
Judgment and Decision Making, Vol. 6, No. 8, December 2011, pp. 843–856

What might judgment and decision making research be like if we
took a Bayesian approach to hypothesis testing?

William J. Matthews∗

Abstract

Judgment and decision making research overwhelmingly uses null hypothesis significance testing as the basis for
statistical inference. This article examines an alternative, Bayesian approach which emphasizes the choice between two
competing hypotheses and quantifies the balance of evidence provided by the data—one consequence of which is that
experimental results may be taken to strongly favour the null hypothesis. We apply a recently-developed “Bayesian
t-test” to existing studies of the anchoring effect in judgment, and examine how the change in approach affects both
the tone of hypothesis testing and the substantive conclusions that one draws. We compare the Bayesian approach with
Fisherian and Neyman-Pearson testing, examining its relationship to conventional p-values, the influence of effect size,
and the importance of prior beliefs about the likely state of nature. The results give a sense of how Bayesian hypothesis
testing might be applied to judgment and decision making research, and of both the advantages and challenges that a
shift to this approach would entail.
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1 Introduction

In null hypothesis significance testing (NHST) we sum-
marize the data with a test statistic and determine the
probability, p, of obtaining a test statistic which is at least
as extreme as the one observed if the null hypothesis H0

is true. A low p-value is taken to indicate that the null
hypothesis is unlikely to be true; either H0 is false or a
very improbable event has occurred. NHST has many
detractors (e.g., Bakan, 1966; Nickerson, 2000; Wagen-
makers, 2007), and various approaches to inference have
been offered as alternatives, including an increased fo-
cus on effect sizes and confidence intervals (e.g., Cum-
ming & Finch, 2005), and greater emphasis on replicabil-
ity (e.g., Iverson, Lee, & Wagenmakers, 2009; Killeen,
2005; Miller, 2009). Perhaps the most comprehensive
(and radical) alternative to NHST is the adoption of a
Bayesian approach to hypothesis testing, and a number of
researchers have recently argued for a more widespread
adoption of this approach (e.g., Dienes, 2011; Lee &
Wagenmakers, 2005; Rouder, Speckman, Sun, Morey,
& Iverson, 2009; Wagenmakers, 2007; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010). While many
judgment and decision making (JDM) researchers will be
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familiar with Bayesian techniques for model fitting and
parameter estimation (e.g., van Ravenzwaaij, Dutilh, &
Wagenmakers, 2011), hypothesis testing is overwhelm-
ingly conducted in the NHST framework. This article be-
gins by introducing Bayesian hypothesis testing and ap-
plying it to existing work on judgment and decision mak-
ing. We then consider some aspects of this approach in
more detail.

1.1 Bayesian hypothesis testing
Suppose we have two competing hypotheses, the null H0

and the alternative H1, which, in advance of data col-
lection, have probabilities Pr(H0) and Pr(H1). Because
these probabilities are specified in advance of the data
they are referred to as prior probabilities, and the ra-
tio Pr(H0)/Pr(H1) constitutes the prior odds. In many
cases we have no a priori reason to favour one hypothesis
over the other, and the prior odds are set to 1.

We collect a set of data D. The probability of the null
hypothesis given the observed data is written Pr(H0|D);
the corresponding probability for the alternative hypothe-
sis is Pr(H1|D). Because Pr(H0|D) and Pr(H1|D) are
conditional on the data, they are referred to as the poste-
rior probabilities, and their ratio gives the posterior odds:

Ω =
Pr(H0|D)
Pr(H1|D)

The posterior odds provide a natural way to choose
between the hypotheses. For example, if Ω = 15 then
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the null hypothesis is 15 times more likely than the al-
ternative, given the data. From Bayes’ theorem, the rela-
tionship between the posterior odds and the prior odds is
given by:

Pr(H0|D)
Pr(H1|D)

=
Pr(D|H0)
Pr(D|H1)

× Pr(H0)
Pr(H1)

Here Pr(D|H0) and Pr(D|H1) are the probabilities of
obtaining the observed data if the null and alternative
hypotheses are true, and the ratio Pr(D|H0)/Pr(D|H1)
is the Bayes factor, BF01. The Bayes factor quantifies
the change from prior odds to posterior odds: as such,
it represents the evidence provided by the data (Kass &
Raftery, 1995).

A hypothesis H will typically have a set of free pa-
rameters θ, and the probability of obtaining the observed
data for a given set of parameter values is the likelihood,
f(D|θ). In advance of data collection, we assign each
possible parameter value a prior probability by specifying
a density function p(θ|H). The choice of this prior distri-
bution is at our disposal; it may be based on subjective
beliefs about the likelihood of different parameter val-
ues, or it may be selected to be minimally informative—
for example, by letting every possible parameter value be
equally likely. In order to obtain the overall probability
of obtaining the observed data under the hypothesis, we
weight each likelihood by the corresponding prior proba-
bility of the parameters and integrate over the parameter
space. This gives the marginal likelihood:

Pr(D|H) =
∫

f(D|θ)p(θ|H)dθ

The Bayes factor BF01 is the ratio of the marginal like-
lihoods for H0 and H1. If the hypotheses are equally
probably a priori, and if we have only two hypotheses,
then the Bayes factor is equal to the posterior odds, and
the posterior probability of the null hypothesis Pr(H0|D)
is simply BF01/(1 + BF01).

1.2 The current article
This article explores what judgment and decision mak-
ing (JDM) research might look like if we took a Bayesian
approach to hypothesis testing. Bayesian hypothesis test-
ing is often difficult because the integration over the pa-
rameter space required to calculate the marginal likeli-
hoods can require Markov Chain Monte Carlo (MCMC)
simulation (e.g., Kass & Raftery, 1995). However, there
has been increasing emphasis on making these methods
more accessible to a general audience, and on deriving
analytic expressions which permit Bayesian alternatives
to conventional statistical tests. We will make use of one
such technique, the Jeffreys-Zellner-Siow (JZS) Bayesian

t-test developed by Rouder et al. (2009). This test pro-
vides an alternative to one- and two-sample t-tests and
computes the Bayes factor from the sample size and t-
statistic. As described above, Bayesian hypothesis testing
requires the specification of a prior distribution for the pa-
rameters of the competing hypotheses; the JZS t-test uses
a Cauchy prior distribution on effect size and a Jeffreys
prior on population variance, a combination referred to
as the Jeffreys-Zellner-Siow (JZS) prior (Rouder et al.,
2009). This amounts to a particular instantiation of the
idea that the prior distribution for effect sizes is symmet-
rical about zero, with small effects being more probable
than large ones. Mathematical details are given in the Ap-
pendix. An on-line program implementing the JZS t-test
is available from http://pcl.missouri.edu/bayesfactor and
an R code implementation is available from the current
author.

The JZS t-test is a straightforward Bayesian alterna-
tive to a widely-used test, and its implementation conveys
a sense of what judgment and decision making research
might look like if the community adopted Bayesian hy-
pothesis testing. We begin by applying the test to a num-
ber of existing studies from one important area of JDM
research: anchoring.

2 Some example applications

Tversky and Kahneman (1974) proposed the anchor-and-
adjust heuristic as one strategy for judgment under un-
certainty. The idea is that people select a starting an-
chor value and then adjust towards the target quantity.
The adjustments are insufficient so that judgments are bi-
ased towards the anchor (although it seems that this is not
always the mechanism—see Epley and Gilovich, 2001,
2005). Anchoring has been demonstrated (or invoked as
an explanation) in a huge array of judgment tasks, includ-
ing legal decisions (e.g., Chapman & Bornstein, 1996;
Englich & Mussweiler, 2001), choices between gambles
(Carlson, 1990), house and consumer product price esti-
mation (Matthews & Stewart, 2009; Northcraft & Neale,
1987), purchase quantity decisions (Wansink, Kent, &
Hoch, 1998), valuation of pain (Ariely, Loewenstein, &
Prelec, 2003), predictions of political outcomes (Chap-
man & Johnson, 1999), subjective confidence judgments
(Block & Harper, 1991), general knowledge (Jacowitz
& Kahneman, 1995), perceptual judgments (LeBoeuf &
Shafir, 2006), auditing (Butler, 1986), performance eval-
uations (Thorsteinson, Breier, Atwell, Hamilton, & Priv-
ette, 2008) and judgments of self-efficacy (Cervone &
Peake, 1986).

The breadth of interest in anchoring means that the
statistical practices that guide inference about the phe-
nomenon are of considerable importance. Here we ex-
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Table 1: Verbal labels for evidence provided by different
Bayes factors (Raftery, 1995, Table 6).

Bayes Factor BF01 Pr(H0|D) Evidence

1–3 .50–.75 Weak
3–20 .75–.95 Positive

20–150 .95–.99 Strong
>150 >.99 Very Strong

amine the consequences of a move to Bayesian hypothe-
sis testing on three published studies of anchoring.

2.1 Jacowitz and Kahneman (1995)

Jacowitz and Kahneman (1995) asked participants to esti-
mate quantities such as the length of the Mississippi river.
A calibration group produced unanchored judgments; a
test group judged whether each target quantity was lower
or higher than an anchor value, with low and high anchors
chosen by selecting the 15th and 85th percentiles of the
calibration group. After answering the comparative ques-
tion, participants estimated the target quantity and rated
their confidence on a 10-point scale.

Jacowitz and Kahneman (1995) found a sizeable an-
choring effect: the median subject’s judgment moved
about half way to the anchor from what it would have
been without an anchor. More importantly, Jacowitz and
Kahneman compared confidence levels for participants
provided with an anchor (either high or low) with those
for participants who were not. Confidence was higher
in the anchored group (N = 103, M = 3.85) than in
the unanchored calibration group (N = 53, M = 2.99).
Jacowitz and Kahneman report that this difference is sig-
nificant, t(154) = 3.53, p < .001 (p = .00055 to 5 d.p.).

When the t and N values are supplied to the JZS t-
test, the Bayes factor B01 = 0.0235. This means that
the data are 1/0.0235 = 42 times more likely under the
alternative hypothesis than under the null. Arguably we
should leave things at that; the Bayes factor is directly
interpretable as an odds ratio and there is no need for
“thresholds” or “cut-offs” of the type found in NHST.
However, some authors have suggested broad categories
for Bayes factors; those offered by Raftery (1995) are
shown in Table 1. According to this scheme, the data
provide “strong” evidence in favour of the alternative hy-
pothesis. We might also calculate the posterior proba-
bility of the null, Pr(H0|D) as 0.0235/1.0235 = .023
(assuming H0 and H1 were equally probable a priori).
The posterior probability of the alternative hypothesis is
1− .023 = .977.

This example represents a case where the Bayesian ap-

proach yields much the same conclusion as null hypothe-
sis significance testing. What has changed is the com-
plexion that the analysis puts on the data. We are no
longer looking for categorical yes/no decisions, but at the
strength of the evidence for/against the null and alterna-
tive hypotheses.

2.2 Epley and Gilovich (2005)
In the “standard” anchoring paradigm, participants com-
pare the target quantity to an experimenter-provided an-
chor before making their estimate. The resulting bias
seems to be due to activation of anchor-consistent knowl-
edge during the comparative judgment (e.g., Mussweiler
& Strack, 1999). Epley and Gilovich (2005) theorized
that accuracy incentives will have no effect on this type
of anchoring because the knowledge-priming that under-
lies the bias is automatic. They divided participants into
two groups: one received financial incentives for accu-
racy, the other did not. Responses were standardized and
coded such that larger values meant judgments further
from the anchor. A t-test indicated that the means were
not significantly affected by incentive, which Epley and
Gilovich report as t < 1, ns.

This is a case where the researchers would like to gain
evidence for the null. The lack of a significant result in
NHST is couched as a failure to find an effect, and the
nagging suspicion is often that there is an effect, but that
the experiment failed to detect it. The odds ratio pro-
vided by the Bayesian approach allows one to assert that
the data favoured (perhaps strongly) the null hypothesis.
For Epley and Gilovich’s (2005) experiment, the Bayes
factor B01 = 3.06 (assuming t = 1 and that the 51
participants were split 25-26 between the incentive and
no-incentive groups), meaning that the data are at least
3 times as likely under the null as under the alternative.
Thus, the data provide “positive” evidence for the (theo-
retically important) idea that there is no effect of incentive
when anchors are provided by the experimenter.

2.3 Critcher and Gilovich (2008)
Critcher and Gilovich (2008) were interested in whether
incidental values might serve as anchors. Participants
read about a college linebacker, Stan Fischer. The de-
scription was accompanied by a photo of Fischer wear-
ing a jersey bearing number 54 (low anchor condition,
N = 138) or 94 (high anchor condition, N = 124).
No special emphasis was placed on the picture or the jer-
sey, but participants in the high anchor condition judged
Fischer more likely to “register a sack in the conference
playoff game” than those in the low anchor condition
(mean probability judgments 61.6%, SD = 22.2%, and
55.6%, SD = 25.0%, respectively). A two-sample t-test
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indicates a significant effect of Stan Fischer’s jersey on
people’s judgments, t(260) = 2.052, p = .041.1

The JZS Bayes factor for these data is 1.34 and (as-
suming that H0 and H1 were equally likely a priori) the
posterior probability of the null Pr(H0|D) = .57. That
is, the data weakly favour the null hypothesis, despite the
significant result. This illustrates a key point: NHST may
reject the null despite a reasonable alternative hypoth-
esis being even more unlikely, reflecting a bias against
the null discussed below. This example represents a case
where different substantive conclusions are drawn from
Bayesian hypothesis testing and NHST.

3 Evaluating the Bayesian ap-
proach

These examples illustrate how one easy-to-use tool for
Bayesian hypothesis testing might be applied to JDM re-
search, and what the resulting analyses might look like.
We now consider some aspects of the Bayes factor ap-
proach in more detail, starting with a brief comparison
with two dominant alternatives: Fisherian inductive in-
ference and Neyman-Pearson inductive behaviour.

3.1 Fisher’s approach

In Fischer’s approach to inductive inference, the re-
searcher determines the probability under the null of ob-
taining a test statistic at least as extreme as the one actu-
ally observed (e.g., Fisher, 1970). This p-value is taken
as a measure of evidence against the null: a small p-value
indicates that either the null is false or a very rare event
has occurred. p-values less than .05 are often deemed
“significant”. A key feature of Fisher’s approach is that it
is concerned with only one hypothesis, and “Every exper-
iment may be said to exist only in order to give the facts a
chance of disproving the null hypothesis.” (Fisher, 1960,
p. 16).

The advantage of the Fisherian approach is that it ob-
viates the need to specify a precise alternative to the null.
However, advocates of Bayesian hypothesis testing argue
that it has a number of advantages over Fisher’s approach.

1. The Bayes factor provides a better measure of evi-
dence. A Bayes factor of 5 means that the data are five
times more likely under the null than under the alterna-
tive. By contrast, the relationship between p-values and

1Critcher and Gilovich analysed their data with a regression analysis
that included participant expertise as a predictor. This factor had no
effect so we can simplify matters by using a t-test. Because the JZS test
assumes equal variances, we make the same assumption. In fact, the
variances for these data are significantly different, but the conventional
t-test results using a Welch correction are virtually identical; the issue
of unequal variance is discussed below.

evidence is unclear. Do two experiments with the same p-
value but different sample sizes provide equal evidence,
as Fisher seems to have thought (Wagenmakers, 2007)?
Does the one with the smaller N provide more evidence
(because the effect must be larger, e.g., Bakan, 1966) or
the one with the larger sample size (because more data
are more compelling, e.g., Rosenthal & Gaito, 1963)?

2. Fisher’s approach requires precise specification of
the sampling plan before data collection. Researchers
frequently violate this by “optionally stopping” (col-
lecting additional data after a first sample fails to pro-
duce a significant result, or terminating an experiment
early if a “sneak peek” reveals that significance has al-
ready been achieved; see Botella, Ximénez, Revuelta, &
Suero, 2006; Frick, 1998). In the Bayesian approach, re-
searchers may inspect the data and terminate the experi-
ment whenever they wish. Bayesian inference obeys the
likelihood principle: the conclusions drawn depend only
on the data that were actually collected, not on the sam-
pling plan that led to those observations nor on other data
that might have been observed but were not (see Edwards,
Lindman, Savage, 1963; Lee, 1997, Chapter 7).

3. The Fisherian approach allows us to reject the null
hypothesis but never to conclude that it is true. As the
APA task force on statistical inference dictate, one should
“Never use the unfortunate expression ‘accept the null
hypothesis’ ” (Wilkinson et al., 1999, p. 599). How-
ever, researchers often seek to establish a theoretically-
important invariance—not least when arguing against an
effect that has already been reported (e.g., Acker, 2008;
Calvillo & Penaloza, 2009; Thorsteinson & Withrow,
2009). As Bakan (1966, pp. 427–428) notes: “even the
strict repetition of an experiment and not getting signifi-
cance in the same way does not speak against the result
already reported in the literature. For failing to get signifi-
cance . . . only means that that experiment is inconclusive;
whereas the study already reported in the literature, with
a low p-value, is regarded as conclusive.” If the null is
false, increasing the sample size increases the chance of
rejecting the null. However, if the null hypothesis is true,
the p-value is uniformly distributed between 0 and 1 and
does not depend on sample size: the null will still be re-
jected with probability .05. One cannot collect more data
to gain evidence for the null, and Fisher’s approach tends
to overstate the evidence against it (see e.g., Rouder et al.,
2009). By contrast, Bayesian hypothesis testing may lead
to the conclusion that the null is much more likely than
the alternative hypothesis of an effect size drawn from a
distribution of plausible values.

This last point is illustrated in Figure 1, which plots the
change in JZS Bayes factor as a function of increasing
sample size for four different p-values. For small p, in-
creasing the sample size initially strengthens the case for
the alternative hypothesis, but as sample size grows the

https://doi.org/10.1017/S1930297500004265 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500004265


Judgment and Decision Making, Vol. 6, No. 8, December 2011 Bayesian hypothesis testing 847

Figure 1: JZS Bayes factor as a function of sample size
for various p-values.
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balance shifts to the null. One striking fact is that, with a
p-value of .05, the Bayes factor is only less than 1.0 for
relatively small sample sizes; once N is 27 or greater, a p-
value of .05 means that, assuming the JZS prior, the bal-
ance of evidence favours the null. Similarly, it is not un-
common for researchers to talk of p = .1 as “marginally
significant”, yet if the sample size is 9 or greater then
the JZS Bayes factor implies that the data favour the null.
(For p = .01 and p = .001 the cross-over sample sizes are
480 and 32073, respectively.) Although Bayesian infer-
ence has the advantage of allowing evidence for the null,
it may be disheartening for JDM researchers to think that
a Bayes factor approach will make it harder to assert the
alternative hypothesis when this is most often what they
wish to do.

3.2 The Neyman-Pearson approach

The Neyman-Pearson (N-P) approach is distinct from
Fisher’s in that (1) the researcher specifies an alterna-
tive to the null, and (2) rather than reporting a p-value,
the researcher reports α and β, the probabilities of type
I and type II errors (the long-run frequencies with which
the null will be erroneously rejected/accepted) (e.g., Ney-
man, 1950; see also Hubbard & Bayarri, 2003, and
Lehmann, 1993). Typically, in advance of data collec-
tion the researcher specifies the alternative hypothesis as
a particular effect size δ > 0 and performs a power cal-
culation to determine the sample size needed to achieve a
particular type II error rate 2. Many JDM researchers em-
ploy this approach (e.g., Hilbig, 2008; Matthews, 2011),

2This kind of a priori power analysis is the most common approach,
but there are other types such as criterion power analysis and sensitivity
power analysis. See Faul, Erdfelder, Lang, & Buchner, 2007.

but its use is not systematic. For example, APA guide-
lines stipulate reporting exact p-values even though these
are irrelevant to N-P inference (American Psychological
Association, 2009, p.34).

When considering the competing, Bayesian approach,
we can note the following:

1. The specification of an alternative to the null is com-
mon to N-P and Bayesian hypothesis testing, but the N-
P approach is concerned with inductive behaviour, not
inference. From this perspective, it is meaningless to
talk about the probability of a particular hypothesis being
true—it either is or is not. We can only seek to specify
the long run frequency with which we draw an incorrect
conclusion: “Thus, to accept a hypothesis H means only
to decide to take action A rather than action B. This does
not mean we necessarily believe that the hypothesis H is
true” (Neyman, 1950, p. 259). In Bayesian hypothesis
testing, by contrast, probabilities represent degrees of be-
lief (or the “normative convictions a person should have
given the constraints and information made explicit in the
statement of the problem”, Dienes, 2011, p. 7).

2. Correspondingly, the N-P approach does not quan-
tify evidence. An experiment for which the t-statistic is
fractionally above the critical value for rejection of the
null with α = .05 is interpreted no differently from an
identical experiment in which the t-statistic is five times
larger (see e.g., Berger, 2003, for discussion).

3. The N-P approach typically involves specifying a
single alternative (such as an effect size of 0.5) whereas
the Bayesian approach allows specification of a range of
effect sizes with differing prior probabilities. The price of
this flexibility is that inference depends on the choice of a
prior distribution, which may seem arbitrary and subjec-
tive (see below).

4. Like Fisher’s approach, N-P testing violates the like-
lihood principle: inference depends not only on the ob-
served data but also on the sampling plan, whether the
tests are planned or post hoc, and the number of tests to
be conducted. For example, researchers seek to minimize
type I error rates by adjusting the alpha level for multiple
tests, but this raises the problem of specifying in advance
how many tests will (or might) be conducted. The Bayes
factor quantifies the evidence for one hypothesis versus
another and multiple hypotheses may be compared with-
out difficulty and post hoc (e.g., Gallistel, 2009).

5. There has been a growing emphasis on reporting ef-
fects sizes and their associated confidence intervals (CIs,
see, e.g., Cumming & Finch, 2005). It is certainly worth
reporting this information, but because confidence inter-
vals are based on the same frequentist logic as Neyman-
Pearson hypothesis testing, the same comments apply:
the CIs depend on the sampling plan and researcher in-
tentions, they do not quantify evidence, and an effect size
whose 95% confidence interval does not span zero may
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nonetheless provide stronger support for the null than for
an alternative with a reasonable prior. As Di Stefano, Fi-
dler, and Cumming (2005) note: “It is somewhat frus-
trating that confidence intervals do not provide us with
the probability that the interval contains the true effect, a
value that would be particularly useful—to achieve this
we would have to create intervals using a Bayesian ap-
proach.” We discuss this approach below.

The power calculations used in N-P testing raise the
issue of effect size, and it is instructive to examine the in-
fluence of effect size on the Bayes factor. Figure 2 shows
the expected Bayes factors and posterior probabilities as a
function of sample size for three different effects. When
there is a large effect, the Bayes factor strongly favours
the alternative even with relatively small samples. How-
ever, when the true effect is smaller, increasing the data
initially strengthens the evidence for the null, and only
when very large data sets have been collected does the
Bayes factor shift in favour of the alternative hypothesis.
Rouder et al. (2009) describe this behaviour as “ideal”
(p. 233), because very small effects imply approximate
invariance. The null is unlikely to be exactly true, so the
behaviour of the Bayes factor allows researchers to gain
positive evidence for the null (or an approximate invari-
ance) at realistic sample sizes, safe in the knowledge that
the small deviation from the null would become apparent
eventually. Despite this, some researchers may be trou-
bled by the inverted U-shaped curve for small effects.

3.3 The choice of prior

The foregoing relates Bayesian hypothesis testing to al-
ternative modes of inference. Although we have empha-
sized its advantages, the Bayesian approach is far from
universally approved (see e.g., Hacking, 1965; 2001,
for discussion). The most widespread objection is that
Bayesian hypothesis testing requires the specification of
prior probabilities.

Prior probabilities enter Bayesian hypothesis testing at
two points: we specify prior probability density functions
for the parameters of the models we are testing, and prior
odds for the competing hypotheses. The former are in-
trinsic to the formulation of statistical hypotheses and, as
such, determine the balance of evidence provided by the
data; the latter reflect our prior beliefs/knowledge, and
have no effect on the balance of evidence from the data—
rather, they shape how this evidence is used to arrive at a
new belief state.

3.3.1 Choosing a prior probability density function

Critics of Bayesian hypothesis testing (including Fisher
and Neyman) attack the need to specify prior distributions
for model parameters as introducing inappropriate sub-

jectivity into statistical inference. For a Bayesian, how-
ever, specifying prior distributions for the parameters is
part of establishing the hypotheses that we wish to test,
and the choice of prior reflects relevant knowledge. Dif-
ferent priors give rise to different Bayes factors, but this
is just as one would expect (and require) when testing
different models. From this perspective, the dependence
of inference on the specification of a prior parameter dis-
tribution is a strength, not a weakness. Deciding between
these positions is not a goal of this article (for discussions,
see Berger, 2003; Hacking, 1965, 2001; Jaynes, 2003;
Neyman, 1950; Sterne & Davey Smith, 2001; Trafimow,
2003, 2005; Vanpaemel, 2010; Wagenmakers, 2007). In-
stead, we will aim to get a sense of how the choice of
prior influences Bayesian hypothesis testing.

The choice of prior may be based on an experimenter’s
existing knowledge, or on an “objective” principle. “Ob-
jective” priors are typically chosen to be uninformative,
with the probability density spread thinly over the range
for which they are defined. The JZS prior employed
above is an example of an uninformative prior. It cap-
tures the intuition that increasingly large effects sizes are
increasingly unlikely, and it is intended to carry very lit-
tle information (Kass & Raftery, 1995; see Appendix).
However, researchers can also incorporate their knowl-
edge about the outcomes which are likely to arise in a par-
ticular experimental context (e.g., Gallistel, 2009, Van-
paemel, 2010). For the JZS t-test, we can scale the JZS
prior on effect size, such that δ ∼ r× Cauchy, where r
is a scale factor (Rouder et al., 2009). Increasing r in-
creases the dispersion of the prior distribution, making
extreme effects more plausible.

Figure 3 shows how r influences the Bayes factor for
three true effect sizes. It illustrates a core point: the
choice of prior can have a marked influence on Bayesian
inference when the sample sizes are around those typi-
cal of many JDM experiments. For some, this will be
reason enough to stick with NHST. For others, the role
of the prior reflects an essential truth about the scientific
enterprise—that if we are to use data to choose between
competing beliefs, the choice will depend upon exactly
how those beliefs are constituted (e.g., Jaynes, 2003; Van-
paemel, 2010).

3.3.2 Varying the vagueness

We saw above that the Bayes factor sometimes suggests a
different conclusion from the p-value. Such discrepancies
inevitably depend on the choice of prior for the alternative
hypothesis. For example, in the Critcher and Gilovich
(2008, Study 1) example, it might be objected that the re-
sults are a consequence of the diffuse JZS prior: if the
prior concentrated greater weight on smaller effect sizes,
the results would, like NHST, favour the alternative. One
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Figure 2: Change in expected Bayes factor (left panel) and posterior probability of the null Pr(H0|D) (right panel)
when the sample size is increased for each of three true effect sizes: a large effect (δ = 2.0), a small effect (δ = 0.2)
and a very small effect (δ = 0.02). The plotted values were obtained by Monte Carlo simulation in which repeated
samples of the given size were drawn from a normal distribution with mean equal to δ and unit standard deviation. The
data represent the results using the unit information prior (see Appendix) because Rouder et al. (2009) explain that the
integration required in the calculation of the JZS Bayes factor becomes unstable at very large N ; nonetheless, running
the analysis with the JZS prior produces the same pattern of results. Each point is based on 10000 random samples.
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general strategy advocated by Gallistel (2009) is to under-
take a sensitivity analysis based on “varying the vague-
ness”. Gallistel focuses on the case where the null speci-
fies a value for a parameter and the alternative specifies a
uniform distribution of increments to the null value; ex-
tending the range of this distribution increases the vague-
ness of the alternative. Gallistel plots the Bayes factor
as a function of the limit(s) on the increment prior, and
suggests that “the null is rejected only when this func-
tion has a minimum substantially below the odds reversal
line” (that is, when the minimum Bayes factor is much
less than 1) (Gallistel, 2009, p. 452). In some cases, one
hypothesis or the other is “unbeatable”: the Bayes fac-
tor is above (or below) the reversal line across the whole
range of maximum assumed effect sizes.

Figure 4 illustrates this approach by plotting the JZS
Bayes factor as a function of the scale factor r for the
studies by Jacowitz and Kahneman (1995) and Critcher
and Gilovich (2008, Study 1) discussed above (see the
online appendix to Wagenmakers, Wetzels, Borsboom,
& van der Maas, 2011, for another illustration). For
the Jacowitz and Kahneman experiment, the minimum
Bayes factor favours the alternative by about 50:1 (when
r = 0.52) and the Bayes factor is below the reversal
line for a wide range of r values. For the Critcher and
Gilovich data, the Bayes factor minimum is 0.56 (favour-
ing the alternative by about 1.8 to 1) when r = 0.15,
providing only weak support for the alternative; for a rea-

sonable range of scale factors the data are not particularly
compelling either way. Note that as r approaches zero
the null and alternative become indistinguishable and the
Bayes factor tends to 1, and that as r grows larger and the
alternative hypothesis becomes ever more vague, so the
data increasingly favour the null (although in some situ-
ations analytic constraints limit the maximum vagueness
of the prior—see, e.g., Gallistel, 2009).

Some researchers suggest that Bayes factors routinely
be accompanied by this kind of sensitivity analysis, in-
dicating the effects of choosing different priors (Liu &
Aitkin, 2008). More general information regarding robust
Bayesian analysis can be found in Berger (1990, 1993;
see also Gelman, 2006).

3.3.3 Let the prior fit the hypothesis

When specifying priors, it is important that the researcher
be clear about which hypotheses they wish to compare.
Consider a study in which 100 students take a statis-
tics test before and after a course on Bayesian inference.
The average improvement is 2% (SD = 10%), and the
paired-samples t(99) = 2.00. The corresponding p-value
is .048 suggesting rejection of the null, but the JZS BF is
1.85, weakly favouring the null hypothesis. What should
one expect in a replication of this study? A reviewer com-
mented that it seems reasonable to think that a positive
effect will be more likely than a negative one, whereas
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Figure 3: The effects of changing the prior. The upper panels show changes in the Bayes factor as sample size
increases; the lower panels show the change in the posterior probability of the null (assuming equal prior probabilities
for H0 and H1). The plots show the dependency of the Bayes factor on the choice of prior for each of three true
effect sizes. Each data point represents the average from 10000 random samples. The leftmost plot shows the results
when the true state of nature comprises a substantial effect, δ = 0.8. In this case, the most widely-dispersed prior
(r = 5) favours the null more than the cases where the prior assumes a smaller effect, but as the sample size rises this
difference is rapidly overwhelmed by the data. The middle panel shows the results for a smaller effect size, δ = 0.25.
Here the three priors differ substantially in their support for the null and in the sample size that is required before the
Bayes factor favours the alternative hypothesis. For example, with a sample of 100 the choice of r = 0.2 indicates
a posterior probability for the null that approaches 0.25, indicating “positive evidence” for the alternative hypothesis,
but when r = 5, Pr(H0) is about .60, providing “weak evidence” for the null. The situation is most pronounced in the
right-hand panel, where δ = 0 (the null hypothesis is true.) Here the choice of a large r means that the data quickly
favour the null; however, choice of a small r—corresponding to the belief that the data will not differ much from the
null hypothesis—provides little clear evidence one way or the other even when N = 100.
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the Bayes factor favours the null, suggesting that both di-
rections are equally likely.

A key point here is that the results of the Bayesian anal-
ysis depend upon the hypotheses we compare. The JZS
Bayes factor contrasts the hypothesis of an effect size of
precisely zero (the null) with the hypothesis of an effect

whose probable size is Cauchy distributed about zero. If
we set out to test an ordinal constraint (such as whether
the data are more likely to have come from a distribu-
tion with an effect size which is positive or negative) then
we would calculate a different Bayes factor. Morey and
Rouder (2011) discuss the calculation of Bayes factors
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Figure 4: The effects of changing the prior on the Bayes
factor for the data from Jacowitz and Kahneman (1995)
and Critcher and Gilovich (2008, Study 1). Points above
the dotted reversal line favour the null; below the line
they favour the alternative. Small values of r favour the
alternative hypothesis; as the prior distribution of effect
sizes is made more diffuse (that is, as larger effects are
given greater weight) the balance shifts to favour the null.
As r approaches zero, the alternative becomes indistin-
guishable from the null and the Bayes factor approaches
1. For the Jacowitz and Kahneman data, the Bayes factor
favours the alternative for r up to 56.1 (corresponding to
a very diffuse prior); for the Critcher and Gilovich exper-
iment, the Bayes factor favours the null once r > 0.70.
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for this kind of ordinal constraint, and suggest contrasting
Hn, under which the effect size is a half Cauchy on the
negative reals (i.e., the effect is negative and small effects
are more likely than large ones), with Hp, in which the
prior distribution for effect size is a half Cauchy on the
positive reals (the effect is positive and small effects are
more likely than large ones). For the example above, the
resulting Bayes factor favours the hypothesis of a positive
effect by a factor of about 38.5.3 Thus, given a choice
between no effect and an effect of unspecified direction
with small absolute values more likely than large ones,
the data favour the hypothesis of zero effect; but given
a choice between a positive effect and a negative effect
(with small absolute values again more likely than large
ones), the data strongly favour a positive effect. There
is nothing inconsistent about these inferences: different
questions produce different answers. Morey and Rouder
provide an extensive discussion of the Bayes factor ap-
proach to testing directional hypotheses and hybrid mod-
els in which the null is defined as a range of small effects
rather than precisely zero effect.

This example also raises the more general question of
how researchers can use the results of a Bayesian anal-

3An online calculator for this kind of hypothesis test is available
from http://pcl.missouri.edu/bayesfactor.

ysis to generate predictions for future data. Briefly, one
can use the data from the first experiment to update the
effect size prior and use the resulting posterior distribu-
tion as a data-generating model to obtain predictions for
a replication experiment. This process can be repeated
for competing hypotheses, with the predictions of each
model weighted by that model’s posterior probability. For
examples and discussion, see Kruschke (2010) and Iver-
son, Wagenmakers, and Lee (2010).

3.4 Prior odds

The Bayes factor quantifies the evidence provided by the
data, irrespective of the researcher’s prior beliefs—which
some have argued makes it ideal for scientific commu-
nication (e.g., Jeffreys, 1961; Rouder & Morey, 2011).
However, the conversion from Bayes factor to posterior
odds depends on the prior odds, Pr(H0)/Pr(H1). In the
examples above we treated the two hypotheses as equally
likely a priori, but this need not be the case. For exam-
ple, in a Bayesian analysis of Bem’s (2011) recent data
on precognition, Rouder and Morey (2011) find a Bayes
factor of about 40 in favour of the hypothesis that people
can predict the future presentation of valenced non-erotic
stimuli. This Bayes factor quantifies the evidence in the
data and specifies how beliefs should be updated, but the
results of this updating will depend on the beliefs held be-
fore the experiment. Rouder and Morey suggest that most
researchers would strongly favour the null hypothesis—
because precognition contravenes established biological
and physical principles. If one quantified this belief
with prior odds of Pr(H0)/Pr(H1) = 106, the posterior
odds following Bem’s experiment are (106/1) ∗ (1/40)
= 25000:1 in favour of the null. Note that the prior odds
of a million to one are purely illustrative: different re-
searchers will have different prior odds based on their
varying knowledge of relevant research—but the Bayes
factor nonetheless quantifies how those beliefs should be
revised in light of the new data.

One might also specify prior odds on the basis of a
general belief about the probable truth of the null hypoth-
esis. A reviewer commented that we typically give the
null hypothesis “all the chances we can”, which suggests
a prior belief in the truth of the null. Similarly, Sterne and
Davey Smith (2001) assume that, in epidemiological re-
search, only 10% of the null hypotheses tested are false.
Setting prior odds of 9:1 in favour of the null means that
it takes stronger evidence (quantified by the Bayes factor)
to shift our posterior beliefs in favour of the alternative.

Many researchers will be uncomfortable with the sub-
jectivity which prior odds seem to represent, and with the
idea that different people may draw different conclusions
from the same data. (Indeed, NHST arose from a desire
to make inductive inference “objective”—see e.g., Hub-
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bard & Bayarri, 2003). A Bayesian will counter that prior
odds capture relevant knowledge, and that if researchers
have differing prior knowledge then it is only reasonable
that they reach different conclusions following a given
experiment. One position stresses the Bayes factor as a
quantification of the evidence provided by the data which
does not in itself lead to a choice between competing hy-
potheses: people may hold differing prior beliefs (based
on differing knowledge) and use the Bayes factor to up-
date these beliefs. One practical approach is to assume
that both hypotheses are equally likely, run our first ex-
periment, calculate the posterior odds using the Bayes
factor, and then use these as the prior odds for the next
experiment. Thus, research following on from the exper-
iment by Jacowitz and Kahneman (1995) discussed above
might begin with prior odds that are 42:1 in favour of the
hypothesis that provision on an anchor affects confidence.
The existing data give us reason to believe in this hy-
pothesis, increasing the weight of contradictory evidence
which will be required to shift our belief back towards the
null.

3.5 Parameter estimation and hierarchical
models

We have focussed on the Bayes factor as a quantification
of the evidence for competing hypotheses. However, in
many situations we are more interested the magnitude of
an effect (or, more generally, the value of a model pa-
rameter) than in choosing between null and alternative
hypotheses. Adopting a Bayesian approach, researchers
can specify a prior distribution for the parameter and up-
date this in the light of the data to obtain a posterior dis-
tribution which specifies the probability that the param-
eter takes any particular value. This information can be
summarized by reporting, for example, the mean and a
“credible interval” containing 95 percent of the posterior
density. Unlike frequentist confidence intervals, the cred-
ible intervals of Bayesian analysis do not depend on the
researcher’s intentions or sampling plan—we can, for ex-
ample, keep collecting and inspecting data indefinitely—
and have the advantage that the prior distribution encap-
sulates existing knowledge about the parameter in ques-
tion. Moreover, for studies examining multiple effects the
posterior will be a joint probability distribution indicating
the credibility of all combinations of parameter values,
and this posterior distribution can be used for multiple
comparisons without having to worry about corrections
for multiple tests (see Kruschke, 2010, for a worked ex-
ample).

This parameter-estimation approach readily extends to
hierarchical models in which, for example, we assume
that the effect size for each participant is drawn from
an overarching distribution with its own hyperparame-

ters, where we specify prior distributions for these hy-
perparameters rather than for the effect size itself. In
this way, information gained from one participant shapes
the predictions made about the others. An introduction
to the hierarchical approach and discussion of its advan-
tages can be found in Lee and Vanpaemel (2008), Rouder
and Lu (2005), and Shiffrin, Lee, Kim, and Wagenmakers
(2008). For recent applications to JDM research see van
Ravenzwaaij et al., (2011) and Nilsson, Rieskamp, and
Wagenmakers (2011).

3.6 Beyond the JZS t-test

The JZS t-test used here is accessible but limited. Wet-
zels, Raaijmakers, Jakab, and Wagenmakers (2009) have
introduced a more flexible Bayesian t-test, the Savage-
Dickey t-test, which can cope with order restrictions (di-
rectional hypotheses) and unequal variances, but which
requires Markov Chain Monte Carlo techniques. The au-
thors provide an R code instantiation which makes use of
the freely-available WinBUGS program (Lunn, Thomas,
Best, & Spiegelhalter, 2000). An application of this test
to work in judgment and decision making can be found
in Otto (2010). Morey and Rouder (2011) also describe
Bayes factors for ordinal constraints and for interval null
hypotheses (i.e., for testing approximate equality), while
Rouder and Morey (2010) describe the use of Bayes fac-
tors in regression.

For more complex experiments, researchers might con-
sider the Bayesian Information Criterion (BIC; Schwarz,
1978). The BIC for a given model depends on its max-
imum likelihood, the number of its free parameters, and
the size of the data set (although it is insensitive to func-
tional form, unlike the approach described above). The
BIC can be transformed to approximate Pr(D|H), mean-
ing that the difference between two BIC values can be
used to approximate the Bayes factor (Wagenmakers,
2007, Appendix B). One can use the sum of squared er-
rors reported in the ANOVA output of standard statistical
packages to calculate the BIC and Bayes factor, permit-
ting Bayesian hypothesis testing using familiar statistical
output (Glover & Dixon, 2004; Wagenmakers, 2007) .

We have focussed on the JZS t-test because it provides
a Bayesian counterpart to a very familiar test. The results
are sensitive to the choice of the scale parameter r (Fig-
ure 3), yet in many situations the researcher will feel that
they have no idea what value r should take, or whether
the Cauchy distribution on effect size implemented in the
JZS prior is appropriate at all. The author urges two
points. Firstly, as researchers become more comfortable
with the principles and techniques of Bayesian inference,
they will become more adroit at tailoring the prior to the
inference problem at hand—for example, by constructing
informative priors using hierarchical methods (e.g., Van-
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paemel, 2011). The shortcomings of the JZS t-test as a
generic tool should not obscure the merits of a shift to-
wards Bayesian inference in general. Secondly, when it
is theoretically meaningful to compare the null against a
particular alternative, the Bayes factor provides a princi-
pled measure of evidence which can be used to update
existing beliefs. However, sometimes we are more inter-
ested in estimating the size of an effect (and in quanti-
fying our uncertainty) than we are in choosing between
the null and a more-or-less arbitrary alternative. In these
cases, effect size estimation using (hierarchical) Bayesian
techniques provide a powerful tool.

4 Conclusions

What might judgment and decision making research look
like if we took a Bayesian approach to hypothesis testing?
First, Bayesian inference would affect the mechanics of
how we conduct our studies, influencing sample sizes and
legitimating the use of ad hoc sampling plans. Second,
our results would be couched in terms of the balance
of evidence for competing hypotheses rather than cate-
gorical accept/reject decisions. Third, researchers would
sometimes argue that their data provide positive evidence
for the null, and it will typically be harder to assert the
truth of the alternative hypothesis. More generally, the
substantive conclusions that we draw from our experi-
ments would sometimes be different under a Bayesian
regimen. Finally, we can expect disagreements about
the choice of prior. Although some priors are labelled
“objective”, there is more than one such prior and the
choice may influence inference. More optimistically, de-
bate about the choice of prior may encourage clear think-
ing regarding the nature both of our hypotheses and of the
inference problem itself.
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Appendix

Under the null hypothesis the population is normally dis-
tributed with mean µ = 0 and variance σ2. Rather than
specifying a single mean for the alternative hypothesis,
we assume a distribution of values which is parameter-
ized in terms of the effect size δ = µ/σ. (The null has
δ = 0.) Specifically, the prior distribution of effect size
under the alternative hypothesis is assumed to be normal:
δ ∼Normal(0, σ2

δ ).
Larger values of σ2

δ put greater relative weight on
larger effect sizes, and if σ2

δ is very large then the re-
sulting Bayes factor will strongly favour the null. One
option is to set σ2

δ = 1, which is the unit-information
prior; it assumes that small effects occur more often than
large ones, and avoids putting much weight on unreason-
ably large effect sizes. It is also relatively uninformative,
carrying only the amount of information in a single ob-
servation (Kass & Wasserman, 1995).

The JZS t-test assumes an even less informative prior
by specifying a distribution of values for σ2

δ . Zellner and
Siow (1980, cited in Rouder et al., 2009) suggest that
σ2

δ take an inverse χ2 distribution on 1 degree of free-
dom. Under this distribution the density of σ2

δ is con-
centrated near 1.0 and falls off rapidly at very small and
very large values. Placing a normal on effect size that has
a variance given by an inverse chi-square is equivalent
to having the effect size follow a Cauchy distribution—a
t-distribution with one degree of freedom (see, e.g., DeG-
root & Schervish, 2002, p.406). The Cauchy gives more
weight to large effects than does the standard normal, re-
sulting in a slight shift in favour of the null when one
calculates the Bayes factor.

The choice of prior for the population variance σ2 is
less important because it enters both hypotheses, so the
effects will cancel when the Bayes factor is calculated.
Rouder et al. (2009) use the Jeffreys prior on variance,
p(σ2) = 1/σ2 (Jeffreys, 1961) and refer to the combi-
nation of the Cauchy prior on effect size and the Jeffreys
prior on variance as the JZS prior.

Having chosen prior distributions for the parameters
of the two hypotheses, one can calculate their marginal
likelihoods Pr(D|H0) and Pr(D|H1) by integrating over
the parameter space as described in the main text. Rouder
et al. (2009) present the resulting Bayes factor as:

B01 =
(1 + t2

v )−(v+1)/2

[ ∫∞
0

(1 + Ng)−1/2·
(1 +

t2

(1 + Ng)v
)−(v+1)/2·

(2π)−1/2g−3/2e−1/(2g)dg
]

(1)

where N is the sample size, t is the usual one-sample t-
statistic, and v is the degrees of freedom, N − 1.

Equation 1 can be adapted to cover the case where the
researcher wishes to test whether two independent sam-
ples are drawn from populations with different means.
This requires three substitutions: the t-value is that for
two independent samples; the effective sample size is
NxNy/(Nx + Ny); and the degrees of freedom v =
Nx + Ny − 2 (Rouder et al., 2009).
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