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Note on the Kasparov Product of
C∗-algebra Extensions
Changguo Wei

Abstract. Using the Dadarlat isomorphism, we give a characterization for the Kasparov product of
C∗-algebra extensions. A certain relation between KK(A,Q(B)) and KK(A,Q(KB)) is also considered
when B is not stable, and it is proved that KK(A,Q(B)) and KK(A,Q(KB)) are not isomorphic in
general.

1 Introduction

KK-theory was introduced in [8] by G. Kasparov, which generalizes both K-theory
and extension theory of C∗-algebras. One can refer to [1, 7] for details. Recently,
KK-theory has become more and more important in many branches of mathemat-
ics, such as functional analysis, algebra, and topology, etc. It is a powerful tool for
classifying mathematical objects. It plays an especially crucial role in the classifica-
tion of C∗-algebras and their extensions (see [5, 10–14, 16, 17, 20, 21]). It is also well
known that KK-theory is famous for its extreme technicality and high complexity.
Since it came into being, many mathematicians have tried to simplify it and to give
some acceptable descriptions. As we know, there are several successful characteriza-
tions and pictures for KK-theory, for example, [3, 6, 7].

In the classification of C∗-algebras and their extensions, an effective approach is
to turn Ext-groups into KK1-groups, so that the Kasparov product and the UCT can
be used to cope with questions on extensions. The Kasparov product is the soul of
KK-theory. A special case of the Kasparov product is the pairing

KK i(A,B)⊗ KK j(B,C) −→ KK i+ j(A,C).

The Kasparov product has a wide range of applications, but it is still very hard to get a
simple description for the general case. An advantage of the Cuntz picture is that the
product of two elements is represented by composition of certain homomorphisms
when i = j = 0. But there is no similar result for the case i = j = 1. It seems that one
may use the suspension transformations to turn KK1-groups into KK0-groups and
then obtain their product by the Cuntz picture. Unfortunately, the suspension trans-
formations are induced by multiplying by a fixed extension (see [1, 19.2]). So there is
no effective way to describe the product of two C∗-algebra extensions in KK-theory.
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One purpose of this paper is to give a characterization for the Kasparov product of
two extensions. Our main tool is the Dadarlat isomorphism, which first appeared in
[4]. It turns Ext-groups into KK0-groups by the Busby invariants instead of the sus-
pension transformations. With the help of the Dadarlat isomorphism, we represent
the Kasparov product of two extensions as a composition of two homomorphisms
(see Theorem 3.3 and 3.4).

On the other hand, the group KK(A,Q(B)) is very useful in the classification of
C∗-algebra extensions. Its quotient by pure extensions is denoted by KL(A,Q(B))
when A satisfies the UCT. H. Lin has used KL(A,Q(B)) to classify certain extensions
in [12, 13]. When B is stable, by the Dadarlat isomorphism we have

KK
(

A,Q(B)
)

= KK
(

A,Q(KB)
) ∼= Ext(A,B).

But KK(A,Q(B)) may be quite different from KK(A,Q(KB)) and Ext(A,B) when
B is not stable. In this note, we also consider a relation between KK(A,Q(B)) and
KK(A,Q(KB)). One natural homomorphism is given, and we prove that it is not an
isomorphism in general.

2 Preliminaries

In this section, we give some notations and results on KK-theory and C∗-algebra
extensions. One can see [1–3, 6, 7, 9], etc., for details.

Let A and B be C∗-algebras. Let

e : 0 −→ B −→ E −→ A −→ 0

be an extension of A by B with Busby invariant τ : A→ Q(B), where Q(B) = M(B)/B
is the corona algebra of B with the quotient map π : M(B) → Q(B). The above
extension e is called trivial if the exact sequence splits.

We call e essential if its Busby invariant τ is an injective homomorphism. Denote
the set of all essential extensions by E(A,B).

Let K be the C∗-algebra of compact operators on a separable infinite dimensional
Hilbert space. For any C∗-algebra B, we call K ⊗ B the stablization of B and often
denote it by KB. If KB ∼= B, then B is said to be stable.

When B is stable, the sum of two extensions τ1 and τ2 is defined to be the homo-
morphism τ1 ⊕ τ2, where

τ1 ⊕ τ2 : A −→ Q(B)⊕ Q(B) ⊆ M2

(
Q(B)

) ∼= Q(B).

Two extensions τ1 and τ2 are said to be stably unitarily equivalent if there are two
trivial extensions σ1 and σ2 and a unitary u ∈ Q(B) such that τ2⊕σ2 = u(τ1⊕σ1)u∗.

Let [e] or [τ ] denote the stable unitary equivalence class of an extension e with
Busby invariant τ . Denote by Ext(A,B) the set of equivalence classes of all essential
extensions of A by K⊗ B. It is easy to see that Ext(A,B) is a commutative semigroup
with respect to the above addition.
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If A is a separable nuclear C∗-algebra and B is a σ-unital C∗-algebra, then Ext(A,B)
becomes an abelian group. It is known that Ext(A,B) ∼= KK1(A,B) by [8, Theorem 1,
p. 562].

KK-theory was introduced by Kasparov in [8]. There are some nice pictures for
KK-groups. One can see [3, 6, 7, 18] for details. The main properties of KK-groups
are contained in the following theorem.

Theorem 2.1 (Kasparov [8]) (i) For each C∗-algebra A, KK∗(A,−) is a covariant
functor from the category of C∗-algebra to the category of abelian groups.

(ii) For each C∗-algebra B, KK∗(−,B) is a contravariant functor from the category of
C∗-algebra to the category of abelian groups.

(iii) Bott Periodicity: for any A and B, there are several isomorphisms

KK1(A,B) ∼= KK(A, SB) ∼= KK(SA,B),

KK(A,B) ∼= KK1(A, SB) ∼= KK1(SA,B),

KK(S2A,B) ∼= KK(A, S2B) ∼= KK(SA, SB).

(iv) Kasparov product: there is a natural product

KK i(A,B)⊗ KK j(B,C) −→ KK i+ j(A,C).

(v) Stability: the homomorphisms A→ K⊗A and B→ K⊗B induced by a minimal
projection in K induce natural isomorphisms

KK∗(K⊗ A,B) ∼= KK∗(A,B) and KK∗(A,B) ∼= KK∗(A,K⊗ B).

(vi) Split exactness: KK∗(A,−) and KK∗(−,B) map split sequences of separable
C∗-algebras to split sequences of abelian groups.

(vii) Homotopy invariance: any homotopic homomorphisms induce equal homomor-
phisms between KK-groups.

Let A be a separable C∗-algebra. Recall that A satisfies the Universal Coefficient
Theorem (UCT) if for any σ-unital C∗-algebras B, there is a short exact sequence

0→ Ext
(

K∗(A),K∗(B)
)
→ KK∗(A,B)→ Hom

(
K∗(A),K∗(B)

)
→ 0.

Let N be the bootstrap class defined in [19]. Then A satisfies the UCT if A ∈ N.
Let e ∈ E(A,B) and let C and D be C∗-algebras. Suppose that β : B → C is a sur-

jective homomorphism and α ∈ Hom(D,A). Then there are two induced extensions
β ◦ e and e ◦ α making the following diagrams commute respectively:

e ◦ α : 0 −−−−→ B −−−−→ E ′ −−−−→ D −−−−→ 0∥∥∥ y yα

e : 0 −−−−→ B −−−−→ E −−−−→ A −−−−→ 0,

e : 0 −−−−→ B −−−−→ E −−−−→ A −−−−→ 0y β

y ∥∥∥
β ◦ e : 0 −−−−→ C −−−−→ E ′ ′ −−−−→ A −−−−→ 0.

https://doi.org/10.4153/CMB-2012-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-001-3


Note on the Kasparov Product of C∗-algebra Extensions 873

One can see [15] or [17] for more details.

3 Main Results

Let A,B,D be C∗-algebras. Recall from [1, 17.8.5] that there is a homomorphism

TD : KK∗(A,B) −→ KK∗(A⊗ D,B⊗ D)

that is natural in each variable.
Let S = C0(0, 1) and C = C0(0, 1]. Then there is an extension

σ1 : 0 −→ S −→ C −→ C −→ 0.

Let u be the unilateral shift and T0 = C∗(u∗ − 1). Then we have an extension

σ2 : 0 −→ K −→ T0 −→ S −→ 0.

Set
x0 = [σ1] ∈ KK1(C, S) and y0 = [σ2] ∈ KK1(S,C).

Then TB(x0) ∈ KK1(B, SB) and TB(y0) ∈ KK1(SB,B). By [1, 19.2] the suspension
isomorphisms and Bott periodicity of KK-groups are induced by product with one
of TB(x0), TB(y0), TA(x0), and TA(y0).

For any C∗-algebras A,B, and C , define

βC : KK1(B,C)→ KK(B, SC) by βC (y) = y ⊗ TC (x0)

and

βA : KK1(A,B)→ KK(SA,B) by βA(x) = TA(y0)⊗ x.

Then the following diagram is commutative

KK1(A,B)⊗KK1(B,C) −−−−→ KK(A,C)y βA

y βC βA

y βC

KK(SA,B)⊗KK(B, SC) −−−−→ KK(SA, SC).

Hence we obtain the product of two extensions formally, but when we notice that

βA(x)⊗ βC (y) = TA(y0)⊗ x ⊗ y ⊗ TC (x0),

we realize that it is a product of four extensions! So we should avoid the suspension
isomorphisms when we look for an approach to describe products of extensions.

In the following lemma, we identify Ext(A,B) with KK1(A,B) in the sense of Kas-
parov when A is a separable nuclear C∗-algebra and B is a σ-unital C∗-algebra. This
identification is very useful.
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Lemma 3.1 ([4, Proposition 4.2]) Suppose that A is a separable nuclear C∗-algebra
and B is a σ-unital C∗-algebra. Then there is a natural isomorphism ΦB : Ext(A,B)→
KK(A,Q(KB)) such that ΦB([e]) = KK(τe) for any extension e with Busby invari-
ant τe.

Let e1 : 0→ K⊗ B→ E1 → A→ 0 and e2 : 0→ K⊗C → E2 → B→ 0 be two
extensions with Busby invariants τ1 : A→ Q(KB) and τ2 : B→ Q(KC), respectively.
For any C∗-algebra D, suppose that eD is the extension 0 → KD → M(KD) →
Q(KD)→ 0 with Busby invariant τD : Q(KD)

id→Q(KD).
By six-term exact sequence in KK-theory, we obtain the Dadarlat isomorphisms

KK
(

A,Q(KD)
) ⊗[eD]
−→ KK1(A,D) and KK1

(
A,Q(KD)

) ⊗[eD]
−→ KK(A,D).

Hence, we have an isomorphism φC : KK1(B,C)→ KK(B,Q(KC)) such that

φC ([e2]) = [e2]⊗ [eC ]−1 = KK(τ2).

By the associativity of the Kasparov product, we have

[e1]⊗ φC ([e2]) = [e1]⊗
(

[e2]⊗ [eC ]−1
)

=
(

[e1]⊗ [e2]
)
⊗ [eC ]−1.

Note that [e1]⊗φC ([e2]) = [e1]⊗KK(τ2) = [τ2◦e1]. Hence we haveφC ([e1]⊗[e2]) =
[e1]⊗ φC ([e2]) = [τ2 ◦ e1]. So we obtain the following lemma.

Lemma 3.2 Let A be a separable nuclear C∗-algebra. Then there is a commutative
diagram

KK1(A,B)⊗ KK1(B,C) −−−−→ KK(A,C)y id

yφC

yφC

KK1(A,B)⊗KK
(

B,Q(KC)
)
−−−−→ KK1

(
A,Q(KC)

)
.

Theorem 3.3 Let A be a separable nuclear C∗-algebra. Suppose that B,G are σ-unital
C∗-algebras such that KK(B,G) = {KK(ϕ)| ϕ : B −→ G is injective}. Then there is a
multiplication (still denoted by)

⊗ : KK
(

A,Q(KB)
)
× KK(B,G) −→ KK

(
A,Q(KG)

)
such that the following diagram commutes:

KK1(A,B) ⊗KK(B,G) −−−−→ KK1(A,G)yΦB

y id

yΦG

KK
(

A,Q(KB)
)
⊗KK(B,G) −−−−→ KK

(
A,Q(KG)

)
.

Proof First, we will define a multiplication

⊗ : KK
(

A,Q(KB)
)
× KK(B,G) −→ KK

(
A,Q(KG)

)
.
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For any y ∈ KK(B,G) there is a homomorphism φ ′ : K ⊗ B → K ⊗ G with
KK(φ ′) = y. By [7, Theorem 1.3.16] there exists a quasi-unital homomorphism
φ : K⊗B→ K⊗G such that φ is homotopic to φ ′. Then there is a unique extension
φ̄ : M(KB)→ M(KG). Denote the induced map by ψ : Q(KB)→ Q(KG). Then we
have a commutative diagram

eB : 0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0yφ

y φ̄

yψ

eG : 0 −−−−→ KG −−−−→ M(KG) −−−−→ Q(KG) −−−−→ 0.

For any x ∈ KK(A,Q(KB)), by the Dadarlat isomorphism there is an essential
extension e : 0 → KB → E → A → 0 with Busby invariant τe : A → Q(KB) such
that x = KK(τe) = ΦB([e]). Then the diagram

e : 0 −−−−→ KB −−−−→ E −−−−→ A −−−−→ 0∥∥∥ y y τe

eB : 0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0yφ

y φ̄

yψ

eG : 0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0

commutes. Hence φ ◦ e = eG ◦ (ψ ◦ τe). Furthermore,

[e]⊗ KK(φ)⊗ [eG]−1 = KK(τe)⊗ KK(ψ).

So there is an additive map ⊗ : KK(A,Q(KB)) × KK(B,G) → KK(A,Q(KG)) with
x ⊗ y = KK(ψ ◦ τe).

Next, we need to show that the above product is well defined.
Let x ∈ KK(A,Q(KB)) and suppose that ei : 0 → KB → Ei → A → 0 are

essential extensions with Busby invariant τi such that ΦB(e1) = ΦB(e2) = x. Since
ΦB is an isomorphism, we have [e1] = [e2] in KK1(A,B) and KK(τ1) = KK(τ2) in
KK(A,Q(KB)).

Let y ∈ KK(B,G) and suppose that φi : KB → KG are two quasi-unital homo-
morphisms such that KK(φ1) = KK(φ2) = y. Then there are homomorphisms
φ̄i : M(KB)→ M(KB) and ψi : Q(KB)→ Q(KG) such that

eB : 0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0yφi

y φ̄i

yψi

eG : 0 −−−−→ KG −−−−→ M(KG) −−−−→ Q(KG) −−−−→ 0

commutes. By the above proof, we have φi ◦ ei = eG ◦ (ψi ◦ τi) and then

[ei]⊗ KK(φi)⊗ [eG]−1 = KK(τi)⊗ KK(ψi).
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Since KK(φ1) = KK(φ2) and [e1] = [e2], we have

KK(τ1)⊗ KK(ψ1) = KK(τ2)⊗ KK(ψ2).

Hence KK(ψ1 ◦ τ1) = KK(ψ2 ◦ τ2).
Finally, note that

ΦG

(
[e]⊗ y

)
=
(

[e]⊗ KK(φ)
)
⊗ [eG]−1

and

ΦB([e])⊗ y = [τe]⊗ KK(φ) = KK(ψ ◦ τe).

Since [e]⊗ KK(φ) = KK(ψ ◦ τe)⊗ [eG], we have ΦG([e]⊗ y) = ΦB([e])⊗ y.

Theorem 3.4 Suppose that A is a separable nuclear C∗-algebra and B,C are σ-unital
C∗-algebras. Then the multiplication defined in Theorem 3.3 is natural and makes the
following diagram commute:

KK1(A,B) ⊗ KK1(B,C) −−−−→ KK(A,C)yΦB

yΦC

yΦQ(KC)◦ΦC

KK
(

A,Q(KB)
)
⊗KK

(
B,Q(KC)

)
−−−−→ KK

(
A,Q

(
KQ(KC)

))
.

Proof By Lemma 3.2 and Theorem 3.3 (let G = Q(KC)), we have a commutative
diagram

KK1(A,B) ⊗ KK1(B,C) −−−−→ KK(A,C)y id

yΦC

yΦC

KK1(A,B) ⊗KK
(

B,Q(KC)
)
−−−−→ KK1

(
A,Q(KC)

)yΦB

y id

yΦQ(KC)

KK
(

A,Q(KB)
)
⊗KK

(
B,Q(KC)

)
−−−−→ KK

(
A,Q

(
KQ(KC)

))
.

Composing these homomorphisms, we obtain the commutative diagram required
above.

It follows from Lemma 3.1 that the Dadarlat isomorphism is natural, and so is the
multiplication defined in Theorem 3.3 by the above commutative diagram.

Remark 3.5 Since the vertical maps in the diagram in Theorem 3.4 are natural iso-
morphisms, one can view the product defined in Theorem 3.3 as a description of the
Kasparov product of two C∗-algebra extensions. With this characterization, the Kas-
parov product of extensions is turned into a composition of two homomorphisms.

Next we consider the relation between KK(A,Q(B)) and KK(A,Q(KB)) when B
is σ-unital, but is nonunital and nonstable. The following results illustrate that there
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is a natural homomorphism between the two groups, but they are not isomorphic
in general. In order to show these facts, we need to begin with some notations and
definitions.

Define β : B → K ⊗ B by b 7→ e11 ⊗ b, where e11 is a minimal projection in K.
Similarly, we can define η : M(B)→ K⊗M(B) and γ : Q(B)→ K⊗ Q(B). Let e0 be
the extension 0 → B → M(B) → Q(B) → 0. By [6, 1.3] there are homomorphisms

β̄ : M(B) → M(KB) and β̃ : Q(B) → Q(KB) such that the following diagram is
commutative

0 −−−−→ B −−−−→ M(B) −−−−→ Q(B) −−−−→ 0y β

y β̄

y β̃

0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0.

On the other hand, tensoring e0 by K, we obtain an extension K⊗ e0 : 0 → K⊗
B → K ⊗ M(B) → K ⊗ Q(B) → 0. Let ψ : K ⊗ Q(B) → Q(KB) be the Busby
invariant of K⊗ e0. Then the following diagrams are commutative:

0 −−−−→ K⊗ B −−−−→ K⊗M(B) −−−−→ K⊗ Q(B) −−−−→ 0y 1K⊗β
y 1K⊗β̄

y 1K⊗β̃

0 −−−−→ K⊗KB −−−−→ K⊗M(KB) −−−−→ K⊗ Q(KB) −−−−→ 0,

0 −−−−→ B −−−−→ M(B) −−−−→ Q(B) −−−−→ 0y β

y η

y γ

0 −−−−→ K⊗ B −−−−→ K⊗M(B) −−−−→ K⊗ Q(B) −−−−→ 0∥∥∥ yφ

yψ

0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0.

By the suspension of KK-groups, we have

KK
(

A,Q(B)
) ∼= KK1

(
SA,Q(B)

)
, KK

(
A,Q(KB)

) ∼= KK1(SA,Q(KB)).

Define
ρi : KK1

(
SA,Q(B)

)
−→ KK1

(
SA,Q(KB)

)
by ρ1([e]) = [(1K ⊗ β̃) ◦ e] and ρ2([e]) = [ψ ◦ e] for any essential extension e,
respectively.

Proposition 3.6 Let ρ1, ρ2 : KK1(SA,Q(B)) → KK1(SA,Q(KB)) be the maps de-
fined above. Then ρ1 = ρ2.

Proof For any x ∈ KK1(SA,Q(B)), there is an essential extension

e : 0 −→ KQ(B) −→ E −→ SA −→ 0
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such that [e] = x in KK1(SA,Q(B)). Define ψ1 : KQ(B) → KQ(KB) by ψ1(z) =

e11⊗ψ(z). Set e1 = (1K⊗β̃)◦e and e2 = ψ◦e. Hence ρi(x) = [ei] in KK1(SA,Q(KB))
and there are two commutative diagrams

e : 0 −−−−→ KQ(B) −−−−→ E −−−−→ SA −−−−→ 0y 1K⊗β̃
y ∥∥∥

e1 : 0 −−−−→ KQ(KB) −−−−→ E1 −−−−→ SA −−−−→ 0,

e : 0 −−−−→ KQ(B) −−−−→ E −−−−→ SA −−−−→ 0yψ1

y ∥∥∥
e2 : 0 −−−−→ KQ(KB) −−−−→ E2 −−−−→ SA −−−−→ 0.

By the functoriality of the KK-groups, we have ρ1 = β̃∗ and ρ2 = ψ∗, so they are
group homomorphisms.

SinceK⊗B is an essential ideal inK⊗M(B), φ is the inclusion map fromK⊗M(B)
into M(KB). Set p = e11 ⊗ 1M(B). By [6, 1.3] β̄ is defined by

M(B)
β1

−→ M
(

p(K⊗ B)p
) ∼= pM(K⊗ B)p ⊂ M(K⊗ B),

where β1 is the unique extension of β. Note that

M
(

p(K⊗ B)p
) ∼= M(e11 ⊗ B) ∼= e11 ⊗M(B)

and β(b) = e11 ⊗ b. Then β̄ is the map M(B) ∼= e11 ⊗M(B) ⊂ M(KB). Hence

1K ⊗ β̄ : KM(B) −→ e11 ⊗KM(B) ⊂ KM(KB).

Define φ1 : KM(C)→ KM(KB) by φ1(c) = e11 ⊗ φ(c). Then we have

φ1 : KM(B) ⊂ M(KB) ∼= e11 ⊗M(KB) ⊂ KM(KB).

Hence φ1 = 1K ⊗ β̄. Note that 1K ⊗ β̃ and ψ1 are the induced maps of 1K ⊗ β̄ and
φ1, respectively. Therefore, we have ρ1 = ρ2.

Suppose that B is a simple C∗-algebra with real rank zero, stable rank one, and
weakly unperforated K0-group. Let q be a nonzero projection in B. Set

Tq = {τ : τ (q) = 1, τ is a trace on B}.

Denote the set of affine functions on Tq by Aff(Tq). Then there is a homomorphism

ρB : K0(B) −→ Aff(Tq)

defined by ρB([p]) = τ (p) for every projection p in any matrix algebra over B.
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Lemma 3.7 ([13, Theorem 1.4 and Corollary 1.5]) Let B be as above. Then

(i) K0(M(B)) ∼= Aff(Tq) and K1(M(B)) = {0};
(ii) K1(M(B)/B) = Ker(ρB).

Theorem 3.8 Let ρ1 be as in Proposition 3.6. Then there is a C∗-algebra B such that
ρ1 is not an isomorphism.

Proof By the UCT, we have the following commutative diagram:

0 −→ Ext(K∗(SA),K∗(Q(B))) −→ KK1(SA,Q(B)) −→ Hom(K∗(SA),K∗(Q(B))) −→ 0y K∗(β̃)

y β̃∗

y K∗(β̃)

0 −→ Ext(K∗(SA),K∗(Q(KB))) −→ KK1(SA,Q(KB)) −→ Hom(K∗(SA),K∗(Q(KB))) −→ 0

If ρ1 is an isomorphism, it follows from the above diagram that K∗(β̃) : K∗(Q(B))→
K∗(Q(KB)) is an isomorphism.

By the naturality of the boundary maps in six-term exact sequence in K-theory
and the following commutative diagram

0 −−−−→ B −−−−→ M(B) −−−−→ Q(B) −−−−→ 0y β

y β̄

y β̃

0 −−−−→ KB −−−−→ M(KB) −−−−→ Q(KB) −−−−→ 0,

we obtain a commutative diagram

K∗(Q(B))
δB

−−−−→ K∗(B)yK∗(β̃)

∥∥∥
K∗(Q(KB))

δKB

−−−−→ K∗(KB).

Since the index map δKB is an isomorphism, so is δB. But by Lemma 3.7 there
exists B such that δB is not an isomorphism. Hence ρ1 is not an isomorphism in
general.
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