real algebraic variety of dimension n. Obviously, $H_{\text{alg}}^n(X,\mathbb{Z}/2) = H^n(X,\mathbb{Z}/2)$. We assert that given any two distinct points t_0 and t_1 in X, the cohomology class α in $H^n_{alg}(X, \mathbb{Z}/2)$, Poincaré dual to the homology class in $H_0^{\mathrm{alg}}(X, \mathbb{Z}/2)$ represented by $\{t_0, t_1\}$, belongs to $\mathrm{Alg}^n(X)$. Indeed, let σ in $H_{\mathrm{alg}}^n(X \times X, \mathbb{Z}/2)$ be the cohomology class Poincaré dual to the homology class in $H_n^{\text{alg}}(X \times X, \mathbb{Z}/2)$ represented by the diagonal $$\Delta = \{(x, t) \in X \times X \mid x = t\}.$$ For any point t in X, the map $i_t: X \to X \times X$, defined by $i_t(x) = (x, t)$ for all x in X, is transverse to Δ and hence $D_X(i_t^*(\sigma))$ is the homology class in $H_0(X, \mathbb{Z}/2)$ represented by $i_t^{-1}(\Delta)$. Since $i_t^*(\sigma) = \sigma_t$ and $i_t^{-1}(\Delta) = \{t\}$, we get $\alpha = \sigma_{t_1} - \sigma_{t_0}$. Thus α belongs to Algⁿ(X) as asserted. Note that $\alpha \neq 0$ if t_0 and t_1 belong to distinct connected components of X. In a straightforward manner one can prove the following result. PROPOSITION 1.2. For any compact nonsingular real algebraic variety X, the set $\mathrm{Alg}^k(X)$ is a subgroup of $H^k_{\mathrm{alg}}(X,\mathbb{Z}/2)$. If α is in $\mathrm{Alg}^k(X)$ and γ is in $H^\ell_{\mathrm{alg}}(X,\mathbb{Z}/2)$, then $\alpha \cup \gamma$ is in $\mathrm{Alg}^{k+\ell}(X)$. If moreover, δ is in $\mathrm{Alg}^m(Y)$, where Y is a compact nonsingular real algebraic variety, then $\gamma \times \delta$ is in $\mathrm{Alg}^{\ell+m}(X \times Y)$. The group $Alg^k(-)$ also has nice functorial properties. Proposition 1.3. Let $f: X \to Y$ be a regular map between compact nonsingular real algebraic varieties. Then (i) $$f^*(\operatorname{Alg}^k(Y)) \subseteq \operatorname{Alg}^k(X)$$, (ii) $(D_Y^{-1} \circ f_* \circ D_X)(\operatorname{Alg}^{n-k}(X)) \subseteq \operatorname{Alg}^{p-k}(Y)$, where $n = \dim X$ and $p = \dim Y$. Propositions 1.2 and 1.3 will be proved in Section 2. Given a compact nonsingular real algebraic variety X, two cohomology classes α_1 and α_2 in $H^k_{alg}(X, \mathbb{Z}/2)$ are said to be algebraically equivalent if $\alpha_1 - \alpha_2$ is in $\mathrm{Alg}^k(X)$. For α in $H^k(X,\mathbb{Z}/2)$ and β in $H^{\ell}(X,\mathbb{Z}/2)$, where $k+\ell=\dim X$, we denote by $\alpha \bullet \beta$ the intersection number of α and β , that is, $\alpha \bullet \beta := \langle \alpha \cup \beta, [X] \rangle$. Thus $\alpha \bullet \beta$ is an element of $\mathbb{Z}/2$. The next result is called the *conservation of number principle*. THEOREM 1.4. Let X be a compact nonsingular real algebraic variety. Assume that α_1, α_2 in $H^k_{alg}(X, \mathbb{Z}/2)$ are algebraically equivalent and β_1, β_2 in $H^\ell_{alg}(X, \mathbb{Z}/2)$ are algebraically equivalent. If $k + \ell = \dim X$, then $\alpha_1 \bullet \beta_1 = \alpha_2 \bullet \beta_2$. As a consequence we immediately obtain the following fact. COROLLARY 1.5. For any compact nonsingular real algebraic variety X, one has $$\dim_{\mathbb{Z}/2} \left(H^k(X, \mathbb{Z}/2) / H^k_{\text{alg}}(X, \mathbb{Z}/2) \right) \ge \dim_{\mathbb{Z}/2} \operatorname{Alg}^{\ell}(X),$$ where $k + \ell = \dim X$. *Proof.* By Theorem 1.4, $\alpha \bullet \beta = 0$ for all α in $H^k_{alg}(X, \mathbb{Z}/2)$ and all β in $Alg^{\ell}(X)$. The proof is complete since $$H^k(X, \mathbb{Z}/2) \times H^\ell(X, \mathbb{Z}/2) \to \mathbb{Z}/2, \quad (\alpha, \beta) \to \alpha \bullet \beta$$ is a dual pairing [7, Proposition 8.13]. EXAMPLE 1.6. Note that $$X = \{(x, y, z) \in \mathbb{R}^3 \mid ((x^2 + y^2) - 1)((x^2 + y^2) - 2) + z^2 = 0\}$$ is a nonsingular Zariski closed surface in \mathbb{R}^3 , homeomorphic to a torus, and $$C = \{(u, v) \in \mathbb{R}^2 \mid (u^2 - 1)(u^2 - 2) + v^2 = 0\}$$ is a compact nonsingular Zariski closed curve in \mathbb{R}^2 , with two connected components C_+ containing (1,0) and C_- containing (-1,0). The map $\pi:X\to C$, $\pi(x,y,z)=(x^2+y^2,z)$, is regular, $\pi(X)=C_+$, and $\pi:X\to C_+$ is a smooth (of class \mathcal{C}^∞) circle bundle over C_+ . Let β be the cohomology class in $H^1(C,\mathbb{Z}/2)$ Poincaré dual to the homology class in $H_0(C,\mathbb{Z}/2)$ represented by $\{(1,0),(-1,0)\}$. In view of Example 1.1, β is in $\mathrm{Alg}^1(C)$. It follows from Proposition 1.3(i) that $\pi^*(\beta)$ belongs to $\mathrm{Alg}^1(X)$. By construction, $\pi^*(\beta)\neq 0$ and hence $\mathrm{Alg}^1(X)\neq 0$. Applying Corollary 1.5, we get $H^1_{\mathrm{alg}}(X,\mathbb{Z}/2)\neq H^1(X,\mathbb{Z}/2)$. Since $H^1(X,\mathbb{Z}/2)\cong (\mathbb{Z}/2)^2$, we have $H^1_{\mathrm{alg}}(X,\mathbb{Z}/2)=\mathrm{Alg}^1(X)\cong \mathbb{Z}/2$. If $X^n = X \times \cdots \times X$ is the *n*-fold product, then, in view of the last statement of Proposition 1.2, $Alg^k(X^n) \neq 0$ for $1 \leq k \leq n$. This example was first used by Joost van Hamel (unpublished) to illustrate a somewhat different phenomenon. Our next result can also be deduced from Theorem 1.4. THEOREM 1.7. Let $f: X \to Y$ be a regular map between compact nonsingular real algebraic varieties. If Y is irreducible, then given two regular values y_1 and y_2 of f, the smooth manifolds $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are cobordant. This result is of interest if y_1 and y_2 belong to distinct connected components of Y. A different proof of Theorem 1.7 can be found in [5]. Proofs of Theorems 1.4 and 1.7 are given in Section 3. **2. Proof of the propositions.** Given real algebraic varieties X and T, a point t in T, and a cohomology class τ in $H^k(X \times T, \mathbb{Z}/2)$, we set $\tau_t = i_t^*(\tau)$, where $i_t : X \to X \times T$ is defined by $i_t(x) = (x, t)$ for all x in X. It is convenient to give the following characterization of cohomology classes algebraically equivalent to 0. LEMMA 2.1. For any compact nonsingular real algebraic variety X, given a cohomology class α in $H^k_{alg}(X, \mathbb{Z}/2)$, the following conditions are equivalent: - (a) α is algebraically equivalent to 0, - (b) there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class τ in $H^k_{\mathrm{alg}}(X \times T, \mathbb{Z}/2)$ such that $\tau_{t_0} = 0$ and $\tau_{t_1} = \alpha$. *Proof.* Suppose that (a) holds. Then there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class σ in $H^k_{\rm alg}(X \times T, \mathbb{Z}/2)$ such that $\alpha = \sigma_{t_1} - \sigma_{t_0}$. Let $\pi: X \times T \to X$ be the canonical projection. Since $i_{t_0} \circ \pi \circ i_t = i_{t_0}$ for every point t in T, setting $\tau = \sigma - \pi^*(i_{t_0}^*(\sigma))$, we get $$\tau_t = i_t^*(\sigma) - i_t^*(\pi^*(i_{t_0}^*(\sigma))) = \sigma_t - (i_{t_0} \circ \pi \circ i_t)^*(\sigma) = \sigma_t - \sigma_{t_0}.$$ In particular, $\tau_{t_1} = \sigma_{t_1} - \sigma_{t_0} = \alpha$ and $\tau_{t_0} = 0$. Hence (b) is satisfied. The proof is complete since it is obvious that (b) implies (a). Proof of Proposition 1.2. In order to prove that $\operatorname{Alg}^k(X)$ is a subgroup of $H_{\operatorname{alg}}^k(X,\mathbb{Z}/2)$ it suffices to show that given α and β in $\operatorname{Alg}^k(X)$, the sum $\alpha+\beta$ is in $\operatorname{Alg}^k(X)$. By Lemma 2.1, there exist compact nonsingular irreducible real algebraic varieties T and U, and cohomology classes σ in $H_{\operatorname{alg}}^k(X \times T, \mathbb{Z}/2)$ and τ in $H_{\operatorname{alg}}^k(X \times U, \mathbb{Z}/2)$ such that $\sigma_{t_0} = 0$, $\sigma_{t_1} = \alpha$ for some t_0 , t_1 in T and $\tau_{u_0} = 0$, $\tau_{u_1} = \beta$ for some u_0 , u_1 in u. Given u in u in u, let u if u in $$\xi_{(t,u)} = e_{(t,u)}^*(\pi^*(\sigma) + \rho^*(\tau))$$ $$= (\pi \circ e_{(t,u)})^*(\sigma) + (\rho \circ e_{(t,u)})^*(\tau)$$ $$= i_t^*(\sigma) + j_u^*(\tau)$$ $$= \sigma_t + \tau_u.$$ In particular, $\xi_{(t_0,u_0)} = \sigma_{t_0} + \tau_{u_0} = 0$ and $\xi_{(t_1,u_1)} = \sigma_{t_1} + \tau_{u_1} = \alpha + \beta$. Hence $\alpha + \beta$ is in Alg^k(X). We proved that Alg^k(X) is a subgroup of $H^k_{\rm alg}(X,\mathbb{Z}/2)$. Let $p: X \times T \to X$ be the canonical projection and set $\eta = \sigma \cup p^*(\gamma)$. Since $p \circ i_t$ is the identity map of X, we get $$\eta_t = i_t^*(\sigma \cup p^*(\gamma)) = i_t^*(\sigma) \cup i_t^*(p^*(\gamma)) = \sigma_t \cup (p \circ i_t)^*(\gamma) = \sigma_t \cup \gamma.$$ In particular, $\eta_{t_0} = \sigma_{t_0} \cup \gamma = 0 \cup \gamma = 0$ and $\eta_{t_1} = \sigma_{t_1} \cup \gamma = \alpha \cup \gamma$. Thus $\alpha \cup \gamma$ is in $Alg^{k+\ell}(X)$. It remains to prove that $\gamma \times \delta$ is in Alg^{ℓ +m} $(X \times Y)$. By Lemma 2.1, there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class θ in $H^m_{\text{alg}}(Y \times T, \mathbb{Z}/2)$ such that $\theta_{t_0} = 0$ and $\theta_{t_1} = \delta$. Since $\gamma \times \theta = q^*(\gamma) \cup r^*(\theta)$, where $q: X \times Y \times T \to X$ and $r: X \times Y \times T \to Y \times T$ are the canonical projections, it follows that $\gamma \times \theta$ belong to $H^{\ell+m}_{alg}(X \times Y \times T, \mathbb{Z}/2)$. For each t in T, we have $(\gamma \times \theta)_t = \gamma \times \theta_t$. In particular, $(\gamma \times \theta)_{t_0} = \gamma \times \theta_{t_0} = \gamma \times 0 = 0$ and $(\gamma \times \theta)_{t_1} = \gamma \times \theta_{t_1} = \gamma \times \delta$. Hence $\gamma \times \delta$ is in $Alg^{\ell+m}(X \times Y)$. *Proof of Proposition 1.3.* (i) Let β be an element of $\operatorname{Alg}^k(Y)$. By Lemma 2.1, there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class τ in $H^k_{\operatorname{alg}}(Y,\mathbb{Z}/2)$ such that $\tau_{t_0}=0$ and $\tau_{t_1}=\beta$. For t in T, let $i_t:X\to X\times T$ and $j_t:Y\to Y\times T$ be the maps defined by $i_t(x)=(x,t)$ for all x in X and $j_t(y)=(y,t)$ for all y in Y. Denoting by $i:X\to X$ the identity map, we have $(f\times i)\circ i_t=j_t\circ f$. Thus, setting $\sigma=(f\times i)^*(\tau)$, we obtain $$\sigma_t = i_t^*((f \times i)^*(\tau)) = ((f \times i) \circ i_t)^*(\tau) = (j_t \circ f)^*(\tau) = f^*(j_t(\tau)) = f^*(\tau_t).$$ In particular, $\sigma_{t_0} = f^*(\tau_{t_0}) = f^*(0) = 0$ and $\sigma_{t_1} = f^*(\tau_{t_1}) = f^*(\beta)$, and hence $f^*(\beta)$ is in Alg^k(X). This completes the proof of (i). (ii) Let α be an element of $\mathrm{Alg}^{n-k}(X)$. By Lemma 2.1, there exist a compact nonsingular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class σ in $H^{n-k}_{\mathrm{alg}}(X\times T,\mathbb{Z}/2)$ such that $\sigma_{t_0}=0$ and $\sigma_{t_1}=\alpha$. Given a point t in T, let $e_t:\{t\}\hookrightarrow T$ be the inclusion map. For any cohomology Given a point t in T, let e_t : $\{t\} \hookrightarrow T$ be the inclusion map. For any cohomology class η in $H^s(T, \mathbb{Z}/2)$, we define the element $\epsilon_t(\eta)$ of $\mathbb{Z}/2$ by setting $\epsilon_t(\eta) = 1$ if s = 0 and $e_t^*(\eta) \neq 0$, and $\epsilon_t(\eta) = 0$ in all other cases. For any λ in $H^r(X, \mathbb{Z}/2)$ and any μ in $H^r(Y, \mathbb{Z}/2)$, we have $$i_t^*(\lambda \times \eta) = \epsilon_t(\eta)\lambda, \quad j_t^*(\mu \times \eta) = \epsilon_t(\eta)\mu,$$ where the i_t and j_t are the maps defined as in (i). If e is the identity map of T, then $$(D_{Y} \circ j_{t}^{*} \circ D_{Y \times T}^{-1} \circ (f \times e)_{*} \circ D_{X \times T})(\lambda \times \eta) = (D_{Y} \circ j_{t}^{*} \circ D_{Y \times T}^{-1} \circ (f \times e)_{*})(D_{X}(\lambda) \times D_{T}(\eta))$$ $$= (D_{Y} \circ j_{t}^{*} \circ D_{Y \times T}^{-1})(f_{*}(D_{X}(\lambda)) \times D_{T}(\eta))$$ $$= D_{Y}(j_{t}^{*}(D_{Y}^{-1}(f_{*}(D_{X}(\lambda))) \times \eta))$$ $$= D_{Y}(\epsilon_{t}(\eta)D_{Y}^{-1}(f_{*}(D_{X}(\lambda))))$$ $$= \epsilon_{t}(\eta)f_{*}(D_{X}(\lambda))$$ $$= f_{*}(D_{X}(\epsilon_{t}(\lambda)\lambda))$$ $$= (f_{*} \circ D_{X} \circ i_{t}^{*})(\lambda \times \eta).$$ Since r and s are arbitrary, it follows from Künneth's theorem for cohomology that $$D_Y \circ j_t^* \circ D_{Y \times T}^{-1} \circ (f \times e)_* \circ D_{X \times T} = f_* \circ D_X \circ i_t^*$$ as homomorphisms from $H^*(X \times T, \mathbb{Z}/2)$ into $H_*(Y, \mathbb{Z}/2)$, and hence $$j_t^* \circ D_{Y \times T}^{-1} \circ (f \times e)_* \circ D_{X \times T} = D_Y^{-1} \circ f_* \circ D_X \circ i_t^*.$$ Setting now $\tau = (D_{Y \times T}^{-1} \circ (f \times e)_* \circ D_{X \times T})(\sigma)$, we obtain $$\tau_t = j_t^*(\tau) = (D_Y^{-1} \circ f_* \circ D_X \circ i_t^*)(\sigma) = (D_Y^{-1} \circ f_* \circ D_X)(\sigma_t).$$ In particular, $$\tau_{t_0} = (D_Y^{-1} \circ f_* \circ D_X)(\sigma_{t_0}) = (D_Y^{-1} \circ f_* \circ D_X)(0) = 0$$ $$\tau_{t_1} = (D_Y^{-1} \circ f_* \circ D_X)(\sigma_{t_1}) = (D_Y^{-1} \circ f_* \circ D_X)(\alpha).$$ Hence $(D_Y^{-1} \circ f_* \circ D_X)(\alpha)$ is in Alg^{p-k}(Y), and the proof of (ii) is complete. ## **3. Proofs of the theorems.** We begin with the following result. LEMMA 3.1. Let X be a compact nonsingular real algebraic variety of dimension n. Then for any cohomology class α in $Alg^n(X)$, one has $\langle \alpha, [X] \rangle = 0$. *Proof.* Choose a finite subset S of X representing the homology class $D_X(\alpha) = \alpha \cap [X]$ in $H_0(X, \mathbb{Z}/2)$. By [7, p. 239], $\langle \alpha, [X] \rangle = \epsilon(\alpha \cap [X])$, where $\epsilon : H_0(X, \mathbb{Z}/2) \to \mathbb{Z}/2$ is the augmentation homomorphism. Hence, denoting by #S the number of elements of S, we get $$\langle \alpha, [X] \rangle = \#S \pmod{2}.$$ In order to complete the proof it suffices to show that #S is an even integer. Suppose that #S is an odd integer. We obtain a contradiction as follows. Let Y be a real algebraic variety consisting of one point and let $f: X \to Y$ be the unique possible map. Obviously, $(D_Y^{-1} \circ f_* \circ D_X)(\alpha) \neq 0$ in $H^0(Y, \mathbb{Z}/2) \cong \mathbb{Z}/2$. On the other hand, by Proposition 1.3(ii), $(D_Y^{-1} \circ f_* \circ D_X)(\alpha)$ is in $\operatorname{Alg}^0(Y)$. However, since Y consists of one point, it follows from the definition that $\operatorname{Alg}^0(Y) = 0$. Thus we have a contradiction and the proof is complete. *Proof of Theorem 1.4.* By assumption, $\alpha_1 - \alpha_2$ is in $Alg^k(X)$ and $\beta_1 - \beta_2$ is in $Alg^\ell(X)$. Therefore, in view of Proposition 1.2, $(\alpha_1 - \alpha_2) \cup \beta_1$ and $\alpha_2 \cup (\beta_1 \cup \beta_2)$ are in $Alg^{k+\ell}(X)$. Hence $$\langle \alpha_1 \cup \beta_1, [X] \rangle - \langle \alpha_2 \cup \beta_1, [X] \rangle = \langle (\alpha_1 - \alpha_2) \cup \beta_1, [X] \rangle = 0,$$ $$\langle \alpha_2 \cup \beta_1, [X] \rangle - \langle \alpha_2 \cup \beta_2, [X] \rangle = \langle \alpha_2 \cup (\beta_1 - \beta_2), [X] \rangle = 0,$$ where the last equality in either line is a consequence of Lemma 3.1. It follows that $\langle \alpha_1 \cup \beta_1, [X] \rangle = \langle \alpha_2 \cup \beta_2, [X] \rangle$, which is equivalent to $\alpha_1 \bullet \beta_1 = \alpha_2 \bullet \beta_2$. The proof is complete. The proof of Theorem 1.7 requires some preparation. All manifolds we use will be smooth (of class C^{∞}), paracompact and without boundary. Let M be a smooth manifold and let N be a smooth submanifold of M. Assume that N is a closed subset of M. We denote by τ_N^M the Thom class of N in M; thus τ_N^M is in $H^k(M, M \setminus N; \mathbb{Z}/2)$, where $k = \dim M - \dim N$. If $N = \{x\}$, we shall write τ_X^M instead of $\tau_{\{x\}}^M$. Clearly, τ_X^M is just the unique generator of the group $H^m(M, M \setminus \{x\}, \mathbb{Z}/2) \cong \mathbb{Z}/2$, $m = \dim M$. As usual, $w_i(M)$ will denote the ith Stiefel-Whitney class of M. Given a topological space T, we let $\epsilon_T: H_0(T, \mathbb{Z}/2) \to \mathbb{Z}/2$ denote the augmentation homomorphism. Proof of Theorem 1.7. Let $n = \dim X$, $p = \dim Y$, and k = n - p. For any point y in Y, let β_y denote the cohomology class in $H^p(Y, \mathbb{Z}/2)$ Poincaré dual to the homology class in $H_0(Y, \mathbb{Z}/2)$ represented by y. By Example 1.1, given y_1 and y_2 in Y, the cohomology class $\beta_{y_1} - \beta_{y_2}$ belongs to $Alg^p(Y)$. In view of Proposition 1.3(i), $f^*(\beta_{y_1} - \beta_{y_2}) = f^*(\beta_{y_1}) - f^*(\beta_{y_2})$ is in $Alg^p(X)$ and hence Theorem 1.4 implies that $$\alpha \bullet f^*(\beta_{y_1}) = \alpha \bullet f^*(\beta_{y_2})$$ for every cohomology class α in $H^k_{\mathrm{alg}}(X,\mathbb{Z}/2)$. It is known that $w_i(X)$ is in $H^i_{\mathrm{alg}}(X,\mathbb{Z}/2)$ for all $i \geq 0$ [2, 3]. Thus, given nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = k$, we have $$(w_{i_1}(X) \cup \ldots \cup w_{i_r}(X)) \bullet f^*(\beta_{v_1}) = (w_{i_1}(X) \cup \ldots \cup w_{i_r}(X)) \bullet f^*(\beta_{v_2}). \tag{1}$$ Let us set $$n_{i_1...i_r}(f,y) = (w_{i_1}(X) \cup \ldots \cup w_{i_r}(X)) \bullet f^*(\beta_{\nu}).$$ Note that $$n_{i_1...i_r}(f, y) = 0 \text{ for } y \text{ in } Y \setminus f(X), \tag{2}$$ since y in $Y \setminus f(X)$ implies $f^*(\beta_y) = 0$. If y in f(X) is a regular value of f, then $f^{-1}(y)$ is a smooth submanifold of X of dimension k. We assert $$n_{i_1...i_r}(f, y) = \langle w_{i_1}(f^{-1}(y)) \cup \ldots \cup w_{i_r}(f^{-1}(y)), [f^{-1}(y)] \rangle.$$ (3) Suppose that (3) holds. If y_1 and y_2 are regular values of f, then (1), (2), and (3) guarantee that $f^{-1}(y_1)$ and $f^{-1}(y_2)$ have the same Stiefel-Whitney numbers. Hence, by Thom's theorem [11], the smooth manifolds $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are cobordant. Thus it remains to prove (3). In order to simplify notation set $F = f^{-1}(y)$. Let $\bar{f}: (X, X \setminus F) \to (Y, Y \setminus \{y\})$ be the map defined by f. Since y is a regular value of f, we have $$\overline{f}^*(\tau_y^Y) = \tau_F^X.$$ Moreover the following diagram is commutative: $$H^{p}(Y, Y \setminus \{y\}; \mathbb{Z}/2) \xrightarrow{\overline{f}^{*}} H^{p}(X, X \setminus F; \mathbb{Z}/2)$$ $$\downarrow \psi \qquad \qquad \varphi \downarrow$$ $$H^{p}(Y, \mathbb{Z}/2) \xrightarrow{f^{*}} H^{p}(X, \mathbb{Z}/2),$$ where φ and ψ are the canonical homomorphisms. Since $\psi(\tau_y^Y) = \beta_y$, it follows that $$f^*(\beta_y) = f^*(\psi(\tau_y^Y)) = \varphi(\overline{f}^*(\tau_y^Y)) = \varphi(\tau_F^X). \tag{4}$$ Note that if $e: F \hookrightarrow X$ is the inclusion map, then $$\langle \alpha \cup \varphi(\tau_F^X), [X] \rangle = \langle e^*(\alpha), [F] \rangle$$ (5) for every cohomology class α in $H^p(X, \mathbb{Z}/2)$. Indeed, (5) can be proved by direct computation: $$\begin{split} \langle \alpha \cup \varphi(\tau_F^X), [X] \rangle &= \epsilon_X \big(\big(\alpha \cup \varphi(\tau_F^X) \big) \cap [X] \big) \\ &= \epsilon_X \big(\alpha \cap \big(\varphi(\tau_F^X) \cap [X] \big) \big) \\ &= \epsilon_X \big(\alpha \cap e_*([F]) \big) \\ &= \epsilon_X \big(e_*(e^*(\alpha) \cap [F]) \big) \\ &= \epsilon_F \big(e^*(\alpha) \cap [F] \big) \\ &= \langle e^*(\alpha), [F] \rangle, \end{split}$$ where the third equality holds since $\varphi(\tau_F^X) \cap [X] = e_*([F])$ [10, Problem 11.C], the fifth equality is a consequence of naturality of augmentation, and the other equalities are standard properties of the \cup , \cap , and \langle , \rangle products [7]. Furthermore, since the normal vector bundle of F in X is trivial, we have $e^*(w_i(X)) = w_i(F)$ for all i > 0, and hence $$e^*(w_{i_1}(X) \cup \ldots \cup w_{i_r}(X)) = w_{i_1}(F) \cup \ldots \cup w_{i_r}(F).$$ (6) Now, making use of (4), (5), and (6), we get $$n_{i_{1}...i_{r}}(f, y) = \langle w_{i_{1}}(X) \cup ... \cup w_{i_{r}}(X) \cup f^{*}(\beta_{y}), [X] \rangle$$ $$= \langle w_{i_{1}}(X) \cup ... \cup w_{i_{r}}(X) \cup \varphi(\tau_{F}^{X}), [X] \rangle$$ $$= \langle e^{*}(w_{i_{1}}(X) \cup ... \cup w_{i_{r}}(X)), [F] \rangle$$ $$= \langle w_{i_{1}}(F) \cup ... \cup w_{i_{r}}(F), [F] \rangle,$$ which proves (3). Hence the proof is complete. ## REFERENCES - 1. M. Abánades and W. Kucharz, Algebraic equivalence of real algebraic cycles, *Ann. Inst. Fourier (Grenoble)* **49** (1999), 1797–1804. - 2. S. Akbulut and H. King, Submanifolds and homology of nonsingular algebraic varieties, *Amer. J. Math.* 107 (1985), no. 1, 45–83. - **3.** R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles, in *Géométrie algébrique réelle et formes quadratiques*, Lecture Notes in Math. No. 959 (Springer-Verlag, 1982), 198–211. - **4.** J. Bochnak, M. Coste and M.-F. Roy, *Real algebraic geometry*, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), Vol. 36, (Springer-Verlag, 1998). - **5.** J. Bochnak and W. Kucharz, On approximation of smooth submanifolds by nonsingular real algebraic subvarieties, *Ann. Sci. École Norm. Sup.* (4), to appear. - **6.** A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, *Bull. Soc. Math. France* **89** (1961), 461–513. - 7. A. Dold, *Lectures on algebraic topology*, Grundlehren Math. Wiss. Vol. 200 (Springer-Verlag, 1972). - **8.** W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, *Math. Nachr.* **180** (1996), 135–140. - **9.** W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, *J. Algebraic Geometry* **11** (2002), 101–127. - **10.** J. Milnor and J. Stasheff, *Characteristic classes*, Ann. of Math. Studies **76** (Princeton Univ. Press, Princeton, New Jersey, 1974). - 11. R. Stong, *Notes on cobordism theory*, Princeton Math. Notes (Princeton Univ. Press, 1958).