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Abstract

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas
systems for genome editing has transformed the way life science research is conducted and
holds enormous potential for the treatment of disease as well as for many aspects of biotech-
nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for
genome editing within the broader context of the field and discuss our work to discover
novel Cas effectors and develop them into additional molecular tools. The initial demonstra-
tion of Cas9-mediated genome editing launched the development of many other technologies,
enabled new lines of biological inquiry, and motivated a deeper examination of natural
CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These
new discoveries in turn spurred further technological developments. I review these exciting
discoveries and technologies as well as provide an overview of the broad array of applications
of these technologies in basic research and in the improvement of human health. It is clear
that we are only just beginning to unravel the potential within microbial diversity, and it is
quite likely that we will continue to discover other exciting phenomena, some of which it
may be possible to repurpose as molecular technologies. The transformation of mysterious
natural phenomena to powerful tools, however, takes a collective effort to discover,
characterize, and engineer them, and it has been a privilege to join the numerous researchers
who have contributed to this transformation of CRISPR-Cas systems.

Introduction

Close observers of the diversity in the natural world generally appreciate why evolution has
been likened not to the work of an engineer, but to that of a tinkerer (Jacob, 1977). By repur-
posing a genetic material under selective pressure, nature has evolved a myriad of ‘field-tested’
solutions to the challenges organisms face. Evolutionary tinkering is particularly evident in the
microbial world, where selective pressure is high, effective population size is large, generation
time is short, and genetic information can be exchanged widely and relatively quickly. As biol-
ogists delve ever deeper into the molecular and genetic mechanisms underlying the observed
phenotypic diversity, we continue to learn more about fundamental biological processes and
uncover new natural systems and phenomena. In addition to providing insight into the molec-
ular underpinnings of life, some of these novel systems have been developed into various
molecular technologies. For example, heat-stable polymerases discovered in thermophilic bac-
teria enabled the development of polymerase chain reaction (PCR), and restriction enzymes
discovered by studying host responses to phages enabled recombinant deoxyribonucleic acid
(DNA) technologies.

One of the latest examples of how nature’s solutions have been successfully adapted into a
molecular technology is the development of clustered regularly interspaced short-palindromic
repeat (CRISPR)-Cas (CRISPR-associated) systems for eukaryotic genome editing.
CRISPR-Cas-mediated genome editing is a robust, easy-to-use method to precisely alter
DNA sequences within the genome of living organisms. Because of the simplicity and effi-
ciency of the system, it has been widely adopted and further developed, leading to an extraor-
dinarily powerful molecular toolbox. Once microbiological curiosity, CRISPR has become a
part of the common language of molecular biology, with its reach extending into nearly
every corner of the life sciences and its impact going far beyond the confines of the laboratory.
The story of CRISPR is one with two-intertwined aspects (Fig. 1): biological investigation to
better understand these elegant systems and engineering of these systems into powerful molec-
ular technologies. As the impact of these technologies spreads, it spurs further work into the
biology, which continues to provide additional technological opportunities. Thus, the early
part of the CRISPR revolution involved engineering Cas9 as genome editing technology,
but through the recent discovery and development of additional Cas effectors, particularly
the ribonucleic acid (RNA)-targeting Cas13 family, it has continued to expand into new
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areas. CRISPR-based technologies are being employed in diverse
ways to improve human health and offer the potential to funda-
mentally change the way we treat disease.

Here, I briefly overview the natural function of CRISPR-Cas
systems, followed by a personal account and perspective of the
time period over which CRISPR-Cas9 was developed for genome
editing in eukaryotic cells. I also discuss the continuing study and
remarkable biotechnological development of CRISPR-Cas systems
beyond Cas9 (Fig. 2). In particular, I highlight some of the excit-
ing applications of this technology and identify areas for future

Fig. 1. Two aspects of CRISPR: biology and technology. (a) CRISPR-Cas adaptive
immune systems help microbes defend against phages and other foreign genetic
materials. During the immunization phase (top), an adaptation module inserts a
new spacer, a stretch of DNA derived from the genome of the invader, into the
CRISPR array. During the defense phase (bottom), spacers are converted into
guide RNAs that direct an interference module to matching target sequences,
which are then cleaved. (b) CRISPR technologies have broad applications in the
life sciences, medicine, and industrial biotechnology. The CRISPR molecular toolbox
allows researchers to carry out precise genome and transcriptome editing in eukary-
otic cells to advance our understanding of biology through the generation of useful
animal and cellular models and interrogation of genetic variation, to boost biotech-
nology through engineering and production of novel materials and agricultural prod-
ucts, and to advance human health through detection of pathogens, development of
novel therapeutic approaches, and elucidation of disease mechanisms. Image
adapted from (Hsu et al., 2014).

Fig. 2. Milestones in the development of CRISPR-based technologies. The develop-
ment of Cas9 for genome editing ((Cong et al., 2013) – submitted on October 5,
2012 and (Mali et al., 2013b) – submitted on October 26, 2012) built on a number
of important biological studies and spurred many powerful applications as well as
the discovery of new CRISPR effectors such as the DNA-targeting Cas12 and
RNA-targeting Cas13.
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improvement. Although I have striven to include many primary
studies, I apologize in advance to those whose work might have
unintentionally been omitted. In addition to this perspective,
there are a number of general reviews covering this topic
(Doudna and Charpentier, 2014; Hsu et al., 2014; van der Oost
et al., 2014; Marraffini, 2015; Sontheimer and Barrangou, 2015;
Mojica and Rodriguez-Valera, 2016; Barrangou and Horvath,
2017; Koonin and Makarova, 2017; Lemay et al., 2017; Ishino
et al., 2018). I also refer readers to several reviews focused on var-
ious aspects related to CRISPR-Cas technologies, including the
structure and mechanism of Cas effectors (Jackson and
Wiedenheft, 2015; Garcia-Doval and Jinek, 2017; Jiang and
Doudna, 2017), classification and evolution of CRISPR-Cas sys-
tems (Koonin and Makarova, 2017), and applications of the
CRISPR technology in agriculture (Voytas and Gao, 2014; Gao,
2018), animal and cellular modeling (Hotta and Yamanaka,
2015), genetic screening (Shalem et al., 2015; Doench, 2017;
Jost and Weissman, 2018), genome editing specificity (Tsai and
Joung, 2016), base editing (Hess et al., 2017; Rees and Liu,
2018), drug discovery and development (Fellmann et al., 2017),
and therapeutic applications (Cox et al., 2015; Porteus, 2015;
Xiong et al., 2016).

I would also like to take this opportunity to acknowledge all of
the members of the CRISPR research community, who have con-
tributed to elucidating the mechanism of CRISPR-Cas systems
and developing and applying this extraordinary technology. It
has been tremendously inspiring to see the multitude of ways
that CRISPR-Cas systems continue to be applied. In addition, I
am grateful to all of the collaborators and trainees with whom
I have been fortunate to work alongside to uncover novel
CRISPR biology and to develop and apply these remarkable
technologies.

Biology of CRISPR-Cas-mediated adaptive immunity

Overview and nomenclature of CRISPR-Cas systems

CRISPR-Cas systems are adaptive immune systems found in
roughly 50% of bacterial species and nearly all archaeal species
sequenced to date (Makarova et al., 2015). These systems evolved
over billions of years to defend microbes from the invasion of for-
eign nucleic acids such as bacteriophage genomes and conjugating
plasmids by targeting their DNA or RNA. The molecular machin-
ery involved in CRISPR-Cas immunity is encoded by the CRISPR
locus as two sets of genetic components that are often located next
to each other in microbial genomes: (1) an operon of multiple cas
genes, and (2) a set of non-coding CRISPR RNAs (crRNAs)
including ones encoded by the signature repetitive CRISPR
array consisting of spacers sandwiched between short-CRISPR
repeats (Fig. 1a). Using these components, CRISPR-Cas systems
mediate adaptive immunity (immunization and defense) through
three general phases: adaptation, crRNA processing, and interfer-
ence. First, during the adaptation phase, a subset of Cas proteins
called the ‘adaptation module’ obtains and inserts fragments of an
invading virus or other foreign genetic material as a ‘spacer’
sequence into the beginning of the CRISPR array in the host
genome along with a newly duplicated CRISPR repeat. The
sequence on the virus or plasmid matching the acquired spacer
is called a protospacer. Second, the CRISPR array is transcribed
and processed into individual crRNAs, each bearing an RNA frag-
ment corresponding to the previously encountered virus or plas-
mid along with a portion of the CRISPR repeat. Third, during the

interference phase, crRNAs guide the ‘interference module’,
encoded either by complex comprising Cas effector subunits or
by a single-effector protein, to destroy the invader.

There are many variations on the CRISPR theme, however,
and the natural diversity of CRISPR-Cas systems is remarkably
extensive, including systems that target DNA, systems that target
RNA, and systems that target both DNA and RNA. CRISPR-Cas
systems also operate in different ways, recognizing and cleaving
their nucleic acid targets through distinct mechanisms mediated
by various effector-crRNA complexes. Based on their unique
effector proteins, CRISPR-Cas systems are currently classified
into six types (I through VI), which are in turn grouped into
two-broad classes (Makarova et al., 2015; Shmakov et al., 2017):
class 1 systems (types I, III, and IV) use a multi-protein complex
to achieve interference, and class 2 systems (types II, V, and VI)
utilize a single-nuclease effector such as Cas9, Cas12, and Cas13
for interference.

Discovery and characterization of CRISPR-Cas systems

In 1987, a series of regularly-interspaced repeats of unknown
function was observed in the genome of E. coli, documenting
the first instance of a CRISPR array (Ishino et al., 1987). In
early 2002, clues to the function of CRISPR-Cas systems came
from two-bioinformatics studies, one of which reported the pres-
ence of conserved operons that appeared to encode a novel DNA
repair system, which we now know are cas genes (Makarova et al.,
2002), and the other of which reported the association between
CRISPR arrays and cas genes (Jansen et al., 2002). Next, it was
observed that spacer sequences in between CRISPR repeats
matched sequences in phage genomes, leading to the suggestion
that CRISPR arrays could be involved in immunity against the
corresponding phages (Mojica et al., 2005; Pourcel et al., 2005).
Third, work focused on Streptococcus thermophilus similarly
found that more spacers matched phage sequences and identified
a large CRISPR-associated protein containing the DNA-cleaving
HNH domain, which is now known as Cas9, the hallmark protein
in type II systems (Bolotin et al., 2005). Despite the linkage
between CRISPR-Cas and phage infection, the specific role that
CRISPR spacers played in providing immunity remained unclear.

Experimental work with the type II system of S. thermophilus
showed that the spacers in the CRISPR array are acquired from
phages and specify immunity against specific phages carrying
matching sequences. Moreover, cas genes are required for both
immunization and phage interference (Barrangou et al., 2007).
These exciting results established CRISPR-Cas as a microbial
adaptive immune system. Insight into the molecular mechanism
of CRISPR-Cas immunity came from work using a type I
CRISPR-Cas system, which revealed that the CRISPR array is
transcribed and processed into short crRNAs that provide recog-
nition of the invading phages and that the effector module can be
directed to multiple targets by changing the crRNA sequences
(Brouns et al., 2008). Although the prevailing hypothesis at the
time was that CRISPR-Cas systems achieved interference using
an RNAi-like mechanism (Makarova et al., 2006), there was evi-
dence that the target was DNA, rather than RNA (Brouns et al.,
2008). Another study reported that a type III-A CRISPR-Cas sys-
tem limits horizontal gene transfer by targeting DNA (Marraffini
and Sontheimer, 2008). However, other systems, such as the type
III-B CRISPR-Cas system, target RNA instead (Hale et al., 2009),
highlighting the substantial mechanistic differences between
CRISPR-Cas systems.
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As the overall picture of CRISPR-Cas-mediated adaptive
immunity began to take shape, studies also started to clarify the
natural mechanism of type II CRISPR-Cas systems, which uses
the nuclease effector Cas9. In one study, it was shown that a
short well-conserved sequence motif at the end of CRISPR targets,
called a protospacer adjacent motif (PAM) (Mojica et al., 2009), is
required for Cas9-mediated interference (Deveau et al., 2008). In
2010, it was shown that S. thermophilus Cas9 is guided by crRNAs
to create blunt double-strand breaks (DSBs) in DNA 3 bp
upstream from the PAM at targeted sites in phage genomes and
in plasmids and that Cas9 is the only protein required for DNA
cleavage (Garneau et al., 2010). In 2011, small-RNA sequencing
of Streptococcus pyogenes revealed the presence of an additional
small RNA associated with the CRISPR array. This additional
RNA, termed tracrRNA, forms a duplex with direct repeat
sequences on the pre-crRNA to produce mature crRNA, and it
is required for Cas9-based interference (Deltcheva et al., 2011).
Another study in 2011 showed that the CRISPR-Cas locus from
S. thermophilus could be expressed in E. coli, where it could medi-
ate interference against plasmid DNA (Sapranauskas et al., 2011).
These studies collectively established that the nuclease complex of
the natural Cas9 system contains three components (Cas9,
crRNA, and tracrRNA) and that the DNA target site needs to
be flanked by the appropriate PAM.

As the biology of CRISPR-Cas systems became better under-
stood, it began to be adapted for use, first as an aid for bacterial
strain typing (Pourcel et al., 2005; Horvath et al., 2008, 2009), and
then in its native context by inoculating S. thermophilus with
viruses to generate phage-resistant strains that can be deployed
in industrial dairy applications, such as yogurt and cheese making
(Quiberoni et al., 2010). Additional suggestions for its application
were also raised, including microbial gene silencing (Sorek et al.,
2008), combating antibiotic resistance, and targeted DNA
destruction (Marraffini and Sontheimer, 2008; Garneau et al.,
2010).

Development of CRISPR-Cas9 for genome editing

The ability to make precise changes to the genome holds great
promise for advancing our understanding of biology and
human health as well as providing new approaches to treating
grievous diseases. The demonstration in 1987, the same year
that CRISPR was first reported, of targeted gene insertion via
homologous recombination in mice was a major breakthrough
(Doetschman et al., 1987; Thomas and Capecchi, 1987), but the
efficiency in mammalian cells was extremely low outside of
mouse embryonic stem cells. Work in both yeast and mammalian
cells demonstrated that the efficiency of gene insertion could be
increased through the generation of a DSB at the target site
(Rudin et al., 1989; Plessis et al., 1992; Rouet et al., 1994).
These observations motivated the development of targetable
nucleases such as meganucleases, zinc finger nucleases, and tran-
scription activator-like effector (TALE) nucleases that can be cus-
tomized to recognize specific DNA sequences and generate DSBs
at specific loci to facilitate genome editing (reviewed in (Urnov
et al., 2010; Joung and Sander, 2013; Kim and Kim, 2014)).
However, the targeting capacity of each of these technologies
was limited, and it was challenging to reprogram them in practice,
ultimately dampening their impact.

As a Junior Fellow at Harvard in 2009, I had experienced first-
hand the challenges of working with zinc finger nucleases. After
reading studies describing the DNA recognition mechanism of

microbial TALE proteins (Boch et al., 2009; Moscou and
Bogdanove, 2009), I asked Le Cong, a rotation graduate student,
to join me to develop TALEs for use in mammalian cells
(Zhang et al., 2011). In 2010, I accepted a faculty position at
MIT and the Broad Institute, planning to build a research pro-
gram around genome and transcriptome editing. I started to set
up my lab in January 2011, and Cong joined as my first graduate
student. The very next month, I heard Michael Gilmore speak at
the Broad Institute about his studies on Enterococcus bacteria,
during which he mentioned that Enterococcus carried
CRISPR-Cas systems, which contained a new class of nucleases.
Given my interest in genome editing, I was intrigued by the pros-
pect of a new class of nucleases. After studying the CRISPR-Cas
literature, I immediately recognized that CRISPR-Cas would be
easier to reprogram than TALEs, and I decided to refocus a signif-
icant portion of my genome editing efforts on adapting Cas9 for
genome editing in eukaryotic cells.

In early 2011, it was already known that Cas9 could cleave
DNA in bacterial cells when directed by a crRNA (Garneau
et al., 2010). Based on the literature, it was also known that the
nuclease complex of the natural Cas9 system contains three com-
ponents (Cas9, crRNA, and tracrRNA). However, CRISPR-Cas
systems had only been studied in bacterial and biochemical sys-
tems, and they had not been explored in the context of eukaryotic
cells. Thus, the key question that needed to be answered, in my
mind, was whether Cas9 could be engineered to achieve genome
editing in eukaryotic cells. Bacterial enzymes evolved to function
optimally in their native bacterial environment, which has sub-
stantially different biochemical properties than that of the intra-
cellular environment of a eukaryotic cell. Indeed, I knew that
previous attempts to harness bacterial systems for use in eukary-
otic cells had failed, including Group II introns (Mastroianni
et al., 2008) and ribozymes (Link and Breaker, 2009). From my
past experiences developing microbial opsins for use in mamma-
lian neurons for optogenetics (Boyden et al., 2005; Zhang et al.,
2007) and TALEs for use in mammalian cells for genome editing
(Zhang et al., 2011), I decided to directly answer the question of
whether Cas9 could be used as a programmable nuclease in
eukaryotic cells by using a human cell culture system. Working
with human cells, I developed a three-component CRISPR-Cas9
system – Cas9, crRNA, and tracrRNA – for genome editing.

As a brand new Assistant Professor, I not only designed but
also carried out experiments in the laboratory myself, while men-
toring trainees, recruiting lab members, and applying for grants.
In one of the grants submitted to the National Institutes of
Health in January 2012, I described my strategy to use a three-
component Cas9 system (Cas9, crRNA, and tracrRNA) for
genome editing in mammalian cells, as was later published in
our study (Fig. 3) (Cong et al., 2013). The strategy for this
work was based on the synthesis of the available literature in
the CRISPR field, which had established the requirement for
these three components for function in bacteria.

During the course of our experiments, a detailed biochemical
analysis of the mechanism of Cas9 in vitro was published (Jinek
et al., 2012). First, it showed that the purified S. pyogenes
Cas9-crRNA-tracrRNA complex cleaves DNA 3 bp upstream of
the PAM of the target site, in agreement with previous in vivo
results with the S. thermophilus system (Garneau et al., 2010).
Second, it showed that tracrRNA and crRNA are both required
for target cleavage by the Cas9-crRNA-tracrRNA complex.
Furthermore, by truncating the tracrRNA, the study found that
a short fragment of the tracrRNA (nucleotides 23 to 48, without
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the 3′ stem loops) was sufficient for supporting robust dual-RNA-
guided cleavage of DNA by the Cas9-crRNA-tracrRNA complex
in vitro. Third, it showed that the HNH domain is responsible
for cleaving the target DNA strand and the RuvC domain cleaves
the non-target DNA strand. Inactivation of either domain turns
the Cas9-crRNA-tracrRNA complex into a DNA nickase.
Fourth, it showed that single-base mutations in the PAM and in
the 3′ region of the guide sequence abolished DNA cleavage by
the Cas9-crRNA-tracrRNA complex, whereas single-base mis-
matches closer to the 5′ region of the guide RNA did not. Fifth,
it showed that the crRNA and the 23-48-nt tracrRNA can be
fused into a single-guide RNA (sgRNA) and this Cas9-sgRNA
two-component system can mediate cleavage of plasmid DNA
under biochemical conditions.

Three months later, a biochemical analysis, using a purified
complex containing the S. thermophilus Cas9 and crRNA,
reported similar findings (Gasiunas et al., 2012). First, the study
showed that the Cas9-crRNA complex cleaves target DNA 3 bp
upstream of the PAM of the target site, also in agreement with
previous in vivo results with the S. thermophilus system
(Garneau et al., 2010). Second, it showed that the Cas9-crRNA
complex binds to dsDNA containing both the binding site as

well as PAM. Third, the study showed that the HNH domain
cleaves the target DNA strand and the RuvC domain cleaves
the non-target strand. Inactivation of either domain turned the
Cas9-crRNA complex into a DNA nickase. However, this study
purified the Cas9-crRNA complex from bacteria without analyz-
ing the components of the complex. As a result, the paper pro-
vided an incomplete picture of the Cas9 molecular mechanism
for in vitro cleavage and failed to identify the requirement for
tracrRNA for Cas9 function.

While the in vitro two-component system highlighted the
potential of exploiting Cas9 for genome editing, as this work
was conducted entirely in vitro, it did not identify the critical
components for achieving robust genome editing in cells and
did not demonstrate that Cas9 could be used for genome editing.
Thus, although the biochemical demonstration of RNA-guided
DNA cleavage is often equated with Cas9-mediated genome edit-
ing, even within the scientific community there were concerns as
to whether Cas9 could be made to function in eukaryotic cells
(Carroll, 2012).

At the time, we had already established that Cas9 could func-
tion in human cells. Working alongside my first trainees, includ-
ing Le Cong and Ann Ran, who are co-first authors of our

Fig. 3. Development of CRISPR-Cas9 for genome editing. (a) The
design of a three-component system (Cas9, crRNA, and tracrRNA)
for Cas9-mediated genome editing in eukaryotic cells, which was
included in a grant submitted in January 2012 to the National
Institutes of Health. In this design, the EF1a promoter drives expres-
sion of Cas9 (with a NLS) and the tracrRNA and guide RNA array with
four genomic targets. In addition, RNase III is expressed to aid the
processing of crRNA, although we later determined it is not neces-
sary (see panel c). Image adapted from NIH Grant 5R01DK097768.
(b) Design of the three-component system used in human cells to
demonstrate editing of the human genome. S. pyogenes Cas9,
CRISPR array (DR-EMX(1)-DR), and tracrRNA are individually
expressed. The guide sequence in the CRISPR array targets the
human EMX1 gene. Image adapted from Cong et al. (2013). (c)
Polyacrylamide gel showing successful editing of the EMX1 target
in the human genome. The SURVEYOR reaction is used to detect
the presence of Cas9-induced indels at the EMX1 locus.
Transfection of Cas9, CRISPR array, and tracrRNA alone mediated
successful genome editing (RNase III is not required). Image adapted
from Cong et al. (2013).
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publication (Cong et al., 2013), we focused on two orthologs of
Cas9 that had been previously studied using bacterial genetics
and had complementary advantages: S. thermophilus Cas9
(StCas9), which was small enough to be packaged into an
adeno-associated viral vector (AAV) for in vivo delivery, and S.
pyogenes Cas9 (SpCas9), which had a less restrictive PAM
sequence (SpCas9, PAM 5′-NGG, can target on average every
12·7 bp in the human genome, whereas StCas9, PAM
5′-NNAGAAW, can target on average every 106·6 bp in the
human genome), and thus broader targeting potential. First, we
found that both SpCas9 and StCas9 can be engineered to mediate
genome editing in human and mouse cells. However, Cas9 aggre-
gated in the nucleolus, pointing to the obstacle of correct subcel-
lular localization when moving a bacterial system into eukaryotic
cells. After experimenting with a number of nuclear localization
signals (NLSs), we found that the combination of a monopartite
and a bipartite NLS allowed Cas9 to localize efficiently into the
human cell nucleus without any aggregation in the nucleolus.
Second, we found that although the natural bacteria expressed
multiple isoforms of the tracrRNA, all of which can provide
CRISPR immunity in bacteria (Deltcheva et al., 2011), only the
89-nt isoform was stably expressed in human cells and was
important for achieving robust genome editing. Third, we found
that across 16 target sites in human and mouse cells, the three-
component system for SpCas9 and StCas9 can mediate robust
editing of the genome. Fourth, we found that a CRISPR array
encoding multiple spacers can be processed by human cells into
individual guide RNAs to target multiple genes in the genome.
Fifth, we showed that DSBs introduced by Cas9 can stimulate
homologous recombination, leading to targeted gene insertion,
and that Cas9 nickase activity can also stimulate homologous
recombination in cells, while avoiding the formation of
DSB-induced indels. Sixth, we also explored a two-component
design. We found that the additional 3′ stem loops on the
tracrRNA are important for gene editing, as the three-component
system achieved significantly more robust genome editing in
human cells than the two-component design employed, which
failed to edit at a number of genomic sites. Together, these results
established a foundation for the molecular mechanism by which
CRISPR-Cas9 can mediate robust genome editing and further
underscores that the ability of CRISPR-Cas9 to function in
eukaryotic cells cannot be predicted from in vitro studies (Cong
et al., 2013).

If Cas9 could function in eukaryotic cells, however, it would
unlock the potential for a range of sought after applications in
research, biotechnology, and medicine. It was therefore not sur-
prising that, in addition to our efforts to develop Cas9 for genome
editing, other groups were inspired by the biochemical character-
ization of Cas9 (Jinek et al., 2012) to explore applications of Cas9
as well. Concurrent with our study, a second report of gene edit-
ing using Cas9 was published (Mali et al., 2013b). Shortly there-
after, additional studies also reported the use of Cas9 in human
and animal cells (Cho et al., 2013; Hwang et al., 2013; Jinek
et al., 2013) and the use of a catalytically inactivated variant of
Cas9 to achieve targeted gene repression (Qi et al., 2013).

Initial impact of Cas9-mediated genome editing

Following the demonstration of Cas9-mediated genome editing
in eukaryotic cells, many outstanding scientists contributed to
the advancement and application of the technology, pushing the
field ahead at a remarkable rate. We continued to develop the

technology by focusing on three major areas: (1) further under-
standing the biology of Cas9 so as to improve and extend its util-
ity; (2) developing applications of Cas9, including genome-wide
screening, a Cas9 knock-in mouse, and conversion of Cas9 to a
catalytically inactive programmable DNA-binding scaffold; and
(3) exploring the natural diversity of CRISPR-Cas systems to iden-
tify other Cas effectors with unique properties that may be advan-
tageous for technological development. Through these endeavors
we had the opportunity to collaborate with a number of talented
researchers from diverse backgrounds, further amplifying the
impact of CRISPR-based technologies.

One way the immediate impact of Cas9 can be seen is in its
rapid adoption for other organisms, which highlights the broad
utility of this tool as well as the robustness and ease-of-use of
the system. Catalyzed by the success of Cas9-mediated genome
editing in human cells, within a year, groups from around the
world reported the successful application of Cas9 in a number
of eukaryotic model organisms, including yeast (DiCarlo et al.,
2013), mice (Wang et al., 2013), Drosophila (Gratz et al., 2013),
C. elegans (Friedland et al., 2013), Arabidopsis (Li et al., 2013),
Xenopus (Nakayama et al., 2013), and non-human primates
(Niu et al., 2014). Cas9 was also successfully deployed in a num-
ber of agriculturally important species in that first year, such as
rice and wheat (Shan et al., 2013), sorghum (Jiang et al., 2013),
and maize (Liang et al., 2014). Before the year’s end, the first
reports were published on the use of Cas9 to correct a cataract-
causing mutation in a mouse, leading to reversal of the disease
phenotype (Wu et al., 2013). In parallel, a number of improve-
ments and extensions of the technology were reported in quick
succession.

The impact of the CRISPR-based technologies is due in no
small part to the open sharing culture of the CRISPR field,
which has enabled applications and further development of
CRISPR-based technologies to flourish. This has been facilitated
through on-line resources, such as the creation of numerous web-
based tools for guide design (Hsu et al., 2013; Bae et al., 2014;
Schmid-Burgk et al., 2014; Labun et al., 2016; Pinello et al.,
2016; Concordet and Haeussler, 2018; Listgarten et al., 2018),
and through the annual CRISPR meetings. CRISPR reagents
have also been shared widely and openly. To date, more than
350 laboratories from around the world have made their
CRISPR-based reagents accessible through the non-profit molec-
ular reagent sharing organization Addgene. For my own group,
we have made it a priority to help researchers benefit from the
CRISPR technological advances we made by disseminating
reagents as well as know-how for CRISPR-based technologies.
Through a combination of direct mailing as well as distribution
through Addgene, we have been able to share more than 52 000
CRISPR reagents to researchers at more than 2300 institutions
spanning 62 countries.

From Cas9 to beyond: Cas12 and Cas13

The development of other molecular technologies, such as restric-
tion enzymes (Loenen et al., 2014) and green fluorescent proteins
(Rodriguez et al., 2017), has benefitted significantly from explora-
tions of natural diversity. Similarly, my own experience with the
development of optogenetics has taught me the power of explor-
ing the diversity of microbial opsins. Therefore, we turned to the
natural diversity of CRISPR-Cas systems to identify other Cas
effectors with the potential to expand the capabilities of
CRISPR-based technologies. By mining the microbial diversity
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for signatures of CRISPR-Cas systems (e.g., conserved genes and
CRISPR-like repeat sequences), we discovered and elucidated the
functions of two new types of CRISPR-Cas systems and developed
them to significantly expand the CRISPR toolbox (Shmakov et al.,
2015, 2017; Zetsche et al., 2015a; Smargon et al., 2017) (Fig. 4).
These discoveries prompted other investigations of microbial
diversity, revealing additional subtypes of CRISPR-Cas systems
(Burstein et al., 2017; Harrington et al., 2018; Konermann
et al., 2018; Shmakov et al., 2018; Yan et al., 2018b) and providing
insight into the origin, evolution, and function of these elegant
systems.

SaCas9

Beyond its immediate utility in the lab, there was enormous inter-
est in using Cas9-mediated genome editing as a therapeutic that
could theoretically treat thousands of genetic diseases. One limi-
tation to the therapeutic use of SpCas9, however, was its relatively
large size, which made delivering it challenging. We therefore
sought to identify smaller Cas9 orthologs that worked efficiently
in mammalian cells while maintaining a broad targeting range.
We characterized a number of CRISPR-Cas9 systems and profiled
their mammalian genome editing activity. One Cas9 ortholog
from Staphylococcus aureus (SaCas9, PAM 5′-NNGRRT) showed
the highest levels of activity in human cells (Ran et al., 2015).
SaCas9 is more than 1 kb shorter than SpCas9, which allowed
us to deliver it, along with a guide RNA, on a single-AAV vector
for in vivo use (Ran et al., 2015). SaCas9 is now being developed
as the first in vivo genome editing medicine for humans (see
below) (Allergan, 2019). SpCas9 is also being advanced for ther-
apeutic applications. However, due to its large size, clinical trials
employing SpCas9 are focused on electroporation of patient cells
ex vivo (Vertex, 2018a, 2018b).

Cas12

We next went beyond Cas9 orthologs to study other CRISPR-Cas
systems, beginning with a putative new type of class 2
CRISPR-Cas system, type V, characterized by the Cas12 family
of effector proteins. The first Cas12 enzyme, classified as type
V-A and referred to as Cas12a (previously known as Cpf1) was
identified in the genomes of Prevotella and Francisella and con-
tained a large protein of unknown function (Schunder et al.,
2013; Vestergaard et al., 2014; Makarova et al., 2015). Cas12a is
a distinct enzyme unrelated to Cas9. A number of Francisella spe-
cies contain Cas12a in association with putative CRISPR arrays,
including F. novicida. Heterologous expression of the F. novicida
CRISPR-Cas12a locus in E. coli led to interference of plasmid
DNA transformation, establishing CRISPR-Cas12a as a bona
fide CRISPR-Cas system and revealing that Cas12a requires a
T-rich PAM sequence preceding the DNA target site (Zetsche
et al., 2015a). In contrast to Cas9, the Cas12a system does not
contain a tracrRNA, and its DNA cleavage results in a 5′ overhang
instead of a blunt DSB (Zetsche et al., 2015a). Also, unlike Cas9,
which utilizes host RNase III to process its CRISPR array, Cas12a
itself has RNase activity and processes its own pre-crRNA array
into individual crRNAs (Fonfara et al., 2016).

A search for Cas12a orthologs identified two-Cas12a enzymes,
from Acidaminococcus and Lachnospiraceae, with strong cleavage
activity in human cells, comparable to SpCas9 (Zetsche et al.,
2015a). Apart from expanding the range of genomic targets that
can be edited given that it has a different PAM than Cas9,

Cas12a-mediated editing has several advantages over Cas9: it is
significantly more specific (Kleinstiver et al., 2016b; Kim et al.,
2017b), which is important for therapeutic applications; it offers
a simplified guide design because it does not require tracrRNA;
it generates over-hanging ends, rather than the blunt ends created
by Cas9, which may be beneficial for the introduction of new
sequences (Moreno-Mateos et al., 2017); it has smaller molecular
size which is more suitable for viral packaging, and it is ideally
suited for multiplex genome editing because multiple guide
RNAs can be easily expressed as a single transcript and subse-
quently processed into individual guide RNAs by Cas12a itself
(Zetsche et al., 2016).

Relative to the Cas9 family of Cas effectors, Cas12 is a much
more diverse family. Indeed a number of subtypes of Cas12 sys-
tems have recently been reported (denoted type V-A – V-I).
The Cas12b effectors (previously known as C2c1) target DNA,
but in contrast to Cas12a, they are dual-RNA guided, requiring
a tracrRNA (Shmakov et al., 2015). Although initial characteriza-
tion of Cas12b revealed thermophilic nuclease activity, which pre-
vented application in mammalian cells, subsequent exploration of
the Cas12b diversity and protein engineering made possible the
development of two-Cas12b systems with robust genome editing
activity in human cells (Teng et al., 2018; Strecker et al., 2019).
Comparison of Cas12b with SpCas9 showed that Cas12b has sub-
stantially reduced off-target activity, indicating it is inherently
more specific than wild-type SpCas9 when targeting the human
genome (Teng et al., 2018; Strecker et al., 2019). Additional
Cas12 effectors have also been identified from bacterial genomic
databases, including Cas12c (Shmakov et al., 2015), Cas12d
(CasY) and Cas12e (CasX), both of which were found in metage-
nomic samples (Burstein et al., 2017), and three subtypes of
Cas12f (Cas14) (Harrington et al., 2018). Two-Cas12e orthologs,
DpbCasX and PlmCasX, have recently been shown to achieve tar-
geted gene knockout in human cells (Liu et al., 2019). A recent
effort to holistically identify CRISPR-Cas systems from more
than 10 terabytes of genomic and metagenomic data led to the
identification of a number of new type V subtype loci, including
both DNA- and RNA-targeting Cas12 systems (Yan et al., 2019).

Cas13

The type VI family of CRISPR-Cas systems, signified by the
RNA-guided RNA-targeting Cas13 effector, was first found by
using the highly conserved adaptation protein Cas1 as the search
seed to identify all genomic fragments that contain putative
CRISPR-Cas systems. Focusing on conserved proteins of unknown
function located within each CRISPR locus, we discovered a family
of well-conserved large proteins carrying the higher eukaryotic–
prokaryotic nuclease (HEPN) domain, which suggested they are
putative RNases (Shmakov et al., 2015). Subsequent expansion of
the search to use CRISPR repeats as the search seed led to the iden-
tification of additional Cas13 subtypes, including Cas13b, Cas13c,
and Cas13d (Shmakov et al., 2017; Smargon et al., 2017;
Konermann et al., 2018; Yan et al., 2018b).

Using E. coli heterologously expressing type VI CRISPR-Cas
systems, we showed that CRISPR-Cas13a and Cas13b systems
confer resistance to RNA phages, and that they are single-effector
RNases guided by crRNAs (Abudayyeh et al., 2016; Smargon
et al., 2017). This finding paved the way for an entirely new set
of molecular technologies operating at the level of RNA, rather
than DNA, and offering a safer therapeutic approach to treating
disease (see below). Similar to Cas12a, Cas13 proteins also
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contain an RNase processing domain with the ability to cleave
their corresponding CRISPR array into individual mature
crRNAs (East-Seletsky et al., 2016; Smargon et al., 2017;
Konermann et al., 2018). Cas13 cleaves RNA at sites outside of
the target region complementary to the crRNA. Analysis of cleav-
age products of Leptotrichia shahii Cas13a (LshCas13a) showed

that cut sites do not vary even for crRNAs targeting different posi-
tions on the same target, indicating that cut sites are likely dic-
tated by a combination of the target RNA secondary structure
and sequence features (Abudayyeh et al., 2017; Smargon et al.,
2017). Further exploration of the RNase activity uncovered the
‘collateral effect’ of Cas13 – recognition of the target RNA by

Fig. 4. Diverse class 2 CRISPR effectors have unique molecular features that contribute to an expansive toolbox for genome and transcriptome editing. To date,
effectors from seven sub-types of CRISPR-Cas system have been developed for molecular technologies. These effectors differ in their locus architecture, structure,
and mechanism, creating many opportunities for engineering CRISPR-based technologies. The locus architecture shows the CRISPR array, tracrRNA (if present), and
catalytic domains of the effector protein. The crystal structures for each effector are shown with the catalytic domains colored as in the locus architecture. The
mechanism of each effector depicts how it binds its DNA or RNA target, as well as the configuration of the crRNA and tracrRNA (if present). Crystal structures were
obtained from the PDB (S. pyogenes Cas9, PDB ID: 4OO8; Acidaminococcus sp. Cas12a, 5B43; Alicyclobacillus acidoterrestris Cas12b, 5U30; Deltaproteobacteria bac-
terium Cas12e, 6NY1; Leptotrichia shahii Cas13a, 5WTK; Prevotella buccae Cas13b, 6DTD; Eubacterium siraeum Cas13d, 6E9E).
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the Cas13-crRNA complex leads Cas13 to become a promiscuous
RNase, cleaving non-target bystander RNAs at preferred cut sites
(Abudayyeh et al., 2016). Collateral activity may play a role in pro-
grammed cell death in bacteria, although this remains to be fully
explored. This collateral activity has been exploited to expand the
applications of Cas effectors into new categories, including the
development of sensitive, low-cost, and rapid diagnostics assays
for viral and bacterial infections (see below).

Cas13a, b, c, and d have all been adapted for use in mamma-
lian cells to mediate targeted RNA knockdown (Abudayyeh et al.,
2017; Cox et al., 2017; Konermann et al., 2018). Interestingly,
although in bacteria, each Cas13 ortholog exhibits varying levels
of nucleotide preference in sequences flanking the protospacer,
referred to as the protospacer flanking site (PFS), the presence
of the PFS is not a strict requirement for RNA targeting in mam-
malian cells (Abudayyeh et al., 2017). Additionally, although col-
lateral activity has been observed in vitro and in bacterial cells
(Abudayyeh et al., 2016; Meeske and Marraffini, 2018), it has
not been detected in mammalian cells (Abudayyeh et al., 2017;
Konermann et al., 2018), suggesting that, similarly for Cas9 and
Cas12, the differences between biochemical, bacterial, and mam-
malian environments can substantially affect the behavior of Cas
effectors.

Development of a molecular toolbox based on Cas effectors

DNA and RNA cleavage through the nuclease activities of Cas
effectors is only one way CRISPR technology can be applied.
The ability to customize the binding specificity of Cas effectors
using a short-guide RNA creates many additional opportunities
for developing new capabilities for manipulating DNA and
RNA. There are two-main categories of molecular tools based
on Cas proteins (Fig. 5), with the first category utilizing the
intrinsic RNA-guided nuclease activity of each effector, and the
second category exploiting nuclease-inactivated Cas proteins
(dCas) as RNA-guided nucleic acid binding domains to target
effector modules to modulate, monitor, or modify target DNA
or RNA. As tools based on Cas effectors rely on the specificity
of RNA-guided target recognition, another area of focus has
been to assess the specificity of Cas effectors as well as engineering
solutions to enhance their specificity. Below is an overview of the
broad range of molecular tools that have been developed based on
Cas proteins as well as efforts to address the most critical chal-
lenges facing CRISPR-based tools.

Leveraging natural and engineered properties of diverse Cas
effectors

The opportunities for developing Cas effectors as molecular tech-
nologies are further amplified by the natural diversity within each
family of class 2 CRISPR-Cas systems. Based on the current pub-
licly accessible bacterial genomic and metagenomic sequencing
data, there are over 100 000 Cas9 family members, over 70 000
Cas12 family members, and over 5000 Cas13 family members.
Within each family, members can exhibit a number of differences
in terms of their size, guide RNA requirement, binding motif (e.g.,
PAM and PFS), targeting specificity, and suitability for function
in eukaryotic cells. In the case of Cas13 family members, they
can also exhibit different cleavage motif preferences.

A number of Cas9 orthologs have been discovered (Bolotin
et al., 2005; Makarova et al., 2011, 2015; Zhang et al., 2013;
Chylinski et al., 2014; Fonfara et al., 2014; Ran et al., 2015;

Shmakov et al., 2017), and an increasing number of these have
been developed for use as genome editing tools beyond SpCas9
and StCas9 (Esvelt et al., 2013; Hou et al., 2013; Karvelis et al.,
2015; Ran et al., 2015; Hirano et al., 2016; Lee et al., 2016; Kim
et al., 2017a). The natural diversity of these enzymes has allowed
expanded applications, for example some smaller Cas9 orthologs,
such as S. aureus Cas9 (SaCas9), Neisseria meningitidis Cas9
(NmeCas9), and Campylobacter jejunii Cas9 (CjCas9) have been
efficiently delivered in vivo using a single-vector strategy (Ran
et al., 2015; Kim et al., 2017a; Ibraheim et al., 2018).

While exploration of natural Cas diversity provides one avenue
for expanding and improving CRISPR-based tools, a complemen-
tary approach uses structure-guided engineering to modify and
improve Cas effector function. Over the past several years a num-
ber of crystal structures have been solved for different members of
Cas9 (Anders et al., 2014; Jinek et al., 2014; Nishimasu et al.,
2014, 2015; Hirano et al., 2016; Yamada et al., 2017), Cas12
(Dong et al., 2016; Yamano et al., 2016; Yang et al., 2016; Stella
et al., 2017; Swarts et al., 2017; Wu et al., 2017; Liu et al.,
2019), and Cas13 (Knott et al., 2017; Liu et al., 2017a, 2017b;
Zhang et al., 2018a, 2018b; Slaymaker et al., 2019) families.
These structures include the apo forms with just the effector
protein alone, or the effector in complex with its guide RNA
alone or guide RNA in complex with target DNA or RNA,
providing structural insights into target recognition and cleavage.
These structural studies have been complemented by other
biochemical and biophysical studies into the target search
mechanism of Cas effectors (Sternberg et al., 2014; Knight
et al., 2015; Ma et al., 2016a).

Expanding the targeting range of DNA-targeting Cas proteins

The DNA targeting range of Cas9 and Cas12 is defined by the
PAM sequence, a short-sequence flanking the target sequence is
required for DNA targeting. A shorter PAM sequence provides
a broader targeting range whereas longer PAM sequences are
more restrictive. For example, wild-type SpCas9 (which has an
NGG PAM) can target roughly ten times more sites in the
human exome than wild-type SaCas9 (which has an NNGRRT
PAM) (Scott and Zhang, 2017). In order to increase the flexibility
of Cas-mediated DNA targeting, a combination of approaches has
been used to expand the number of targetable PAM sequences.
First, by exploring phylogenetic diversity, a number of Cas effec-
tor orthologs have been identified with distinct PAM require-
ments. In the case of Cas12a, a survey of more than a dozen
orthologs identified one, from Moraxella bovoculi, with robust
indel activity in human cells and tolerance of a shorter PAM,
expanding the available targeting landscape (Zetsche et al.,
2017). Ultimately, however, only a handful of Cas effectors have
been successfully developed for function in eukaryotic cells
(Ran et al., 2015; Zetsche et al., 2015a; Abudayyeh et al.,
2017; Cox et al., 2017; Kim et al., 2017a; Chatterjee et al., 2018;
Ibraheim et al., 2018; Konermann et al., 2018; Teng et al., 2018;
Liu et al., 2019; Strecker et al., 2019) limiting the extent of this
approach.

A second approach for expanding the DNA targeting range of
Cas9 and Cas12 is to engineer new variants, either through
structure-guided design or directed evolution. Based on the crystal
structures of Cas effectors in complex with guide RNA and target
DNA (Anders et al., 2014; Nishimasu et al., 2015; Yamano et al.,
2016), targeted mutagenesis has been used to generate new pro-
tein variants with altered PAM sequences. At the same time, a
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number of groups have used directed evolution strategies to evolve
new variants of Cas effectors with unique properties, including
different PAM preferences. These efforts have led to the develop-
ment of a number of Cas9 and Cas12a variants with a

significantly broadened DNA targeting range (Kleinstiver et al.,
2015a, 2015b; Gao et al., 2017; Hu et al., 2018; Nishimasu
et al., 2018). Collectively, these variants enable targeting of virtu-
ally any genomic site.

Fig. 5. The CRISPR-Cas toolbox enables a broad range of applications in eukaryotic cells. Applications of DNA-targeting Cas effectors (Cas9 and Cas12a-e) (left
column) and applications of RNA-targeting Cas effectors (Cas13a-d) (right column) are shown. Active Cas effectors can be used for nucleic acid cleavage. In addi-
tion, Cas effectors can be turned into RNA-guided DNA or RNA binding domains by inactivating their catalytic residues (dCas). dCas can be fused to a variety of
functional moieties to achieve targeted repression, activation, epi-modification, base editing, and imaging at either the DNA or RNA level. In addition, dCas13 can
be used to modulate splicing through fusion to splicing factors. KRAB, Krüppel associated box; SAM, synergistic activation module; SunTag, SUperNova Tag;
DNMT3A, DNA methyltransferase 3 alpha; TET1, ten-eleven translocation 1; p300, E1A-associated protein p300; BE3, base editor 3; ABE, adenine base editor
and ADAR, adenosine deaminase acting on RNA;.
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Assessing the specificity of class 2 Cas effectors

One of the most critical technical requirements for the application
of class 2 Cas effectors is their targeting specificity. When apply-
ing Cas9 or Cas12 as an active nuclease, minimizing off targets is
particularly important because a range of undesirable genomic
alterations could arise through the cell’s endogenous DNA repair
mechanisms, such as translocations between different cleavage
sites and large-scale deletions. For nuclease as well as dCas bind-
ing applications, it is important that the effector binds selectively
to the DNA or RNA targeted by the guide RNA. In the case of
active nuclease applications, off-target editing activity due to
pseudo-specific interactions between the Cas effector and the
genome (arising when there are less than perfect matches between
the target and guide RNA) can give rise to additional DSBs that
lead to either small insertions and deletions (indels) or larger
genomic alterations.

An initial study to characterize off-target indels used compu-
tational analyses to identify loci in the genome that share a
high degree of homology to the target site, and then assayed edit-
ing events at these computationally predicted off-target loci using
deep sequencing (Fu et al., 2013). The study found that SpCas9
can indeed induce off-target edits at genomic loci that carried
three or fewer mismatches compared with the guide sequence.
Additional studies using different approaches also showed that
Cas9 can indeed introduce off-target edits (Hsu et al., 2013;
Mali et al., 2013a; Pattanayak et al., 2013). As the early approaches
covered only a very limited set of off-target sites, subsequent
investigations focused on developing genome-wide unbiased
approaches including in vitro assays like Digenome-seq (Kim
et al., 2015), CIRCLE-seq (circularization for in vitro reporting
of cleavage effects by sequencing) (Tsai et al., 2017), and
SITE-seq (selective enrichment and identification of tagged geno-
mic DNA ends by sequencing) (Cameron et al., 2017) and cellular
assays like GUIDE-seq (genome-wide, unbiased identification of
DSBs enabled by sequencing) (Tsai et al., 2015), BLESS (direct
in situ breaks labeling, enrichment on streptavidin and next-
generation sequencing) and BLISS (breaks labeling in situ and
sequencing) (Crosetto et al., 2013; Yan et al., 2017), linear
amplification-mediated PCR followed by high-throughput
genome-wide translocation sequencing (LAM-HTGTS) (Frock
et al., 2015), and VIVO (verification of in vivo off-targets)
(Akcakaya et al., 2018). The use of these assays found that the
editing specificity of SpCas9 varied widely depending on the
guide RNA. When these unbiased techniques were used to profile
the specificity of Cas9 orthologs as well as Cas12 family members,
it was found that SaCas9 as well as Cas12a and Cas12b are much
more specific than SpCas9, with most guide RNAs exhibiting no
detectable off-target editing (Kleinstiver et al., 2016b; Yan et al.,
2017; Strohkendl et al., 2018; Tycko et al., 2018; Strecker et al.,
2019). It is worth noting, however, that the functional impact of
off-target edits will vary depending on their location. For exam-
ple, off-target indels within coding regions, regulatory elements,
and non-coding RNAs are likely to have more undesirable effects.

A number of studies have also explored the landscape of larger
genomic alterations arising from Cas9 activity. For translocations,
the use of LAM-HTGTS showed that the frequency of
SpCas9-induced translocation varies considerably with the guide
RNA, from undetectable to ∼3% (Frock et al., 2015), and the
use of a tagmentation strategy found SpCas9-mediated transloca-
tion rates of ∼2·5% for two-different guides (Giannoukos et al.,
2018). For large deletions, the use of PacBio and Sanger

sequencing with SpCas9-edited hemizygous embryonic stem
cells showed that 10 out of 48 edited alleles represented deletions
larger than 250 bp (ranging up to nearly 6 kb) (Kosicki et al.,
2018). The same study also identified a number of other events
such as transversions, duplications, and other structural rear-
rangements (Kosicki et al., 2018).

Similar approaches have not been applied to the high-
specificity variants of Cas9 or to Cas12a/b, all of which show sub-
stantially fewer indel off-targets, and it will be interesting to see if
the number of large deletions and structural rearrangements is
similarly reduced with these other Cas effectors. These studies,
along with empirical testing of guide RNAs, will inform the
best choice of the Cas effector for applications requiring particu-
larly high levels of editing specificity. In addition, methods have
been developed to quantify the on-target editing outcomes of
Cas9 (Miyaoka et al., 2016, 2018).

When assessing the RNA targeting specificity of Cas13, the
considerations are slightly different. Although off-target cleavage
arising from pseudo-specific binding remains a concern, an addi-
tional issue with Cas13 is potential collateral cleavage of
bystander transcripts. To assess the likelihood of off-target
RNA knockdown, the effect of an increasing number of mis-
matches between the guide sequence and its RNA target was
examined. From these studies it was found that Cas13 can tolerate
up to a single mismatch throughout the guide sequence and still
cleave the target RNA (Abudayyeh et al., 2017). Additionally,
transcriptome-wide sequencing revealed that Cas13 can achieve
highly specific knockdown of the target transcript without signif-
icant off-target effects. In contrast, short-hairpin RNA (shRNA)
knockdown of the same transcript led to downregulation of hun-
dreds of off-targets (Abudayyeh et al., 2017). In addition, bio-
chemical analysis of target RNA binding by Cas13a revealed
that perfect matching in a central seed region of the guide
sequence is required for binding, but a different guide region is
required for the activation of RNase activity (Tambe et al.,
2018). Together, these studies provided detailed insight into the
potential off-target effects due to pseudo-specific binding as
well as suggested that collateral activity is not significant in mam-
malian cells, which has been supported by additional studies
(Konermann et al., 2018).

Improving the targeting specificity of Cas effectors

A number of approaches have been developed to improve the spe-
cificity of DNA editing by Cas9, and many of these approaches
have also been applied or are relevant to Cas12 as well. The
approaches can be divided into strategies that either seek to
reduce overall exposure to the nuclease or directly improve specif-
icity through engineering of the system.

For the first category of approaches, we observed early on that
the editing specificity can be improved by more than 10-fold by
introducing less Cas9 into cells (Hsu et al., 2013). In agreement
with this observation, several other groups have demonstrated
that using either mRNA to deliver Cas9 or delivering
Cas9-sgRNA ribonucleoprotein (RNP) complexes directly into
the target cell can significantly increase the editing specificity
(Cho et al., 2014; Lin et al., 2014). In addition to use of different
delivery methods to limit the dosage of Cas9 in cells, it is also pos-
sible to engineer Cas9 so that its nuclease activity becomes drug-
or light-inducible (Davis et al., 2015; Nihongaki et al., 2015;
Truong et al., 2015; Wright et al., 2015; Zetsche et al., 2015b;
Liu et al., 2016a; Nguyen et al., 2016; Rose et al., 2017). This
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inducible approach has also been applied to Cas12a (Tak et al.,
2017).

For the second category of approaches, various strategies have
been used, beginning with engineering the system to increase the
number of target DNA bases that must be specifically recognized
by Cas9 in order to activate nuclease activity. The first strategy
doubles the number of DNA bases that need to be recognized
to introduce a DSB by utilizing a Cas9 nickase and two-
juxtaposed guide RNAs to create two off-set nicks (Mali et al.,
2013a; Ran et al., 2013). This method was found to reduce off-
target edits beyond the detection limit (Ran et al., 2013).
Related to this double-nicking approach, a second strategy uses
dCas9-FokI fusions and a pair of juxtaposed guide RNAs to facil-
itate the introduction of a DSB (Guilinger et al., 2014; Tsai et al.,
2014). The specificity of Cas9 targeting can also be enhanced by
modifying the guide RNA. One study showed that SpCas9 target-
ing can be significantly improved using truncated-guide RNAs
with 17 nt of the targeting sequence (Fu et al., 2014), which
decreases the tolerance for mismatches. More recently, it was
shown that the use of bridged or locked-nucleic acids can also
improve Cas9 specificity by slowing the reaction rate (Cromwell
et al., 2018), and that engineering the guide RNA to create a hair-
pin in the spacer region improves specificity of a number of Cas9
and Cas12 enzymes (Kocak et al., 2019).

In addition to these strategies, rational engineering of Cas9 and
Cas12 has been used to create high-specificity variants, offering a
simpler solution to the specificity challenge. We developed the
first of these variants, eSpCas9, which exhibits substantially
reduced off-target activity while maintaining on-target efficiency
(Slaymaker et al., 2015). A number of groups have subsequently
used structural information or directed evolution to develop addi-
tional high-specificity variants of Cas9 (Kleinstiver et al., 2016a;
Chen et al., 2017; Casini et al., 2018; Hu et al., 2018; Lee et al.,
2018; Vakulskas et al., 2018) and Cas12a (Kleinstiver et al., 2019).

The specificity of Cas effectors will continue to be improved
through rational engineering and directed evolution, which will
be particularly important for the clinical use of Cas effectors. It
is important to note that the development of variants of Cas effec-
tors with increased specificity needs to be complemented with
higher sensitivity assays, such as the recently developed genome-
wide off-target analysis by the two-cell embryo injection (GOTI)
method (Zuo et al., 2019), for detecting the presence of off-target
activity, particularly large deletions and chromosomal
rearrangements.

dCas platforms

In addition to their utility as nucleases, class 2 Cas effectors can
also be inactivated to turn the proteins into RNA-guided DNA-
or RNA-binding domains (Fig. 5). These inactivated variants
can be used for a wide variety of powerful applications by serving
as programmable nucleic acid binding scaffolds for the recruit-
ment of a variety of effector functions. To deactivate the nuclease
activity of Cas9, alanine substitutions are introduced into the cat-
alytic residues of the HNH and RuvC nuclease domains
(Sapranauskas et al., 2011). In early 2013, using this mutant ver-
sion of Cas9, termed dead Cas9 (dCas9), it was shown that dCas9
could achieve programmable gene repression in bacteria and
mammalian cells by simply binding to the genome and blocking
transcription (Qi et al., 2013). Since then, many new applications
have been developed by using dCas9 to recruit effectors that mod-
ulate, modify, or visualize DNA or RNA (for examples see:

(Bikard et al., 2013; Chen et al., 2013; Gilbert et al., 2013, 2014;
Konermann et al., 2013, 2014; Maeder et al., 2013; Perez-Pinera
et al., 2013; Tanenbaum et al., 2014; Hilton et al., 2015; Ma
et al., 2015, 2016b; Thakore et al., 2015)). Similar to Cas9, the
RuvC nuclease domain of Cas12 (Zetsche et al., 2015a), and the
HEPN nuclease domains of Cas13 (Abudayyeh et al., 2016) can
also be inactivated to generate dCas12 and dCas13, respectively.

In the case of Cas9, we showed that it is also possible to use a
truncated guide sequence that does not trigger the nuclease activ-
ity of Cas9 (Dahlman et al., 2015). Using this strategy, researchers
can simultaneously use Cas9 as a nuclease to cleave one set of
genomic targets and as a DNA binding domain for a different
set of genomic targets simply by using guide RNAs with full
length (20-nt) or truncated (12-nt) guide sequences, respectively.
This approach is particularly relevant when using transgenic
mouse lines expressing the nuclease-active form of Cas9 (Platt
et al., 2014). Using this truncated guide RNA strategy, DNA bind-
ing experiments can be conducted without creating an additional
mouse line expressing dCas9 (Liao et al., 2017).

There are a several ways to recruit effectors to dCas. The sim-
plest method is to directly fuse the effector protein to either the
N- or C-terminus of the Cas protein (Gilbert et al., 2013;
Konermann et al., 2013; Abudayyeh et al., 2017; Tak et al.,
2017). However, in some applications, particularly for the recruit-
ment of fluorescent proteins for imaging, a second strategy has
been used where a SunTag is attached to dCas9 to attract effectors
that are fused to a single-chain variable fragment antibody frag-
ment with SunTag affinity (Tanenbaum et al., 2014). Yet another
approach is to engineer the guide RNA such that exposed hairpins
can serve as potential sites for insertion of RNA aptamers. By
engineering new guide RNAs carrying the MS2 aptamer inserted
into stem loops on the guide RNA, we showed that effector
domains can be recruited via MS2 binding (Konermann et al.,
2014). Subsequent studies have shown that other aptamers such
as PP7 and com can also be inserted into the guide RNA to
allow for multiplexing applications (Zalatan et al., 2015; Liu
et al., 2016a).

The applications of dCas are quite broad. Initial work showed
that simply by recruiting dCas9 to target loci, gene expression
could be repressed in both bacterial and human cells (Bikard
et al., 2013; Qi et al., 2013). Fusions of dCas9 to transcriptional
repressors, such as Krüppel-associated box (KRAB), have also
been used to programmably repress gene expression (Gilbert
et al., 2013) in human cell lines. dCas9-KRAB fusions have
been combined with inducible Cas9 systems for fine-tuned regu-
latory control of gene networks (Mandegar et al., 2016). dCas9
can also be used to facilitate transcriptional activation of target
genes (Bikard et al., 2013; Gilbert et al., 2013; Konermann
et al., 2013, 2014; Maeder et al., 2013; Perez-Pinera et al., 2013).
Additionally, dCas9 has been fused with epigenetic modifiers to
achieve targeted histone acetylation (Hilton et al., 2015), histone
demethylation (Kearns et al., 2015), and DNA methylation and
demethylation (Liu et al., 2016b; Vojta et al., 2016; Xu et al.,
2016). A number of groups have used dCas9 for genomic locus
and chromosome imaging as well as spatial manipulation of geno-
mic organization (Chen et al., 2013; Morgan et al., 2017; Wang
et al., 2018). Through the use of either orthogonal Cas enzymes
or aptamers and multiple fluorophores, multiplex locus imaging
can be achieved (Chen et al., 2016; Liu et al., 2016a). Similarly,
RNA can be imaged using dCas effectors, including dCas9
(Nelles et al., 2016) and dCas13a (Abudayyeh et al., 2017).
dCas13 has also been fused to hnRNP1, a negative regulator of
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splicing, to achieve targeting exon skipping (Konermann et al.,
2018). Through fusion to the engineered peroxidase APEX2,
dCas9 can be used to identify proteins associated with a specific
genomic locus (Myers et al., 2018). Additional functional plat-
forms have also been developed, such as the fusion of a Cas9 nick-
ase with an error-prone polymerase to create EvolvR, a system for
rapid diversification of the DNA sequence within a few hundred
base-pair window (Halperin et al., 2018). Another system,
CRISPR-X, uses dCas9 and modified-guide RNAs to recruit cyti-
dine deaminase variants to generate localized windows of varia-
tion, which may have applications for directed evolution (Hess
et al., 2016).

Targeted base editing of DNA and RNA

Another exciting application of dCas enzymes has been the devel-
opment of programmable DNA and RNA base editors, which can
achieve the precise chemical change of one base to another
(reviewed comprehensively by (Rees and Liu, 2018)). Base editors
are particularly promising for the development of therapeutic
applications, as more than half of the known pathological variants
are point mutations. Furthermore, both DNA and RNA base edit-
ing provide the possibility of making targeted changes without
relying on homologous recombination, which is inefficient espe-
cially in post-mitotic cells such as neurons.

DNA base editors are generated by fusing dCas9 or Cas9 nick-
ase (Komor et al., 2016; Nishida et al., 2016; Gaudelli et al., 2017)
or dCas12 (Li et al., 2018c) to single-strand DNA deaminases
(Fig. 5). The first type of base editor developed used dCas9 or
Cas9 nickase to bring a single-stranded DNA cytosine deaminase
such as AID or APOBEC to mediate C • G to T • A conversions
on target DNA. Binding of DNA by dCas9 or Cas9 nickase forms
an R-loop which exposes a short stretch of single-stranded DNA
for deamination by the tethered cytosine deaminase (Komor
et al., 2016; Nishida et al., 2016). Application of the cytosine
base editor in a variety of animal and plant cell types can lead
to high levels of targeted base conversion (Rees and Liu, 2018).
To expand the types of base changes achievable, a second type
of base editor capable of converting A • T to G • C was created
by fusing dCas9 or Cas9 nickase to an evolved form of the bacte-
rial tRNA-specific adenine deaminase TadA (Gaudelli et al.,
2017). TadA naturally acts on single-stranded RNA, but through
an impressive series of directed evolution steps, TadA was con-
verted into a DNA deaminase. DNA base editing has already
been applied in animal models of disease, highlighting its poten-
tial for therapeutic use (Villiger et al., 2018). This powerful tech-
nology is being rapidly optimized to increase specificity, efficacy,
and precision (Rees and Liu, 2018).

RNA base editors have been engineered by fusing dCas13 to
the adenine deaminase ADAR to achieve a precise, targeted
A-to-I conversion (inosine is read out by cells as guanosine)
(Fig. 5) (Cox et al., 2017). Because ADAR acts on an RNA duplex
formed between the target RNA and the guide RNA at adenosines
in A • C mismatch bubbles, a specific adenine can be targeted for
deamination by intentional mis-pairing with a cytosine on the
guide RNA (Cox et al., 2017). The ability to direct adenine deam-
ination with single-nucleotide precision, which is not currently
possible with DNA editing, has inspired efforts to use directed
evolution to convert ADAR into a duplex RNA-acting cytosine
deaminase, an activity which has not been found in nature, to
develop a precise C to U RNA editor. RNA and DNA base editing
complement each other to expand the range of applications. In

particular, RNA editing does not depend on the presence of
DNA-repair machinery for base conversion and therefore can
be applied in virtually all cell types. Furthermore, because RNA
editing can be potentially temporally restricted when paired
with transient delivery systems, it can serve as a reversible editing
system, which further expands the therapeutic potential of
CRISPR-based technologies.

The specificity of base editors has recently been comprehen-
sively profiled. Although cytosine DNA base editors have been
found to generate a large number of off-target edits throughout
the genome, the adenine base editor is able to achieve specific
editing of the target site (Jin et al., 2019; Kim et al., 2019; Zuo
et al., 2019). A study in mice also examined potential off-target
effects of adenine base editing and similarly found that A • T
to G • C conversion was quite specific (Liu et al., 2018d).
Additionally, a recent study looking at the specificity of base edi-
tors found substantial off-target editing in the transcriptome
(Grunewald et al., 2019). Future refinements aimed at reducing
non-specific interactions with DNA should significantly increase
the specificity of cytosine base editors. In addition to improving
the specificity of the deaminase domain, specificity may also be
improved through the use of more specific Cas effectors such as
dSaCas9 or dCas12a rather than dSpCas9. As DNA base editors
do not rely on the introduction of DSBs, the likelihood of large
deletions or translocations is significantly lower than with
nuclease-based approaches. The specificity of RNA base editors
has also been comprehensively profiled using high-coverage tran-
scriptome analysis. Although the initial version of the RNA base
editing platform showed broad transcriptome-wide off-target
editing, structure-guided engineering of ADAR reduced non-
specific interactions and improved the targeting specificity by
∼1000 fold (Cox et al., 2017). The promising results with both
DNA and RNA base editing are prompting rapid improvements
in technology.

Additional applications of CRISPR-based technologies

CRISPR-based technologies have also been coopted for informa-
tion recording, either about cell fate, activity, or even non-
biological data. Many of these approaches rely on the ability of
CRISPR-Cas systems to create traceable scars that can be read
out through sequencing and then related back to specific events.
One of the first such uses was lineage tracing to reconstruct cel-
lular or organismal development (McKenna et al., 2016; Frieda
et al., 2017; Kalhor et al., 2017). Trackers have also been built
that can record information about the cellular state, such as the
presence of small molecules, metabolites, external stimuli, or tran-
scriptional activity (Perli et al., 2016; Schmidt et al., 2018; Tang
and Liu, 2018). Cas effectors have also been used to build syn-
thetic gene circuits to advance synthetic biology applications
(Nissim et al., 2014; Zalatan et al., 2015; Nakamura et al.,
2019). Finally, using the adaptation modules of CRISPR-Cas sys-
tems, the Cas1 and Cas2 enzymes (Heler et al., 2015; Nunez et al.,
2015; Silas et al., 2016), an approach has been developed for stor-
ing non-biological data (Shipman et al., 2016, 2017; Schmidt
et al., 2018).

Advancing biological research

CRISPR-based tools have been deployed widely in the life sci-
ences, and due to their accessibility and ease of use, they are con-
tributing to the advancement of biological studies on nearly every
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front. Here, I highlight a few of the ways these tools are being used
in high-impact applications, including creation of new animal and
cellular models as well as large-scale gene function interrogation.

Accelerating the generation of cellular and animal models

One of the most immediate impacts CRISPR-based technologies
have had on the advancement of biological studies is on the gen-
eration of plant, animal, and cellular models. First, CRISPR-based
technologies have dramatically reduced the time and labor needed
to modify the genome of conventional eukaryotic model organ-
isms and cell lines (with the exception of yeast, for which a pow-
erful toolbox for genetic manipulation has existed for decades). A
key example of this is the generation of knockout mice. Prior to
2013, knockout mice were created using modified-embryonic
stem cells and the entire process took 1–2 years, whereas
Cas9-mediated knockout can be achieved in weeks to months
(Wang et al., 2013; Yang et al., 2013). Recently, it was suggested
that the generation of tailored mouse models could be further
accelerated through use of a Cas9-mediated gene drive approach
(Grunwald et al., 2019). This approach has also made it substan-
tially more feasible to create non-human primate models (Niu
et al., 2014; Chen et al., 2015b; Wan et al., 2015). Similarly, the
ease of reprogramming CRISPR-based tools has enabled their
large-scale application to rapidly create libraries of cell lines.
Second, CRISPR technology has rendered a variety of additional
organisms genetically tractable, including parasites (Ghorbal
et al., 2014; Sollelis et al., 2015; Vinayak et al., 2015; Sidik et al.,
2016), microorganisms (Shapiro et al., 2018), and non-model
organisms such as crustaceans (Martin et al., 2016), wasps (Li
et al., 2017), butterflies (Li et al., 2015), and diatoms (Nymark
et al., 2016). This robustness of CRISPR-based technologies across
organisms provides opportunities for studying many biological
processes in their native context. Third, CRISPR-based technolo-
gies are being used to create tailored animal and cellular models
that recapitulate genetic variants found in human patients
(Birling et al., 2017). These tailored models enable more accurate
disease modeling that can be used to understand the molecular
pathology of a range of human diseases as well as to develop
novel therapeutic strategies to treat these diseases. For example,
a pig model of Huntington’s disease has been created through
Cas9-mediated gene editing, enabling the study of this disease
in a more relevant animal model (Yan et al., 2018a). Fourth,
Cas9 has also been used in vivo to accelerate the modeling of dis-
eases, such as cancer (Maddalo et al., 2014; Sanchez-Rivera et al.,
2014). Finally, Cas9 has also been used to successfully edit human
embryos in the laboratory for research purposes (the embryos
were discarded without being implanted to establish pregnancy)
(Liang et al., 2015; Fogarty et al., 2017; Ma et al., 2017). These
studies have the potential to advance our understanding of
human embryogenesis and reproductive challenges. For one of
these studies (Ma et al., 2017), an active dialog is currently under-
way regarding the interpretation of the editing results
(Adikusuma et al., 2018; Egli et al., 2018; Ma et al., 2018).

One particularly useful advance has been the creation of trans-
genic mice that constitutively or conditionally express Cas9,
increasing the ease of gene knockout studies in vivo (Platt et al.,
2014; Dow et al., 2015). Additionally, a dCas9-EGFP knock-in
mouse has been created to enable easy, dynamic tracking of tar-
geted genomic regions (Duan et al., 2018). Using these mouse
models, researchers can much more easily target specific cell
types, achieve multiplexed gene knockouts, and much more

rapidly model diseases. These models have been used to look at
a number of biological processes, including cancer (Platt et al.,
2014), wound healing (Ge et al., 2017), synaptic transmission
(Yamasaki et al., 2017), circadian rhythms (Tso et al., 2017),
and T cell differentiation (Zhang et al., 2017), among others.

Genome-wide functional screening

A second way that CRISPR technology is accelerating research is
through the development of robust high-throughput screening
methods (Koike-Yusa et al., 2014; Shalem et al., 2014; Wang
et al., 2014; Zhou et al., 2014) that can systematically assay the
impact of genes or regulatory regions on a phenotype of interest
(see (Doench, 2017; Guo et al., 2017) for a recent review of
CRISPR-based genetic screening) (Fig. 6). Large-guide RNA
expression libraries can be computationally designed to target
every gene in the genome. Delivery of this library of guides
along with Cas9 into cells generates a population of cells, each
with a single gene perturbed, collectively knocking out every
gene in the genome (Shalem et al., 2014). By phenotypically
screening the library of cells, candidate genes involved in a process
of interest can be identified through sequencing the guides in
selected cells in the perturbed population. Although the approach
is similar to methodologies using genome-wide libraries of
shRNAs, CRISPR screens are significantly more reliable (Shalem
et al., 2014). In addition, as interest in non-coding regions and
cis-regulatory elements has grown in recent years (nearly 99%
of the human genome is non-coding and the overwhelming
majority of disease-associated variants identified in genome-wide
association studies (GWAS) are in non-coding regions), CRISPR-
based screening has also been extended to identify non-coding
regulatory elements in the endogenous genome (Canver et al.,
2015; Sanjana et al., 2016).

dCas9-based transcription screening systems have also been
developed for genome-scale screening. dCas9 alone or tethered
to a transcriptional repression domain has been used to mediate
genome-scale loss of function screening. Because sgRNAs for
dCas9-mediated knockdown are harder to design and are not as
potent as Cas9-mediated knockout, transcriptional repression
screening typically requires guide RNA libraries with more redun-
dancy per gene (Gilbert et al., 2014). However, for genes that are
essential and therefore cannot be permanently knocked-out, tran-
scription repression-based screening may be used to uncover their
function. In addition, repression-based approaches circumvent
some of the limitations of knockout screening, such as cellular
toxicity associated with targeting DSBs to high-copy chromo-
somal regions (Aguirre et al., 2016; Munoz et al., 2016) and the
variability in the outcome of NHEJ repair, which could generate
gain-of-function alleles (Donovan et al., 2017; Ipsaro et al.,
2017). dCas9-based transcription activators may also be used to
carry out gain-of-function genetic screens (Gilbert et al., 2014;
Konermann et al., 2014).

Additional modes of CRISPR-based screening include the use
of paired guides to create libraries of large deletions, which has
enabled further interrogation of lncRNAs (Zhu et al., 2016),
and dCas9 fused to epigenomic modifiers to screen for functional
regulatory elements (Klann et al., 2017). The basic screening
approach has also been adapted to achieve multiplex perturba-
tions to identify gene sets involved in specific drug responses
(Wong et al., 2016) and to systematically map genetic interactions
at an unprecedented scale (Horlbeck et al., 2018). Pooled CRISPR
screens have been combined with single-cell RNA-sequencing,
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enabling dissection of complex phenotypes at the transcriptional
level (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016)
including eQTLs (Gasperini et al., 2019). Finally, CRISPR-based
screens can be adapted for in vivo large-scale gene interrogation
of unique phenotypes, such as metastasis to distal organs, that
cannot be captured in vitro (Chen et al., 2015a; Manguso et al.,
2017).

Over the past five years, CRISPR-based screens have been
applied to a large number of biological questions, including a
range of aspects of cancer biology (Chen et al., 2015a; Hart
et al., 2015; Shi et al., 2015; Toledo et al., 2015; Han et al.,
2017, 2018; Manguso et al., 2017; Patel et al., 2017), mitochon-
drial disease (Jain et al., 2016), host-pathogen interactions
(Marceau et al., 2016; Zhang et al., 2016; Park et al., 2017), the
immune system (Parnas et al., 2015), gene essentiality (Wang
et al., 2015), cell fate specification (Liu et al., 2018c), mechanisms
of DNA repair (Noordermeer et al., 2018), regulatory sequences
in enhancers (Canver et al., 2015; Fulco et al., 2016; Sanjana
et al., 2016; Liu et al., 2018a), and the role of long non-coding
RNAs (Zhu et al., 2016; Joung et al., 2017; Liu et al., 2017c), to
name just a few.

To extend the utility of CRISPR-based screens and make them
even more robust, a number of groups have also contributed to
refining and optimizing screening approaches as well as develop-
ing a host of computational tools to aid in the design of large-
scale CRISPR-mediated screens, including CRISPR inhibition
(CRISPRi) and activation (CRISPRa) approaches (Doench et al.,
2014, 2016; Hart et al., 2015, 2017; Heigwer et al., 2016;
Horlbeck et al., 2016; Meier et al., 2017; Morgens et al., 2017;
Sanson et al., 2018). In addition, software has been developed
for the analysis of CRISPR-mediated screens (Li et al., 2014;
Hart and Moffat, 2016; Winter et al., 2016; Wang et al., 2019).
To date, a number of CRISPR knockout screening libraries,
some with improved efficacy and others targeting themed gene
collections (e.g., kinome or transcription factors) have been devel-
oped. Together, these tools have substantially reduced the barrier
to forward genetic approaches in mammalian cells, uncovering
exciting new biology and revealing new potential therapeutic
targets.

Providing new opportunities for plant and agricultural science

Another area of the life sciences that CRISPR technology has
deeply impacted is plant biology. In particular, it has revolution-
ized plant breeding by dramatically reducing the time to generate
new genotypes. In some plant species, homozygous knockout
mutants can now be produced in a single generation (Feng
et al., 2013; Mao et al., 2013; Brooks et al., 2014; Xu et al.,
2014; Zhang et al., 2014). The natural ability of Cas enzymes
for multiplex editing is particularly helpful for editing polyploid
genomes, such as wheat, where traditional genetic manipulation
strategies are difficult as well as altering complex agronomic traits.
To date, CRISPR-mediated gene knockout has been applied in a
number of agricultural crops, including rice, barley, soy, maize,
wheat, tomato, potato, lettuce, citrus trees, mushroom, cucumber,
grape, watermelon and others, and there is a substantial effort to
engineer these and other plants to achieve a range of traits such as
drought resistance, increased yield, pathogen resistance, and

Fig. 6. CRISPR-mediated genome-wide screening allows large-scale interrogation of
gene function. Cas9 can be combined with libraries of guide RNAs to facilitate
gain- or loss-of-function genetic screening. First, guide RNAs designed to target cod-
ing or noncoding elements of the genome are synthesized and cloned into a Cas9
guide RNA plasmid library. This library is then packaged into lentivirus, which is
transduced into cells of interest. After selecting for cells with Cas9 and then applying
a selective pressure, cells with the desired phenotype are enriched. Sequencing of the
guide RNAs in this enriched cell population identifies candidate loci involved in the
phenotype. Image adapted from Hsu et al. (2014).
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decreased time to ripening (Schindele et al., 2018). Cas-based
approaches have also succeeded in plants that have traditionally
been inaccessible to targeted gene changes, such as woody plants
(Bewg et al., 2018). Methods are also being developed to achieve
transgene-free gene editing in plants that rely on transforming
plants with Cas9-guide RNA RNP complexes to avoid introducing
foreign DNA (Woo et al., 2015; Liang et al., 2017)

Similar to the extension of Cas enzymes for many purposes in
other systems, there is a growing toolbox of CRISPR-based technol-
ogies tailored to plant biology. For example, Cas12a has proven to be
particularly effective in plants (Zaidi et al., 2017). Base editing
approaches have also been applied successfully in a number of
plant species including rice, maze, tomato, and wheat (Shimatani
et al., 2017; Zong et al., 2017; Kang et al., 2018; Li et al., 2018a;
Hua et al., 2019). Cas13a has been used for interference against
RNA viruses in tobacco, providing a new strategy for conferring
immunity (Aman et al., 2018). Together, this toolbox is advancing
basic plant biology studies and holds substantial potential to con-
tribute to global food security without relying on transgenes. To
date, numerous crop strains have been generated through
CRISPR-mediated genome editing, including tomatoes with higher
yield (Soyk et al., 2017), reduced-gluten wheat, virus-resistant
cacao, caffeine-free coffee, and mushrooms that were engineered
to resist browning, which have received USDA approval (https://
www.nature.com/news/gene-edited-crispr-mushroom-escapes-us-
regulation-1·19754).

Advancing human health

The ability to precisely manipulate the genome, and in particular
our ability to edit DNA and RNA, offers enormous potential for
improving human health by offering a platform that can be tai-
lored to any of thousands of genetic disorders (reviewed in
(Cox et al., 2015)). Achieving this potential, however, will require
a suite of highly specific and efficient Cas enzymes and a toolbox
of delivery modalities that can be seamlessly combined to address
the specific challenges of individual diseases. To date, the field has
produced a spectacular diversity of editing tools, some of which
are now entering clinical trials. There are still outstanding chal-
lenges in the development of CRISPR-based therapeutics, how-
ever, notably delivery and potential immunogenicity. Below I
discuss some of the ways CRISPR-based technologies are advanc-
ing human health and highlight areas where additional research is
needed.

Applications for elimination of bacterial and viral pathogens

CRISPR-Cas systems have been applied to improve human health
in a range of ways, including the generation of new antibacterial
agents. Several groups reported that CRISPR-Cas systems could
be packaged in phages and used to selectively treat targeted bac-
teria, generating programmable, sequence-specific antimicrobial
agents (Bikard et al., 2014; Citorik et al., 2014). There have also
been multiple studies that leverage the natural function of
CRISPR-Cas systems to treat viral infections. For example, it
was shown that in a cellular model of HIV, Cas9 could be pro-
grammed to target integrated copies of the HIV virome as well
as prevent HIV infection (Hu et al., 2014). With many viral infec-
tions, the persistence of latent virus in the body represents a
major therapeutic challenge. Using a mouse model of Hepatitis
B virus (HBV) chronic infection, it was demonstrated that Cas9
targeting the genome of HBV can reduce viral load (Ramanan

et al., 2015). Finally, CRISPR-based technologies are being used
to eliminate endogenous retroviruses in pigs to generate animals
that may be suitable sources of organs for transplantation into
human patients (Yang et al., 2015; Niu et al., 2017).

Applications for detection of bacterial and viral pathogens

Another way that CRISPR-Cas systems are advancing human
health is through the development of CRISPR-based diagnostics.
Our discovery of the collateral RNase activity of Cas13 – upon
binding to the target RNA, Cas13a becomes activated as a non-
specific RNase and can cleave the target RNA as well as other
RNA molecules in the vicinity that do not have complementarity
with the guide RNA target sequence – has made possible the
development of a new approach for nucleic acid detection
(Abudayyeh et al., 2016). With programmable target recognition
triggering non-specific collateral cleavage of reporter molecules,
these systems can be used to detect target molecules of interest
at very low levels (Fig. 7). This technology has a range of applica-
tions, notably in the detection and monitoring of infectious dis-
eases in the field, such as Zika and Ebola, and in highly
sensitive genotyping, such as the detection of cancer-associated
alleles in circulating DNA. Moreover, CRISPR diagnostics can
be used in agricultural and industrial settings to ensure food safety
and prevent the spread of contaminating agents.

A number of modalities can be integrated with collateral-
cleavage of reporter RNA to provide diagnostic readout. Using
gel electrophoresis for visualization, diagnostic reporting can be
achieved by assessing cleavage of a fluorescently tagged reporter
RNA by Cas13 upon crRNA-guided recognition of target RNA
(Abudayyeh et al., 2016). Using a fluorimeter for readout, detec-
tion of target nucleic acid triggers Cas13 collateral activity and
unlocks fluorescent reporters such as the commercially available
RNaseAlert by unleashing the fluorophore from its quencher to
yield fluorescence. Direct application of Cas13 collateral RNase
activity with RNaseAlert achieved detection sensitivity in the
picomolar range (∼ 1 000 000 molecules per test) (East-Seletsky
et al., 2016). By integrating Cas13 collateral activity with isother-
mal amplification, we developed a technique called SHERLOCK,
which allowed for significantly increased detection sensitivity to
the attomolar range (Gootenberg et al., 2017), enabling clinical
applications. Finally, using colorimetric paper test strips,
Cas13-based diagnostics can be applied in low-resource settings
or in the field. To achieve this low-cost modality, we developed
a lateral flow paper-based test, similar to a commonly-used preg-
nancy test strip, by exploiting Cas13 collateral activity to cleave
and unlock two-different affinity molecules so that the presence
of the target can be read out as two-stained lines on the paper
strip (Gootenberg et al., 2018). Cas13-based diagnostics tests
can also be lyophilized and easily reconstituted through the addi-
tion of water, which makes it possible for SHERLOCK to be dis-
tributed and stored without requiring refrigeration (Gootenberg
et al., 2017), which is especially important for application in low-
resource settings in the developing world.

CRISPR-based detection technology is rapidly expanding.
Recently, Cas12 was found to have natural ssDNA collateral activ-
ity that is triggered by binding DNA (Chen et al., 2018; Li et al.,
2018b). Cas12 can be similarly combined with isothermal ampli-
fication in a technique called DETECTOR or integrated into the
SHERLOCK platform for multiplex detection (Chen et al., 2018;
Gootenberg et al., 2018; Li et al., 2018b). Different types of Cas
proteins with collateral activity can be combined to achieve
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multiplex detection of multiple pathogens within the same test
(Gootenberg et al., 2018). To further increase the multiplexing
scale, it has been found that distinct Cas13 family members
have unique natural cleavage sequence preferences, enabling mul-
tiplex target detection in separate fluorescent color channels

(Gootenberg et al., 2018). Already, CRISPR-based tests are
being optimized rapidly for a wide range of diagnostics applica-
tions outside the lab (Chen et al., 2018; Myhrvold et al., 2018)
and have the potential to deliver affordable, sensitive, and rapid
detection tools to the most needed areas of the world. Aside
from Cas12 and Cas13, Cas9 has also been used to enrich or
deplete specific sequences (Gu et al., 2016) or to construct syn-
thetic modules for integration with existing diagnostics methodol-
ogies (Pardee et al., 2016). Recently, a CRISPR-CHIP electronic
diagnostic platform was developed which uses dCas9 for rapid,
sensitive detection of targeted DNA sequences (Hajian et al.,
2019).

CRISPR-based therapeutic treatment strategies

CRISPR-based therapies cover a wide range of different treatment
strategies, each with unique considerations. The discussion here is
limited to applications in somatic cells in the body, whose DNA
will not be passed on during reproduction. Applications in
germline cells and embryos, whose DNA will be passed to future
generations, have considerable ethical ramifications, and a com-
munity of scientists has recently called for a moratorium on germ-
line editing for the purposes of implantation (see below) (Lander
et al., 2019). DNA targeting approaches, especially those that
directly change the genome of targeted cells, provide the potential
for one-time treatments with curative results. RNA targeting
approaches, by contrast, do not permanently change the genome,
and provide the potential for transient and reversible treatments.
Together, DNA and RNA targeting approaches comprise a versa-
tile toolbox for the development of a new generation of therapeu-
tic options for improving human health.

Strategies for applying CRISPR-based technologies to treat dis-
eases can be classified into three categories: First, treatment of
monogenic diseases, such as hemophilia, sickle cell disease, and
Duchenne muscular dystrophy, by rescuing a known pathogenic
mutation. Second, treatment of common diseases by introducing
beneficial natural genetic variants that have been identified in the
human population and are thought to provide protective effects.
Examples of this category include treatment of cardiovascular dis-
ease by mimicking the effect of a natural loss-of-function muta-
tion in the gene PCSK9, which has been linked to low levels of
cholesterol (Ran et al., 2015), or mimicking the effect of a natural
loss-of-function mutation in the gene CCR5, which has been
found to confer protection against HIV in those individuals
who are naturally CCR5-null (Mandal et al., 2014). Third, treat-
ment of diseases by introducing novel changes to cell types that
can be harnessed to achieve a therapeutic benefit, a particularly
rich strategy in the immune system. Examples of this category
include engineering of immune cells to increase their tumor-
killing efficiency by knocking out the immune check-point inhib-
itor PD1 or by knocking in a chimeric antigen receptor (Eyquem
et al., 2017).

For each of these three categories, CRISPR-based technologies
can be deployed in several ways, at either the level of DNA or
RNA. Gene inactivation, either through disruption of the open-
reading frame through the generation of indels or through repres-
sion at the genetic, epigenetic or transcriptomic level, is the most
straightforward application and may be useful particularly in the
case of pathogenic gain-of-function mutations. The strategic
placement of indels can also effect exon skipping to eliminate
mutated segments of a protein. For example, Duchenne’s muscu-
lar dystrophy, which can be caused by a number of mutations,

Fig. 7. Disease diagnostics using CRISPR-based detection of nucleic acids. The
SHERLOCK (specific high sensitivity enzymatic reporter UnLOCKing) platform com-
bines isothermal amplification with Cas13-mediated collateral cleavage of a reporter
molecule to detect either DNA or RNA from blood, urine, or saliva. Depending on the
design of the reporter molecule, SHERLOCK can be readout either through gel elec-
trophoresis, fluorescence, or on a lateral flow strip, enabling instrument
free-detection.
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including deletions and frame-shift mutations, can be treated with
NHEJ-based exon skipping strategies, leading to restoration of the
reading frame and a functional gene product (Long et al., 2016;
Nelson et al., 2016; Tabebordbar et al., 2016). In other situations,
gene upregulation using dCas-activation platforms can achieve a
therapeutic effect. This approach is appealing for X-linked dom-
inant diseases, such as Fragile X, where upregulating the silent
wild-type copy of the gene could ameliorate the phenotype;
proof-of-concept experiments have shown that a dCas9-Tet
fusion can erase methylation at the inactivated FMR1 locus, lead-
ing to reactivation (Liu et al., 2018b).

One particularly promising approach to treat a range of
pathologies is base editing at either the DNA or RNA level.
Because base editing does not introduce DSBs, it offers a safer,
less restricted route to correcting pathogenic mutations, the
majority of which are single-nucleotide changes that either dis-
rupt regulatory regions or result in truncated or abnormal protein
variants. Several proof-of-concept studies have been performed in
human cells and in mice demonstrating that base editing can lead
to measurable expression levels of the corrected transcript (Rees
and Liu, 2018). The ability to edit RNA opens additional possibil-
ities for treatment, including transient alterations to the transcrip-
tome. Such transient RNA editing would allow reversible
alteration of protein function, such as editing β-catenin to tempo-
rarily alter cellular signaling pathways to drive cellular regenera-
tion (Bastakoty and Young, 2016).

Although the most technically challenging, HR-mediated
approaches to achieve targeted insertion of the desired-DNA
sequence have the potential to correct the broadest swath of path-
ogenic mutations. Currently, this approach is somewhat limited,
although techniques for increasing the efficiency of gene insertion
either through homologous recombination or independent path-
ways are continuing to be developed (Maruyama et al., 2015;
Paquet et al., 2016; Richardson et al., 2016, 2018; Schmid-Burgk
et al., 2016; Suzuki et al., 2016; Kan et al., 2017; Canny et al.,
2018). Gene insertion strategies may be most usefully deployed
in disorders where a small increase in the corrected genotype is
likely to have an outsized phenotypic impact, as may be the
case when edited cells have a selection or fitness advantage over
non-edited cells.

Any of the above CRISPR-based therapeutic strategies can be
achieved either ex vivo or in vivo (Fig. 8). Ex vivo approaches
offer substantial advantages in terms of safety and efficiency of
editing but are limited to certain cell types that can be manipu-
lated in the lab and subsequently engrafted, such as T cells
(Roth et al., 2018), hematopoietic stem cells (Dever et al., 2016),
and intestinal stem cell-derived organoids (Schwank et al.,
2013). By contrast, in vivo approaches may be applicable to a
wider range of tissues, but the potential for off-targets, particu-
larly if editing at the DNA level, is a safety concern. Currently,
in vivo delivery modes for gene therapies typically rely on AAV
vectors, which have been approved by the U.S. Food and Drug
Administration (FDA). Although promising, AAV vectors have
relatively limited cargo capacity, making it challenging to deliver
SpCas9 and guide RNA effectively. Other Cas9 orthologs (SaCas9,
CjCas9, and NmeCas9) are smaller than SpCas9, making them
better suited for AAV delivery (Ran et al., 2015; Kim et al.,
2017a; Ibraheim et al., 2018). Recently, high levels of AAV inte-
gration into the genome have been reported, which may have
long-term safety implications (Nelson et al., 2019). Another chal-
lenge with AAV or any other type of in vivo delivery modality,
such as lipid nanoparticles (Finn et al., 2018), is achieving cell-

type specificity to ensure that only the pathological tissues are tar-
geted. In vivo applications must also take into account potential
immunogenicity of the therapy, which may be particularly rele-
vant for SpCas9 and SaCas9, as they are derived from pathogenic
bacteria (Charlesworth et al., 2019).

CRISPR in the clinic

Clinical trials to treat patients with CRISPR-based therapies are now
underway to treat a handful of diseases. Currently, there are two sets
of clinical trials entering phase 1 testing. The first set of trials are ex
vivo, using SpCas9 to treat β-thalassemia and sickle cell disease
(Vertex, 2018a, 2018b). The second trial is in vivo, using SaCas9
and delivery by AAV into the retina to treat Type 10 Leber congen-
ital amaurosis (LCA10) (Allergan, 2019), which causes blindness.
Pre-clinical studies have recently been published reporting the use
of SaCas9 to correct a splice-site mutation causing LCA10, showing
that in human retinal explants, humanized mice, and non-human
primates, editing rates exceed the threshold of 10% thought to be
clinically relevant for disease amelioration (Maeder et al., 2019). A
number of additional studies are developing Cas9, Cas12, and
Cas13-based strategies to treat a wide array of diseases including
genetic disorders and cancer, providing new hope for patients cur-
rently lacking treatment options.

Ethical considerations

In November 2018, it emerged that a scientist had reportedly used
Cas9 to edit human embryos, creating at least two-genetically
modified babies. This shocking news highlighted the far-reaching
ethical challenges that CRISPR-based technologies present for
society. Although a number of stakeholders, including ethicists,
scientists, clinicians, and policy makers, have voiced concerns
over the use of CRISPR-based technologies in germline genome
editing (Baltimore et al., 2015), the exact nature of whether clin-
ical uses of germline editing should be permitted remains a con-
tentious topic. To advance discussions around this topic, a group
of specialists, myself included, from seven countries called for a
5-year moratorium for the use of clinical germline editing, argu-
ing that given a combination of scientific, technical, medical, and
moral considerations, society as a whole needs to wait and estab-
lish consensus before proceeding with any form of clinical germ-
line editing (Lander et al., 2019).

Indeed, this is an enormously complicated issue. Clinical
germline editing applications can be divided into two types:
genetic correction and genetic enhancement, as described above.
With increasing knowledge about human genetic variation at
the population level, it is reasonable to expect that the outcome
of converting a rare disease-causing variant to a common variant
that does not lead to disease will be predictable and beneficial. By
contrast, genetic enhancement relies on information about rare
variants in the human population, such as APOE-4 or CCR5
null, which are much less well understood. For example, although
loss of CCR5 appears to prevent HIV infection, it increases sus-
ceptibility to West Nile virus, and the selective pressures on this
allele are not well understood (Telenti, 2009). Introducing such
changes to the genome will likely have unpredictable conse-
quences. Even in the future, when significant advances in our
understanding of biology and human genetic variation become
sufficient to predict the outcome of genome editing for enhance-
ment, whether society as a whole should adopt germline editing
still needs to be vigorously debated. The moral quandaries are
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numerous. For example, allowing genetic enhancement may fur-
ther exacerbate social inequality and reduce the rich and treasured
diversity of the human population.

Ethical considerations surrounding CRISPR-based technolo-
gies extend to other arenas as well. For example, Cas9-based
tools have also accelerated the development of gene drives, ele-
ments in the genome that bias inheritance in their favor, resulting
in non-Mendelian transmission and their rapid spread

throughout a population. Gene drives could potentially be used
to control the spread of certain diseases, such as malaria and
Lyme disease, which are carried by insect vectors, or combat inva-
sive species (Gantz et al., 2015; Hammond et al., 2015). Although
gene drives have not yet been applied in the real world, and sci-
entists are working on improved version of gene drives with better
control and containment strategies (Akbari et al., 2015), the
potentially significant and irreversible environmental and

Fig. 8. CRISPR-based therapies can be used in multiple ways to treat genetic diseases. (a) CRISPR-based therapeutics can be administered either in vivo through
targeted or systemic delivery or ex vivo in cells that have been removed from the body, manipulated in the lab, and then transplanted back into the patient. Image
modified based on Cox et al.(2015). (b) For in vivo use of CRISPR therapeutics, a major challenge is efficient delivery. The most promising delivery vehicle for gene
therapy is the AAV vector, but SpCas9 is too large to be packaged into AAV along with a guide RNA and regulatory sequences. We identified a smaller ortholog of
Cas9, SaCas9, which we developed for in vivo use via AAV delivery. Shown on the left is a schematic of the AAV containing thyroxine-binding globulin promoter
driving SaCas9 and the guide RNA driven by the U6 promoter, separated by the bGHpA terminator and flanked by inverted terminal repeat, which are required
for packaging. Guides were used to target either Pcsk9 or the Rosa26 locus as a control. Shown on the right is the experimental timeline. Images adapted
from Ran et al. (2015). (c) One week after injecting mice with AAV carrying SaCas9 and a guide targeting Pcsk9, we observed complete loss of Psck9 (left) and
a concomitant reduction in serum cholesterol levels (right). SaCas9 is now being developed as the first in vivo genome editing medicine for humans. Images
adapted from Ran et al. (2015).
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ecological consequences of gene drives also demand careful con-
sideration (Lunshof, 2015; Courtier-Orgogozo et al., 2017).

Looking ahead

The accumulation of genomic sequences, which initially powered
the discovery of CRISPR systems, has continued apace (Fig. 9).
The availability of microbial sequences, driven in large part
through developments in metagenomics, is particularly compel-
ling. Until quite recently, our sampling of microbial genomics
was severely taxonomically limited compared to the predicted
diversity of organisms. Even today, roughly 50% of the∼ 200
000 available bacterial genomes encompass just 20 species, leaving
out a vast swath of diversity. Concerted efforts, such as the Earth
Microbiome Project (earthmicrobiome.org), are underway to sys-
tematically sample genomes across microbial taxa to gain a more
comprehensive understanding of prokaryotic natural diversity.

It is clear that we have only begun to scratch the surface of the
full microbial diversity. For example, the discovery of single-
effector RNA targeting systems highlights the diversity within
CRISPR-Cas systems, which themselves are only a sliver of the
microbial defense systems that exist in nature. The continued
search for CRISPR effectors as well as the large diversity of auxiliary
proteins associated with CRISPR loci remain a rich source for explo-
ration and development. Further revealing the sophistication of the
arsenal used in microbial warfare, numerous anti-Cas9 and
anti-Cas12 proteins (Pawluk et al., 2016; Rauch et al., 2017;
Marino et al., 2018; Watters et al., 2018) as well as novel bacterial
anti-phage defense systems (Doron et al., 2018) have recently
been discovered. These findings prefigure yet-to-be-discovered
adaptive immune systems hidden within the immense diversity of
the microbial world. Hints that this may be the case lie in the diver-
sity of immune systems in animals – while most vertebrates have an
antibody-based adaptive immune system, immunity in even the
jawless vertebrates is based on different distinct antibody-like pro-
teins called variable lymphocyte receptors (VLRs) (Han et al.,
2008). The existence of VLRs within a narrow branch of the animal
kingdom suggests that perhaps within similarly narrow phyla of the
microbial diversity there may be unique adaptive immune systems
that operate through distinct mechanisms. Perhaps some bacteria
have evolved protein-based adaptive immune systems that employ
powerful diversification mechanisms to generate diverse proteins
that provide critical survival functions for those microbes in their
native environments. The technological potential of novel adaptive
immune systems is also tantalizing – by virtue of being adaptive,
these systems are naturally reprogrammable for the recognition of
diverse substrates. Harnessing such reprogrammable systems could
likely provide many new biotechnological platforms for the recogni-
tion of proteins, metabolites, or patterns of glycosylation.

Fully understanding and harnessing this natural diversity will
require solving a number of open challenges, both computational
and experimental. For example, further understanding of the
molecular diversity of microbial species will require comprehen-
sive genome sequencing and repeated sampling of diverse envi-
ronments to capture the population dynamics in microbial
communities. How do we deconvolute and assemble metage-
nomic data to obtain more refined genetic sequence and informa-
tion about these organisms? How do we more accurately predict
the function of novel protein sequences? Could protein structure
help predict protein function? Perhaps advances in artificial intel-
ligence may be applied to better infer the function of microbial
proteins. Indeed, one of the key assumptions often used for the

study of bacterial protein sequences is the idea of ‘guilt by associ-
ation’, where genes located within the same neighborhood or
operon are likely related to each other. This functional organiza-
tion by neighborhood may perhaps suggest that there is a certain
syntax or grammar to the organization of bacterial genomes, and
approaches developed for natural language processing and deep
learning may be borrowed to make advances here.

There are also experimental challenges that need to be further
resolved. How can we study microbes at scale without cultivating
them? How do we cultivate those microbes that we cannot cur-
rently culture so that we can study them comprehensively? How
do we further accelerate some of the basic molecular biology tech-
niques, like gene assembly, protein purification and structure
determination? Solutions to some of these problems may arise
through the work itself, much as CRISPR-based technologies
are now being used to manipulate microbial genomes in the
lab, while some may come through the intersection of molecular
biology with other research fields, notably nanoscience and min-
iaturization and parallelization.

Indeed, it often seems that some of the biggest leaps forward in
science are arrived at tangentially, and this should encourage all of
us to probe the literature of unrelated fields for information that
may be applicable in new situations and dare to move our own
research programs not just forward, but also sideways. In
February 2011, through a serendipitous encounter, I learned
about CRISPR, and my imagination was captured by this fascinat-
ing and elegant mechanism of microbial adaptive immunity. This
path has taken me from the development of CRISPR-Cas9 for
genome editing to the exploration of the expansive world of
CRISPR-Cas systems and microbial diversity. It has been particu-
larly exciting to witness how this technology has flourished
through the contributions of so many talented scientists who
share the same spirit of openness and generosity.

This is a time of plenty for curious biologists – we have only
glimpsed a tiny sliver of the diversity of life at the molecular
level, and every few months, new genetic ‘wonders’ are reported:
plankton with shattered chromosomes (Blanc-Mathieu et al.,
2017), lamprey genome rearrangements (Smith et al., 2018),
phage-encoded diversity generating retroelements (Doulatov et al.,
2004; Benler et al., 2018), and marine microorganisms that use
novel DNA repair systems (Deng et al., 2018). Each natural system
tempts us to explore new paths, determining the mechanism and
function behind these systems, and opening new opportunities to
tinker, ultimately leading to a healthier and more sustainable future.

Fig. 9. The rapidly expanding database of microbial sequences holds many hidden
treasures. Exploration of the natural bacterial and archaeal diversity will undoubtedly
reveal new molecular systems that can provide the substrate for the development of
new technologies. Data obtained from NCBI.
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