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Aquatic locomotion of a deformable body from rest up to its asymptotic speed is given by
the unsteady motion which is produced by a series of periodic reactions dictated by the
body configuration and by the style of swimming. The added mass plays a crucial role,
not only for the initial burst, but also along each manoeuvre, to accelerate the surrounding
fluid for generating the kinetic energy and to enable vortex shedding in the wake. The
estimate of these physical aspects has been largely considered in most theoretical models,
but not sufficiently deepened in many experimental and numerical investigations. As a
motivation, while the vortical structures are easily detectable from the flow field, the added
mass, on the contrary, is usually embedded in the overall forcing terms. By the present
impulse formulation, we are able to separate and to emphasize the role of the added mass
and vorticity release to evaluate in a neat way their specific contributions. The precise
identification of the added mass is also instrumental for a well-posed numerical problem
and for easily readable results. As a further point, the asymptotic speed is found to be
guided either by the phase velocity of the prescribed undulation and by the unavoidable
recoil motion induced by the self-propelled swimming. The numerical results reported in
the present paper concern simplified cases of non-diffusing vorticity and two-dimensional
flow.
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1. Introduction

Understanding animal locomotion in water, namely fish or cetacean swimming, has always
attracted the attention of scientists, since the deep observations that Leonardo da Vinci
described in his notes (e.g. Atlanticus Codex folio 571 A recto) more than five centuries
ago. Almost two hundred years later, Borrelli, another Italian scientist, in the second half
of the 17th century analysed in his book ‘De motu animalium’ the fish’s motion in a very
detailed manner by enhancing the essential role of the tail, as illustrated very clearly in
some of his drawings.

Starting from the end of the 19th century, more systematic research has been undertaken
by several zoologists, especially in England, to classify fishes in terms of tail, appendages
and body movements instrumental for their propulsion. A great advance was given, in the
first half of the last century, by the experimental work of Gray (1933), who explained for
the first time the kinematics of swimming by showing the essential role of a travelling
wave moving backwards along the fish’s body. Starting from the above findings, Taylor
(1952) formulated a very successful model, now named the resistive model, well suited for
swimming modes dominated by viscous forces.

On the contrary, at the start of the 1960s, Lighthill (1960) and Wu (1961) separately
proposed a theoretical approach to study swimming modes dominated by inertial effects,
i.e. for essentially inviscid flows, henceforth named the reactive model. For this purpose
they considered an elongated body with a prescribed wave deformation moving from head
to tail with velocity V, while immersed and swimming against a stream with a constant
velocity U slightly lower than V. In a very elegant way, they predicted the power injected
by the body into the surrounding fluid, the power transferred to the wake and, from the
overall balance, the propulsive power required to overcome the unavoidable resistance.
Essentially, the intention was to find the thrust of a deformable body by an ingenious and
properly simplified formulation to allow for the evaluation of the Froude efficiency of a
swimmer. Their model, described in several papers, stresses the role of the added mass as
a basic mechanism for the transfer of energy to the fluid, as required for the production of
the thrust and of the accompanying vortex wake.

Following their seminal work, a large number of papers appeared later on proposing
many experimental techniques and numerical methods which consider a deformable body,
fixed in its position in a uniform stream or tethered with the opposite velocity in a
quiescent fluid. Among the experimental contributions let us mention Lauder & Tytell
(2005), who provided a description of the major experimental set-ups, Tytell (2004),
who compared data obtained by particle image velocimetry with the estimates given by
Lighthill and Wolfgang et al. (1999), for the combined use of experimental and numerical
results. Among the numerical contributions we recall Dong & Lu (2007), who reproduced
for a viscous flow the conditions proposed by Lighthill and Wu, and Borazjani &
Sotiropoulos (2009), who suggested finding, for a given velocity, the equilibrium condition
for self-propelled swimming. In some contributions the recoil reactions, introduced by
Lighthill to satisfy the equilibrium equations for a body under a prescribed deformation,
were recognized as a point of crucial importance for a correct evaluation of the swimming
efficiency, see e.g. Reid er al. (2012) and Maertens, Gao & Triantafyllou (2017). Due to the
recoil effect, the shape deformation generated by the fish for the actual locomotion gives
rise to specific reactions, which modify significantly the exchanged forces and moments,
hence the overall performance and the swimming trajectory. However, the procedure to
obtain the full dynamics of the body under a prescribed inflow velocity is quite elaborate,
hence, different routes seem more appropriate for a self-propelled locomotion.
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An alternative approach in terms of centre-of-mass velocity components as unknowns of
the problem was originally introduced by Saffman (1967) and subsequently adopted in a
seminal paper by Carling, Williams & Bowtell (1998). On the same line of reasoning,
Kern & Koumoutsakos (2006) extended the procedure to find optimal solutions for
three-dimensional (3-D) flows and Kanso (2009) obtained the locomotion variables of the
swimmer ‘s centre of mass by enforcing directly the conservation of the total momentum.
Actually, to study a body in self-propulsion immersed in an otherwise quiescent fluid a
coupled body—fluid system has to be taken into consideration with a particular attention
paid to the exchange of internal forces (see Eldredge 2010). Since thrust and drag
counterbalance, instead of trying to calculate a propulsion power that is not easily
identified (Bale er al. 2014), the Froude efficiency has to be replaced by some other
measure. The cost of transport (COT), i.e. the inverse of the well-known miles per gallon
adopted for cars and other vehicles (von Karman & Gabrielli 1950), is given by the ratio
between the expended energy and the travelled distance and becomes the proper measure
in this case.

Afterwards, a very large scientific production flourished in the last decade with a
focus essentially on the free-swimming COT of different species with different shape
deformations and styles of swimming (see e.g. Maertens, Triantafyllou & Yue 2015;
Borazjani & Sotiropoulos 2010). Particular attention was also paid to the efficiency
parameters and to the different energy contributions spent during self-propelled swimming
(Wang, Yu & Tong 2018). A large number of papers are based on the combined solution
of the deformable body dynamics and of the Navier—Stokes equations for incompressible
viscous flows by different computational methods (see e.g. Yang et al. 2008; Gazzola et al.
2011; Bhalla et al. 2013) together with under-relaxation or penalization techniques to gain
the overall stability of the integration procedure. A historical survey and a comprehensive
review of the most common approaches is given in several books, e.g. Webb (1975) and
Videler (1993) and many review articles (e.g. Lighthill 1969; Wu 2011; Lauder 2015; Smits
2019) also appeared in specific journals covering either fluid dynamics and biological
aspects.

An accurate observation of the previous scientific findings, with a focus on the role of
added mass and of the vorticity release, makes it easier to summarize now the main points
that we like to account for when analysing self-propelled bodies:

(i) the motion of a deformable body in an infinite fluid domain is characterized by the
absence of external forces and the average total momentum is conserved;

(i1) the internal forces exchanged by the swimming body with the surrounding fluid, i.e.
thrust and drag, are mutually entangled, hence they are not clearly identified;

(ii1) the real trajectory must account for all the recoil reactions, introduced by the
prescribed deformation of the main body;

(iv) the solution of the fluid—body interaction should be solved by considering the full
system of equations with the kinematic variables as output of the problem:;

(v) the identification of the added mass terms leads to a naturally well-posed problem
and, at the same time, provides a proper physical interpretation of the numerical
results;

(vi) the standard efficiency measures are not easy to define, since the thrust is not
available for steady free swimming and the COT has to be used; and

(vii) the enforced undulation is characterized by a phase velocity that is going to influence
the steady state asymptotic value of the locomotion velocity and the location of the
released vortices along the wake.
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The purpose of the present work is to adopt a classical impulse formulation, which may
be expressed in terms of potential flow and concentrated vorticity, to consider a 2-D fully
immersed deformable body in the case of vanishing viscosity. The intention is to use this
highly simplified impulse model with the ambitious objective to clarify the role of added
mass and of vorticity release in free swimming either for the acceleration during the initial
transient phase or for the asymptotic velocity to be reached at steady state.

2. Mathematical model

The self-propelled motion of an undulating body in an infinite N-dimensional volume of
fluid V is analysed by considering a fluid—body domain with no external forces applied.
Hence, the exchanged forces and moments between fluid and body appear as internal
actions. The body motion is computed by solving the dynamics equations of the body
centre of mass in an otherwise quiescent unbounded fluid.

With this aim, among several possible expressions for the linear and the angular
momentum we adopt the classical formulation in terms of potential and vortical impulses
that has been widely discussed in the literature (see e.g. Noca 1997; Wu, Ma & Zhou
2015). In this framework we can easily highlight the acyclic potential contribution as well
as the effects of the bound and free vorticities.

2.1. Force and moment acting on the body

The fluid momentum is expressed, via a renown vector identity (Al), by two terms
representing the field vorticity and the vortex sheet over the body surface which, properly
combined, readily lead to the vortical and the potential impulse. An analogous vector
identity (A3) holds for the angular momentum. As has been repeatedly proven, the sum of
these two impulses has the most significant property of the momentum, i.e. the forces
exchanged between the body and the surrounding flow field are obtained by the time
derivative of the impulses and an analogous relationship holds for the moment of the
forces. At the same time, the total impulse does not suffer the poor convergence of the
momentum over an unbounded domain. Actually, the momentum does not show absolute
convergence, but only a conditional one. However, its finite value can be found without
any ambiguity through the evaluation of the kinetic energy (see, among others, Landau
& Lifschitz 1986; Childress 2009). As a further point, the impulse formulation enjoys
the important property of being linear with respect to the unknown kinematic variables,
so as to permit the isolation of the potential contribution, related to the added mass
characterizing fast manoeuvres, and of the vortical contribution, usually dominant when
the steady state conditions are reached. We will see that this property has a paramount
positive effect for the numerical solution of the equations, providing quite naturally a
well-posed problem. As a final advantage, the conservation of the total impulse, peculiar
to the self-propelled body, does not need the time derivation, as usually required to obtain
the forces, and the successive time integration to find the kinematics of the body, providing
a better accuracy together with a significant reduction of the computational effort.

We consider an impermeable, flexible body whose bounding surface S, is moving with
velocity u, given by the prescribed deformation. We assume an incompressible fluid with
density p. The outer boundary is stationary in an absolute reference frame and the fluid
velocity is assumed to vanish at the far field boundary. As previously anticipated, the force
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acting on the body, Fp, is expressed through the time derivative of the total impulse p

dp
Fp=——, 2.1
b s 2.1
where p is defined, by using the well-known vector identity (A1) for the unbounded fluid
volume, as

1

p=—[/ pxxde+fpxx(nxu+)dS], (2.2)
N-—-11Jv, S,

where N = 2, 3 is the flow dimension and the integral over the external boundary receding
to infinity has been proven to vanish (Noca 1997), @ is the vorticity and u* indicates the
limiting value of the fluid velocity on Sj. The normal to Sp, n, points into the flow domain
and all of the vorticity is enclosed within the fluid volume V, which extends to infinity. As
shown elsewhere (Graziani & Bassanini 2002), the right-hand side of (2.2) is independent
of the choice of the reference frame origin.

For a better comprehension, to account for the boundary condition on the body, which
is anyhow satisfied, we may recast (2.1) by adding and subtracting a boundary integral
involving up,

d 1 1
Fb:—gt{m/vw,oxxde+m/Shpxx[nx(u+_uh)]dS

1
+m/5bpx><(nxub) dS}, 2.3)

where the jump in tangential velocity appears as a vortex sheet concentrated on the body
surface to give the volume integral fvoo px x ydV,wherey = [n x (ut — up)]8(x — xp).

The formulation (2.3) highlights the vortex sheet term, leading to the identification of
the added mass, separately from the field vorticity contribution. If, on the contrary, the
total vorticity

O=w+y=0+[nx @ —upldx—xp), (2.4)

is considered, the added mass would be embedded and fully hidden within the field
vorticity, as discussed by Limacher, Morton & Wood (2018).

Similarly to what is described above for the force, an expression for the angular moment
(positive anticlockwise) on the body can be obtained. Here, we consider the moment with
respect to a given pole (to be specified later either as the origin of the ground reference
frame or as the body centre of mass), so x is the generic distance of the field point from
the pole.

By defining the angular impulse w as:

n=-1 [/ 0 |x|2de—|—/ o x> (n x u+)d5] , (2.5)
v Sh
the expression for the angular moment is written as
dn
My=——. 2.6
b i (2.6)
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2.2. Potential and vortical impulse

A Helmholtz decomposition is applied to express the velocity field as the sum of the
acyclic and vorticity related components

ut =Vo+V x¥=V¢+u,, (2.7)

where ¢ and ¥ are referred to as the scalar and the (solenoidal) vector potentials, and
are given by the solution of the Laplace/Poisson equation, subject to the impermeable
boundary condition on S, i.e. V¢p - n = up, - n and (V x ¥) - n = 0 respectively, and to
the vanishing velocity at infinity. To enlighten the contribution of the above potentials to
the force, let us now express the impulse p appearing in (2.1) in terms of both potential
and vortical impulses, p, and p,, as

P=pytpy (2.8)
The vortical impulse on the right hand-side of (2.8) is
1 1
pv=m[/vmpxxde-l—/prxx(nxuw)dS:|=m/voopx X w,dV,
2.9)

where part of the bound vorticity on S, has been added to the released vorticity to obtain
the additional vorticity as introduced by Lighthill

W, =w+ (n X uy)d(x—xp) (2.10)
that may be expressed, once combined with (2.4), to reproduce the original definition
w; =& — [nx (Vo —up)] §(x —xp). (2.11)

The potential impulse p, on the right hand-side in (2.8) is given by

Py =—p / ¢ ndS, (2.12)
Sp

where the vector identity (A2) has been used. Let us notice that this term has been named
also the virtual momentum by Saffman (1992) or impulse of the fluid by Lamb (1975) and
its time derivative defines, in a general sense, the added mass force that, for rigid motions,
may be expressed in the classical form given by the Kirchhoff base potentials.

The expression for the angular momentum can be similarly obtained by separating
the vortical and the potential contributions by using the vector identity (A3) and the
generalized Stokes theorem (A4). We split the angular impulse (2.5) as ® = 1y + 7y,
where the angular potential impulse is defined as

Ty = —%/ o x|?(n x V) dS = —p / x x ¢ndsS, (2.13)
Sp Sp
and the angular vortical impulse is

T, = —%/ o lx>wdV — %/ o 1x1?(n x uy) dS. (2.14)
\% M

As a comment to this section, a unified theoretical treatment of the impulse formulation has
been presented by taking into account the main different contributions on the subject (see
e.g. Saffman 1967; Kanso 2009; Eldredge 2010). Concerning the vorticity field, particular
attention is paid to the bound vorticity and to its relationship with the added mass force
(see e.g. Lighthill 1960; Limacher 2019).
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3. Locomotion

We study now the planar motion of a deformable body B within an infinite fluid domain
V. We use a Cartesian inertial frame (e, ez, e3). The body motion occurs in the plane
(e1, e2) and its translation with respect to a given reference point in Bisx, = x, e1 + y, 2.
Moreover, the body may undergo a rotation 8 about the axis e3.

The locomotion of the deformable body is obtained by coupling the body dynamics and
the fluid dynamics actions. If we consider the body—fluid system (V, + V), no external
forces or moments are present and therefore the linear and angular momenta are conserved

d
— /pbude—I—/ pudV | =0, 3.0
dr Vp Ve

d
— /pbxxubdv+/ pxxudV|=0. 3.2)
dr Yy Vr

The motion of the body can be expressed as the sum of the prescribed deformation
(shape variations with velocity uy;,) plus the motion of the frame with origin in the centre
of mass (translational, u.p,, and rotational, £2, velocity).

In the ground inertial frame the angular velocity is 2 = S e3 = £2 e3. The linear
velocity is ucm = Xpe1 + yoe2. Thus we can express the body motion as

up = Uy + Uem + 2 x X/, (3.3)

where x’ is the position vector in the body frame, i.e. x = xc, + x'. Following (3.3), the
prescribed deformation of the body has to conserve linear and angular momenta

/ pyttsy dV = 0, (3.4)
Vp

/ opx’ X ug, dV = 0. (3.5)
Vi

By considering that the second term in (3.1) is the force acting on the fluid, which is
opposite to the force on the body and by using the body mass n1;,, combining with (2.1) we
obtain

d d

- my uew) + L =0, (3.6)
where ucn, is clearly identified as the locomotion velocity of the body and p is now
expressed in terms of x/, since the independence on the origin of the reference system. In
this way, the interaction with the fluid gives directly the full motion of the undulating body.
Otherwise, if ((3.4)—(3.5)) were not satisfied by the prescribed deformation, additional
rigid motions would appear and (3.3) should be consistently modified (see Bhalla et al.
2013). By assuming zero initial conditions (3.6) gives

mp Uem +p = 0. (3.7)

Similarly, the angular impulse in two dimensions is recast from (2.5) in terms of the
distance x” as 1’ = (1T — x, X p) - e3 and the angular momentum balance can be expressed
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as
dn’ B
dr

or, by using the body frame and removing the time derivative

0, (3.8)

d
&(lzz ) +

L.2+7 =0. (3.9)

In the case of a massless body (m, = 0 and I;; = 0) we recover the equations reported
by Kanso (2009). Let us notice that, according to what was originally proposed by Saffman
(1967), the system of (3.7) and (3.9) provides the evaluation of the body velocities without
considering time derivatives, as required when using the standard equations (3.6) and
(3.8).

The scalar potential introduced by the Helmholtz decomposition is further divided as
¢ = dsi + Proe, as suggested by Saffman (1967), where ¢y, is given by the imposed
deformation velocity ug, and ¢y, is given by the combination of the locomotion linear
and angular velocities, according to the related boundary conditions on S

8‘psh 8(15[0@
-n
on

= (Uem + 2 xX') - n. (3.10a,b)

Analogously, the linear and angular impulses are given by
Dy = Psh + Ploc Tcéb = T[;h + JTéoc‘ (3.11a,b)

Finally, the locomotion impulses, p;,. and ) ., may be expressed in terms of the
added mass coefficients reported in the classical treatises (see e.g. Lamb 1975) that, for
completeness, are briefly recalled below. For a body motion with linear velocity uy, and
angular velocity §2, we consider the Kirchhoff base potentials @; defined through the
boundary conditions

0P 0D, 0P3

— — =n.e, — ey, — =x . 3.12a-
™ n- e ™ n-e ™ X Xn-e3 ( a—c)

to have ¢joc = Xo®1 + yoP2 + 2 P3. It follows for the added mass coefficient m;; that

ID;
mj = ,0/ ,-a—f ds. (3.13)
Sp n

To compute the numerical solution we express the locomotion equations in a coordinate
frame attached to the body. For this purpose we consider the ground fixed frame {eq, e;, e3}
and the body frame {b1, by, b3} as sketched in figure 1. The origin of the body frame
is in cm, i.e. X, = x¢y and b3 is parallel to e3. Accordingly, the linear velocity Vey =
V1 b1 + V, by and the momenta P, IT are related to the corresponding variables in the
fixed frame by

uem =RVen, p=RP, =’ =1II, (3.14a—c)

where R is the rotation matrix relating the inertial to the body frame. Analogously, the
coordinates in the body frame are X = R x’.

Accounting for (3.14a—c), the impulses related to the body deformation, Py, and I, are
expressed according to (2.12) and (2.13), respectively, while the vorticity related quantities,
P, and [T, are defined through (2.9) and (2.14). The locomotion velocities, which are
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€

€

Figure 1. Ground and body reference frames.

multiplied by the added mass coefficients (3.13) within Py, and ITj,., can be shifted to the
left hand-side to yield the system of equations for the body motion

Vi (my — mp) + Vamip + 2 mi3 = Py + Py,
Vimo + Vy (may — my) + §2mo3 = Pygp + Pya, (3.15)
Vimsz + Vomzp + 2 (m33 — I;) = Iy, + 1T,

The added mass terms, appearing on the left hand-side of (3.15), together with the
body inertial properties, give the coefficient matrix for the unknown variables Vi, V;
and 2. The known terms appearing on the right hand-side are the impulse contributions
due to shape deformation and vorticity. This equation system recalls and generalizes the
model ingeniously proposed by Saffman (1967) and Lighthill (1970). The body mass
my, is assumed to be constant while I, and m;; change in time according to the shape
deformation. Let us stress again that the part of the added mass terms related to ¢, now
appears on the left-hand side, leading to a well-posed problem, as briefly described in the
following section together with the main details of the numerical model. The separation of
¢sn and @y, 1s also instrumental to identifying the exchange of added mass energy among
shape deformation and locomotion (see Spagnolie & Shelley 2009; Steele 2016). We would
like to underline that the part of the potential impulses related to ¢y, in (3.15), as suggested
by Kanso (2009), has to stay on the right hand-side together with the vortical impulses,
since they both involve known quantities. As a further comment, a detailed account of the
single contributions is the essential tool for arguing about the aim of the paper, i.e. a proper
evaluation of the role of added mass and vorticity release when discussing the numerical
results.

4. About the numerical model

The mathematical model described so far is valid in general although, from now on,
restricted to the locomotion of 2-D bodies to facilitate the analysis of the results while
maintaining the most important aspects of the problem. As a further step in the same
direction, we consider here an accurate but simplified numerical model which does not
involve vorticity diffusion, in the way suggested by Schultz & Webb (2002), to find
sufficiently accurate results for this complicated problem. The evaluation of both potential
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and vortical impulses can be obtained by the discretization of the body surface and by
a suitable model for the release of the concentrated vortex sheet via a Kutta condition
to mimic the presence of a vanishing viscosity. Some of the techniques adopted in the
numerical method for the evaluation of the two impulses are briefly described below, but
we would like to illustrate first the capability of the present model to provide a well-posed
linear system.

Actually, the time derivatives, usually needed with the classical pressure formulation,
may lead to a poor stability of the equation system, since the forces and moments are
directly dependent on the unknown velocity components. Some authors, e.g. Carling
et al. (1998), Kern & Koumoutsakos (2006) and Borazjani & Sotiropoulos (2010), tried
to overcome these difficulties by using under-relaxation expressions which had to be
accurately chosen to obtain stability and to minimize their influence on the numerical
accuracy of the procedure. A more physical approach was adopted in Maertens et al. (2017)
by introducing a prescribed added mass matrix M ,, whose coefficients are estimated and
properly tuned from the stretched straight configuration. By adding to both sides of the
equation the same term representing this approximated value, the idea is to counterbalance
the real added mass embedded within the forcing term. The impulse formulation adopted
here allows for the removal of the time derivatives present in (3.6) and (3.8), hence no
stability issues should be considered. At the same time, the linearity of the vorticity terms
allows us to isolate and separate the contribution of the added mass, which is correctly
evaluated at each time step and properly moved to the left hand-side, giving a well-posed
system of equations able to hold even when treating massless bodies (see Eldredge 2010).

To achieve neat and simple results, as anticipated above, we consider the case of
potential flow with a concentrated vorticity on the body surface and its subsequent
shedding at the trailing edge into the vortex wake. The flow solutions are obtained by using
an unsteady potential code based on the approach of Hess & Smith (1967) while the wake
release is taken into account by following the procedure described in Basu & Hancock
(1978). The body boundary is approximated by a finite number of panels, each with a local,
uniform source strength, and all with a constant circulation density. The impermeability
condition on each panel together with a suitable unsteady Kutta condition are needed to
evaluate the source strengths and the uniform circulation density y. According to Kelvin’s
theorem, any change in circulation about the airfoil results in the release of vorticity by a
wake panel attached to the trailing edge which, at each time step, is lumped into a point
vortex and shed into the wake.

As described in the previous section, even if the equations are written in the ground
frame of reference, the solution is achieved in a coordinate system attached to the body
which moves according to V| and V3 and rotates according to §2. Actually, this is the
proper frame to define the deformation which should not be dependent on the interaction
with the fluid. At each time step, the body, deforming with Vy,, is invested with a water
speed given by the combination of —V;, —V; and —£2, which is required for the unsteady
Kutta condition and it is essential for the evaluation of the length and inclination of the
wake panel behind the body through several iterations.

Finally, it is important to notice that the linear velocity components V| and V>, named,
from now on, the forward and lateral velocities, respectively, change their directions at each
time step, since the equations of motion are written in the body frame coordinates. After
a transient acceleration phase, the body, even maintaining an oscillating pattern, reaches
an asymptotic steady state with a constant mean value of the forward velocity while the
mean lateral and angular velocities are equal to zero. As a consequence, in the following
section, the numerical results are shown in terms of the forward velocity, whose mean
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value represents the actual locomotion velocity. An animation showing the body motion,
obtained by projecting the velocity components V| and V, along the x and y directions
of the ground frame of reference (animation-link), is helpful to better illustrate the actual
gait of the body. As a final comment, the above numerical model may be considered as
part of the splitting procedure introduced by Chorin (1973) which, accounting for diffusive
vorticity, leads directly to the classical vortex method for viscous flow (see e.g. Graziani,
Ranucci & Piva 1995; Koumoutsakos & Leonard 1995; Eldredge, Colonius & Leonard
2002).

5. Numerical results and discussion

We would like to analyse in the present section the free swimming of a deformable body
with a focus on the asymptotic steady state condition. The fish undulates with a prescribed
periodic deformation characterized by a specific phase velocity and, after a transient,
the fish reaches a steady state under the combination of potential and vortical velocity
contributions. Let us note that the resulting value depends only on the phase velocity
while the single contributions may vary with the deformation amplitude. As anticipated in
the previous sections, the standard efficiency measures are not suitable, while the present
results provide the data needed for the evaluation of the cost of transport. As a further
point, the results allow for interesting considerations of the transient phases, which are
also illustrated through the representation of the wake patterns.

5.1. Body shape and kinematics

The swimming fish at rest is represented by a shape corresponding to a NACA0012
airfoil with a chord length ¢ equal to 1. Previous works employed a large number
of different approaches to describe fish undulation. Some of the proposed analytical
expressions for the lateral displacement of the mid-line were obtained by fitting data from
direct fish observations (see e.g. Hess & Videler 1984; Lauder & Tytell 2005). These
analytical expressions consist of a travelling wave usually multiplied by a polynomial
amplitude modulation, thus allowing for direct control of geometrical parameters, such
as the tail-beat amplitude. An additional mathematical condition is required to enforce the

inextensibility given by
dyc 2 0xc 2
< =) =1, 5.1
(%) (%) ol

where x, and y, are the mid-line coordinates and s represents the curvilinear coordinate
along the mid-line itself. To satisfy implicitly this condition, some authors proposed a
deformation in terms of the mid-line curvature from which the lateral displacement follows
(Kern & Koumoutsakos 2006; Wang et al. 2018).

Here, a different parameterization based on the instantaneous local slope of the mid-line
is proposed as more affordable for bio-mimetic applications, hereafter referred to as
synthetic deformation. The slope of the mid-line is defined by the following expression for
a travelling wave of constant amplitude df and a wavenumber k related to a wavelength
along s

B(s, 1) = dp sin(ks — wt), (5.2)
where w is the angular frequency. An amplitude modulation may eventually be added to
reproduce the deformations given by other authors. The instantaneous coordinates of the
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Figure 2. (a) Corrected mid-line envelop in order to satisfy (3.4) and (3.5). (b) Mid-line envelop obtained by
the direct integration of (5.2). The dots represent the centre-of-mass positions.

airfoil mid-line are obtained by integrating (5.2)
N
xC(Sa t) = / COs (IB(S’ t)) dsv (53)
0
N
yelsi) = [ sin (B, ) ds 54)
0

and the inextensibility condition is automatically satisfied. The normal to each
cross-section of the body is the same as that of the mid-line and the total area is preserved
at convergence during the deformation.

In the absence of surrounding fluid, namely, with no external forces and moments,
(3.4) and (3.5) hold to maintain the centre of mass position of the body, as well as its
principal axes (figure 2a). If these equations are not satisfied, the centre of mass would
move under spurious forces (figure 2b), hence, the deformation has to be properly corrected
by removing the rigid displacements so to obtain the mid-line envelope in figure 2(a).

5.2. Swimming velocity and expended energy

The present section contains the results for a neutrally buoyant (o = pp/pr = 1) body
undulating with a fixed angular frequency w = 27nf = 10 rads~', unless otherwise
indicated. For all the analysed cases, the wavenumber k is set to 2x m~ !, ie. the
wavelength A is equal to the chord length ¢, hence corresponding to a phase speed which,
according to (5.2), is given by

%:fxl: 1.59ms . (5.5)

The forward locomotion velocity component U is shown in figure 3 for different
deformation amplitudes 8. By increasing 38, we notice larger transient acceleration and
a steady state velocity that is slightly decreasing. However, due to the inextensibility
condition, the wavelength L, associated with the instantaneous deformation and measured
along the forward direction (see figure 4) may be quite different from the prescribed A.
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Figure 3. Forward swimming velocity for different undulation amplitudes.

Figure 4. Equivalent wavelength A,.

From this observation, an equivalent wavelength A, is defined as

1 t+T
Ao = —/ L(1) dt, (5.6)
T J:
which leads to an equivalent phase velocity of the body deformation given by
1)
o= fAe. (5.7)
e

As a consequence, the asymptotic value of the slip velocity, defined as the ratio between
the swimming speed and the equivalent phase velocity, does not change with df, as shown
in figure 5, namely, the body moves with a forward velocity which only depends on the
backward travelling wave velocity, and not on its amplitude. Since the model does not
consider any dissipative effect, the above result seems reasonable, while, under the action
of viscous resistance, the slip velocity would definitely be lower and the deformation
amplitude would start to play a significant role (Smits 2019). For comparison, we report in
figure 6 the results for the velocity components for the present model and a carangiform
deformation together with those for the viscous model by Yang et al. (2008). The figure
confirms that the main effect of the viscous resistance is a consistent reduction of the
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Figure 5. Slip velocity for different undulation amplitudes.
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Figure 6. Velocity components (U, V, §2) for carangiform deformation: present vs viscous results (Yang
et al. 2008).

steady state locomotion velocity which may otherwise be predicted by introducing a model
approximation for the viscous drag (see e.g. Akoz & Moored 2018). In this case, numerical
results not reported here reproduce an increasing trend of the asymptotic swimming
velocity with the deformation amplitude, as shown by analogous findings in the literature
(e.g. Zhang et al. 2018).

As discussed previously, the effects of added mass and vorticity release on the
swimming speed may be easily highlighted. Actually, due to the linearity of the system
of (3.15), the kinematic variables U, V and £2 are given by adding the potential and
the vortical impulses. The corresponding forward velocity contributions, Uy and U,
are illustrated in figures 7(a) and 7(b) in the form of the slip velocity. For growing
amplitude, Uy /(fA,) increases and U,,/(fA.) decreases and their sum remains constant,
as anticipated in figure 5. Let us observe that Uy, due to the added mass, reaches
instantaneously a steady state value, and U,,, due to vortex shedding, grows in time with
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Figure 7. Forward component of the slip velocity for p = 1 and different undulation amplitudes: (a) potential
contributions; (b) vorticity contributions

a certain delay. At the same time, it is worth stressing that the rate of change of U,, in
the transient is deeply related to the pure potential impulses since a larger added mass
contribution induces a larger acceleration and a more intense vortex shedding, as shown
in figure 8 and firmly stated by Limacher et al. (2018). From the above considerations, we
can deduce that, for conditions usually adopted for efficient cruising at steady state, we
should reduce Uy, hence the contribution due to p,;, and gy, to have a lower intensity of
the released vortices. In these conditions, the total velocity is essentially given by U,
which may reach a large value although maintaining a weak vortex shedding. On the
contrary, a large Uy contribution is required in escape manoeuvres such as a C-start to
give the initial instantaneous burst together with a larger acceleration accompanied by
a larger energy consumption, as discussed below, which, however, is not a priority in
this case. The following vortical contribution becomes eventually predominant at the end
of the C-start manoeuvre, in a way analogous to, but more pronounced than, the steady
swimming results.

At this point, looking at figure 5, we observe that the steady state velocity does not
match the phase velocity and the following question arises: Why does the slip velocity
differ from one? Actually, the wave phase velocity generated by the body and transferred
to the fluid appears to depend on the whole motion of the body, i.e. prescribed undulation
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Figure 8. Released circulation for different undulation amplitudes.

plus recoil. To verify the above observation, it is helpful to consider a well-established
analytical model which may allow for a better understanding of the obtained results. More
specifically, the elongated body theory (Lighthill 1960) provides an analytical expression
to evaluate the time averaged thrust exerted on an undulating body by a fluid with an
assigned uniform velocity U and a given lateral displacement /A (x, f)

7= Lpac %ZUZ%Z 5.8
= 3rrAlD) (zn) - <8x> ) 69

where A(L) is the added mass associated with the trailing edge of the body and the overline
indicates a mean value over time. Afterwards, Lighthill introduced the concept of recoil
associated with the displacement /4, in terms of lateral and angular rigid motions that must
be added to /4 in order to respect the corresponding equilibrium equations. For the sake of
conciseness, only the equation for the lateral momentum balance is reported here

/LS()azhd /L O oY A (24 2] 4 (5.9)
xX)— dx = — — — x) | — — , .
oI Y2 o), \or ™ %ax o T ox

where S(x) is the cross-sectional area of the elongated body and A(x) is the related added
mass.
By introducing a travelling wave & with phase velocity w/k and amplitude a, i.e.

h(x, 1) = asin (kx — wr), (5.10)

it is easy to show that zero thrust in (5.8) can be achieved if the velocity U is equal to the
phase velocity. In fact, assuming U = w/k, the right-hand side of (5.9) is always equal to
zero for the wave kinematic condition

dh Lo oh
at  kox
while the left-hand side is different from zero, unless particular choice is made for S(x),
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Figure 9. Time behaviour of the fluid kinetic energy for different deformation amplitudes.

i.e. the shape of the body. Hence, in principle, / should be modified by taking into account
the recoil motions B(x, t) (see e.g. Singh & Pedley 2008)

h(x, t) = h(x, 1) + B(x, 1). (5.12)

When the recoil is added to the original undulation, the total motion 4 no longer annihilates
the thrust (5.8) for U = w/k, but either a rigid translation and/or a rotation motion modifies
the asymptotic velocity as

U=x. (5.13)

where the factor x, which can be evaluated by a very simple approximation, is larger than
one for the present case. As a further assessment, let us notice that (5.9) is directly satisfied
by i when pp, appearing on the left-hand side, is equal to zero, i.e. when a massless body is
considered (see Kanso 2009). It follows that, in these conditions, no recoil motion occurs
and the asymptotic velocity U is always equal to w/k. In fact, a massless body is able to
achieve the same forward speed as that of the fluid pushed backwards by the travelling
wave since, in principle, the presence of the body is only attested by its virtual mass given
by the surrounding fluid. If we extend the above reasoning, valid for the undulating body
in a uniform stream, to the case of self-propelled locomotion, the same conclusion may be
reached for the mean force in the forward direction, whose value tends to vanish at steady
state conditions.

The just mentioned influence of the recoil on a prescribed deformation may be of great
interest also for different phenomena related to swimming control means. For instance,
by looking at (3.15) we may see how all the velocity components may substantially vary
with the added mass coefficient m;;, as perceived by certain types of fish able to change
their configuration during a predator—prey interaction, as done by the sailfish by raising its
dorsal fin (see Paniccia et al. 2021).

From an energy point of view, an intense vortex shedding results in a high consumption
in terms of kinetic energy released into the flow field, as shown by figure 9. The fluid
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kinetic energy is obtained (see Graziani et al. 1995; Kanso 2009) as
1 0 1 1
E:—/¢—¢dS+—/(uwx¢)-ndS+—/w-de. (5.14)
2 S on 2 S 2 Vv

The first two integrals in (5.14) give a contribution which is negligible at steady state
conditions, as a consequence of the oscillatory nature of the surface integrals. Actually,
the time derivative of the injected energy can be estimated by the last integral, known as
the excess energy, and its mean rate of change is a good approximation to the mean power
transferred by the body to the fluid. Since the COT is defined as the ratio between the mean
power required and the mean swimming velocity, we may see, by combining the results of
figures 3 and 9, that high undulation amplitudes are more effective in terms of acceleration
but less favourable in terms of COT. If different kinematics are considered, the mean
forward velocity may be quite different and the comparison would be less immediate. For
a further deepening it would be important to consider a dimensionless form of the COT,
by the slip velocity and an appropriate reference power (Bale er al. 2014) to allow for a
comparison among species characterized by very different masses and styles of swimming.

5.3. Released vorticity and wake pattern

From the above discussion, it is clear that a large contribution to the swimming velocity
is associated with the release of vorticity, which plays an essential role in building up the
final asymptotic steady state. As the vorticity is released, the body experiences a force
along the direction of motion, whose nature may be understood by looking at the wake
pattern, as first pointed out by von Karman & Burgers (1935). The renown Kdrman vortex
street, which identifies a drag force on a blunt body, consists of vortex pairs of opposite
sign arranged so that the clockwise eddies are positioned above the counterclockwise
ones. In the case of an undulating fish-like body, a very similar phenomenon may occur
due to the lateral displacement of the tail tip, leading to an inverse shedding sequence
and to a wake pattern, known as the reverse Karman street, in general associated with a
propulsive capability of the swimmer. From a qualitative point of view, the wake pattern
visualization may give a first glance evaluation of the force experienced by the body,
without detailed calculations of local values along the surface. For instance, both types of
Kérman street may be easily visualized with the present model by a numerical experiment
able to obtain both an acceleration phase, representative of thrust, and a deceleration
phase, representative of drag. The body initially undulates with an angular frequency
w1 = 10 rads~! and accelerates towards the corresponding asymptotic speed, then, if
the frequency is abruptly halved, a deceleration occurs up to the new asymptotic speed
as shown in figure 10. Correspondingly, figure 11 shows in a neat way the two different
types of wake pattern, which reveal the different orientation of the so-called mushrooms,
interestingly named footprints by Zhang (2017), which are related to the exchange of forces
between fluid and body. However, this correspondence is not always well defined since, for
steady locomotion, no average forces are exchanged and the wake configuration does not
show a sharp distinction among the two patterns. In this case, it seems reasonable to say
that a one-to-one correspondence between the swimming performance and the structure
of the wake is not so easy to detect (Smits 2019).

6. Final remarks and comments

Self-propelled aquatic locomotion has to be studied by a proper procedure to allow for the
undulating body to be completely free to swim, obeying the equilibrium of the internal
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Figure 11. Acceleration phase reverse Karman street wake pattern (a). Deceleration phase direct Karman
street wake pattern (b).

forces exchanged with the surrounding fluid. However, at steady state, many experimental
and computational investigations, with notable exceptions in recent times, have been
carried out by considering the body, with a prescribed deformation, in the presence of
an incoming uniform stream or tethered with the opposite velocity. In these cases, the aim
was to find the thrust and the injected power to evaluate the Froude efficiency. In fact, the
most renowned physical models, built on those assumptions, were frequently taken as a
guide and a theoretical framework to discuss the output of the investigations. At the same
time, the desire to account for the recoil forces, as frequently recommended for the study of
free swimming, led to quite involved procedures when a body under an incoming uniform
stream was assumed.
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A completely different approach, proposed in the last decades, considered instead the
locomotion velocity as the primary variable for free swimming of a deformable body,
which has to be taken as part of a full system together with the surrounding fluid otherwise
at rest. To better understand the intertwining effects of the added mass and the vorticity
release, a 2-D model with concentrated vorticity was adopted to provide a flexible tool to
cope with the complexity of the self-propelled motion accelerating from zero to a steady
state asymptotic velocity. For this purpose, several simulations were reported to clarify the
physical contributions due to added mass and to vorticity release in terms of motion and
expended power.

On the one hand, the effect of the added mass, easily expressed in terms of the
non-circulatory potential impulses, provides the instantaneous burst, which is essential
to activate the release of vorticity shed into the wake. On the other hand, the effect of the
released vortices, easily measured by the vortical impulse, leads to a gradual increase of
the velocity up to steady state. The combined action of the above physical phenomena is
clearly shown by the time history of the velocity whose asymptotic value is guided by the
phase velocity of the travelling wave together with a proper account of the recoil motion.
The starting acceleration, which is increasing for larger amplitudes of the deformation,
provides a fast escape even though with a larger request of energy.

The kinematic variables, as the natural unknowns of the free-swimming problem, give
the trajectory of the deformable body i.e. the motion generated by the internal forces
exchanged with the surrounding fluid, including a complete account of the recoil reactions.
Several results reported in Paniccia et al. (2021) show that, any attempt to constrain the
trajectory by reducing the degrees of freedom in the numerical solution, would lead to
different body motions less efficient than free swimming. The request to compare different
gaits leads, in a straightforward way, to measurement of the efficiency by using the output
of the present model, i.e. the velocity and the expended power, as clearly expressed by the
COT, since the traditional Froude efficiency is not a proper measure in this case.

To have a preliminary account of the role of vorticity diffusion, missing in the present
model, a simple approximation has been devised to evaluate how the influence of the
deformation amplitude may be sensitive to the presence of an extra resistance. The results
are encouraging and the decrease of the asymptotic velocity for lower amplitudes of
the deformation confirmed previous results. A step forward, able to maintain the valid
properties of the present model, should take into account the diffusion of vorticity, to
recover a handy viscous vortex model (see e.g. Rossi, Colagrossi & Graziani 2015; Durante
et al. 2017), for a more realistic representation of a larger number of physical cases. As an
ultimate comment, we would like to mention that the above analysis, beyond its theoretical
interest, may be of great help in defining, as briefly observed for certain types of fish,
some suitable parameters for bio-mimetic design of engineering applications with a focus
on simplified control means.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.375.
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Appendix A

For the sake of convenience we report below a few vector identities used to obtain some
of the expressions reported within the previous sections.

Given a vector field u defined over a volume V bounded inside by S, and outside by S,
the following vector identity holds (N =2,3 is the dimension of the space and the normal
n points in V on Sp, and outwards on S)

1 1
/udV:—/xxde+— x %X (nxu)dS
v N—-1]Jy N-—1Js,

1
—m/;xx(nxu)dS. (A1)

Given a single-valued scalar field ¢ and a closed surface S, from the generalized Stokes’
theorem it holds (referred to by Noca as the pressure identity)

1
1/xx(nthb)dS— /¢ndS (A2)
For the same vector field in (A1) (Wu et al. 2015)
_ 1 2 1 2 1 2
/xxudV_—Q/ |x] de—§/ |x] nxudS+§/|x| n x udS. (A3)
\% \%4 Sp S
Given a scalar field ¢ and a closed surface S, it holds that

%/SMZ(" x V¢)dS = /;c x ¢nds. (A4)
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