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Statistical piano reduction controlling
performance difficulty
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We present a statistical-modeling method for piano reduction, i.e. converting an ensemble score into piano scores, that can con-
trol performance difficulty. While previous studies have focused on describing the condition for playable piano scores, it depends
on player’s skill and can change continuously with the tempo. We thus computationally quantify performance difficulty as well
as musical fidelity to the original score, and formulate the problem as optimization of musical fidelity under constraints on dif-
ficulty values. First, performance difficulty measures are developed by means of probabilistic generative models for piano scores
and the relation to the rate of performance errors is studied. Second, to describe musical fidelity, we construct a probabilistic
model integrating a prior piano-score model and a model representing how ensemble scores are likely to be edited. An iterative
optimization algorithm for piano reduction is developed based on statistical inference of the model. We confirm the effect of the
iterative procedure; we find that subjective difficulty and musical fidelity monotonically increase with controlled difficulty val-
ues; and we show that incorporating sequential dependence of pitches and fingering motion in the piano-score model improves
the quality of reduction scores in high-difficulty cases.
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I . I NTRODUCT ION

Music arrangement involving a change of instrumentation
(e.g. arrangement for piano, guitar, etc.) is an important
process of music creation to increase the variety of music
performances. Arranging a musical piece to change dif-
ficulty, for example, to make it playable for beginners, is
also widely practiced. To automate these processes, systems
for piano arrangement [1–5], guitar arrangement [6–8], and
orchestration [9, 10] have been studied. This study aims at
a system for piano reduction, i.e. converting an ensemble
score (e.g. orchestral and band scores) into a piano score
that can control performance difficulty and retain as much
musical fidelity to the original score as possible (Fig. 1).
To computationally judge whether a musical score is

playable, previous studies have developed conditions on the
pitch and rhythmic content. For piano scores, conditions
such as “there can be at most five simultaneous notes for
each hand” and “simultaneous pitch spans for each hand
must be<14 semitones (or so)” have been considered [2, 3].
However, these conditions cannot be thought of as neces-
sary nor sufficient conditions for playable scores because in
reality there can be a piano score with chords with more
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than five notes and/or spanning a large pitch interval that
are conventionally played as broken chords, and even scores
without chords (melodies) can be unplayable in fast tem-
pos. In fact, it is difficult to find a complete description of
playable scores that is valid in every situation because the
condition depends on player’s skill and can change contin-
uously with the tempo. A possible solution is to quantify
performance difficulty and use it as an indicator of playable
scores in each situation of skill level, tempo, etc. [11, 12].
As there is generally a trade-off between performance

difficulty and musical fidelity to the original score, it is
necessary to quantify musical fidelity and develop an opti-
mization method. Music arrangers remove notes and shift
pitches in an ensemble score for the piano reduction score
to match a target difficulty level [2, 4]. From a statistical
point of view, one can assign probabilities for these edit
operations and use them to quantify musical fidelity. Fol-
lowing the analogy with statistical machine translation [13],
if one can construct a model for the probability P (R|E )

of a reduction score R given an ensemble score E , the
piano reduction problem can be formulated as optimization
of P (R|E ) under constraints on difficulty values. A simi-
lar approach without controls of performance difficulty has
been studied for guitar arrangement [7, 8].
To realize this idea, a statistical-modeling approach for

piano reduction that can control performance difficulty has
been proposed in a recent conference paper [4]. Follow-
ing the thought that fingering motion is closely related to
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Fig. 1. Overview of the proposed system for piano reduction that can control performance difficulty.

the cost or difficulty of performance [14–16], quantitative
measures of performance difficulty were developed based
on a probabilistic generativemodel of piano scores incorpo-
rating fingering motion [17, 18]. To estimate the probability
P (R|E ), a hidden Markov model (HMM) integrating the
piano-score model and a model representing how ensem-
ble scores are likely to be edited was constructed. A piano
reduction algorithm was developed based on the Viterbi
algorithm.While the potential of themethod was suggested
by the results of piano reduction for one example piece, for-
mal evaluations, and comparisons with other approaches
were left for future work. There was also a problem of the
optimization method that the upper bound constraints on
difficulty values were often not properly satisfied, due to the
limitation of the Viterbi algorithm.
In this study, we extend the work of [4] and propose

an improved piano reduction method using iterative opti-
mization. We also carry out systematic evaluations on the
difficulty measure and the piano reduction method. In par-
ticular, we evaluate difficulty measures in terms of their
ability of predicting performance errors, which is to our
knowledge the first attempt in the literature to objectively
evaluating performance difficulty measures. Piano reduc-
tion methods are evaluated both objectively and subjec-
tively: an objective evaluation is conducted to examine the
effect of the iterative optimization strategy; an subjective
evaluation is conducted to assess the quality of the generated
reduction scores. The main results are:

• The proposed difficulty measures can be used as indica-
tors of performance errors and measures incorporating
the sequential nature of piano scores can better predict
performance errors.

• The proposed iterative optimization method yields better
controls of difficulty than the method in [4].

• Both subjective difficulty andmusical fidelity of generated
reduction scores monotonically increase with controlled
difficulty values.

• By comparing methods based on different models, it
is shown that incorporating sequential dependence of
pitches and fingering motion in the piano-score model
improves musical naturalness and the rate of unplayable
notes of reduction scores in high-difficulty cases.

The following are limitations of the current system:

• Melodic and bass notes are manually indicated.
• Score typesetting, especially estimation of voices within
each hand part, is currently done manually.

Automating these processes is an undeniable direction for
future work. See Section IV.D for discussions.
The rest of the paper is organized as follows. In the next

section, we discuss generative piano-score models and per-
formance difficulty measures. In Section III, we present our
method for piano reduction. In Section IV, we present and
discuss results of evaluation of the piano reductionmethod.
We conclude the paper in the last section.

I I . QUANT ITAT IVE MEASURES OF
PERFORMANCE D IFF ICULTY

We formulate quantitative performance difficulty measures
based on probabilistic generative models of piano scores.
A generative model incorporating piano fingering and sim-
pler models are described in Section II.A and performance
difficulty measures are discussed in Section II.B.
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A) Generative models for piano scores
1) Models for one hand
Let us first discuss models for one hand. A piano score is
represented as a sequence of pitches p1:N = (pn)

N
n=1 and

corresponding onset times t1:N = (tn)N
n=1 (N is the num-

ber of musical notes). A generative model for piano scores
(piano-score model) is here defined as a model that yields
the probability P (p1:N).
Simple piano-score models can be constructed based

on the Markov model. The probability P (p1:N) is factor-
ized into an initial probability P (p1) and the transition
probabilities P (pn|pn−1) as

P (p1:N) = P (p1)

N∏
n=2

P (pn|pn−1). (1)

The simplest model is obtained by assuming that the ini-
tial and transition probabilities obey a uniform distribution
over pitches. Writing Np = 88 for the number of possible
pitches, the model yields P (p1:N) = (1/Np)

N . Since this
model yields the same probability for any piano score of the
same length, it is here called a no-information model.
A more realistic model can be build by incorporating

sequential dependence of pitches. For example, a statistical
tendency called pitch proximity, that successive pitches tend
to be close to each other, can be incorporated in initial and
transition probabilities described with Gaussians:

P (p1 = p) ∝ Gauss (p; p0, σ
2
p) + ε, (2)

P (pn = p | pn−1 = p′) ∝ Gauss (p; p′, σ 2
p) + ε. (3)

Here,Gauss ( · ; μ, σ 2)denotes aGaussian distributionwith
mean μ and standard deviation σ , p0 is a reference pitch to
define the initial probability, and ε is a small positive con-
stant for smoothing the probability for pitch transitionswith
a large leap. We call this model a Gaussian model.
Although the Gaussian model can capture the tendency

of pitch proximity, the simplification can lead to unrealis-
tic consequences. First, pitch transitions involving 10 or 11
semitones have higher probabilities than octave motions,
which opposes the reality [18]. Second, since themodel does
not distinguish white keys and black keys, it yields the same
probability for piano scores transposed to any keys, which
opposes the fact that “simpler keys” involving less black keys
are more frequently used. In general, the difficulty or nat-
uralness of a piano score changes when it is transposed
to another key since the geometry of the piano keyboard
requires different fingering motions [11]. To solve this, it
is necessary to construct a model that describes fingering
motions in addition to pitch transitions.
A model (called fingering model) incorporating finger-

ing motions and the geometry of the piano keyboard has
been proposed in [18]. The model is based on HMM, which
has been first applied to the piano fingering model in [17].
In general, we can introduce a stochastic variable fn rep-
resenting a finger used to play the nth note. The vari-
able fn takes one of the following five values: 1 = thumb,

2 = index finger, . . . , 5 = little finger.1 According to the
model (Fig. 2), a fingering motion f1:N = ( fn)

N
n=1 is first

generated by an initial probability P ( f1) and transition
probabilities P ( fn| fn−1). Next, a pitch sequence p1:N is gen-
erated conditionally on f1:N : the first pitch is generated
by P (p1| f1) and the succeeding pitches are generated by
P (pn|pn−1, fn−1, fn), which describes the probability that
a pitch would appear following the previous pitch and the
previous and current fingers. Thus, the joint probability of
pitches and fingering motion P (p1:N , f1:N) is given as

P ( f1)P (p1| f1)

N∏
n=2

P ( fn| fn−1)P (pn|pn−1, fn−1, fn).

In general, the parameters of the fingering model can be
learned frommusic data with pitches and annotated finger-
ings. For want of a sufficient amount of data, the probability
P (pn|pn−1, fn−1, fn), which have 882 · 52 parameters, can-
not be trained effectively in a direct way. We thus introduce
simplifying assumptions to reduce the number of param-
eters. First, we assume that the probability depends on
pitches through their geometrical positions on the keyboard
(Fig. 2). The coordinate on the keyboard of a pitch p is rep-
resented as �(p) = (�x(p), �y(p)). We also assume trans-
lational symmetry in the x-direction and time-inversion
symmetry, which is expressed as

P (pn = p | pn−1 = p′, fn−1 = f ′, fn = f )

= F (�x(p) − �x(p′), �y(p) − �y(p′); f ′, f )

= F (�x(p′) − �x(p), �y(p′) − �y(p); f , f ′). (4)

We also assume reflection symmetry between left and right
hands. The above model can be extended to including
chords, by sequencing the contained notes from low pitch to
high pitch [16]. With the fingering model, one can estimate
the fingering f1:N from a given sequence of pitches p1:N by
calculating themaximumof the probability P ( f1:N |p1:N) ∝
P (p1:N , f1:N). This maximization can be computed by the
Viterbi algorithm [19].

2) Models for both hands
A piano-score model with the left- and right-hand parts
can be obtained by first constructing a model for each hand
part and then combining the two models. If musical notes
are already assigned to two hand parts, such a combined
model can be obtained directly. On the other hand, if the
part assignment is not given, as in the piano reduction prob-
lem, themodel should be able to describe the probability for
all cases of part assignment.
Such a model for piano music with unknown hand parts

can be constructed based on the merged-output HMM [18,
20]. The idea is to combine outputs from two component
Markov models or HMMs, respectively, describing the two
hand parts. We here describe a model combining two fin-
gering models. First, the hand part (left or right) associated

1In this study, we do not consider the possibility of finger substitutions
where two or more fingers are assigned to a note.
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Fig. 2. Piano-score model incorporating fingering motion.

with a note pn is represented by an additional stochas-
tic variable ηn ∈ {L , R}. The generative process of ηn is
described with a Bernoulli distribution: P (ηn = η) = αη

with αL + αR = 1. If ηn is determined, then the pitch is
generated by the corresponding component model. For
each η ∈ {L , R}, let aη

f ′ f = P η( f | f ′) and bη

f ′ f (p′, p) =
F η(�(p) − �(p′); f ′, f ) denote the fingering and pitch
transition probabilities of the component model. This pro-
cess can be described as anHMMwith a state space indexed
by k = (η, f L , pL , f R , pR) with the following initial and
transition probabilities:

P (kn = k | kn−1 = k′)

=
{

αL aL
f ′L f L bL

f ′L f L (p′L , pL )δ f ′R f R δp′R pR , η = L ;

αRaR
f ′R f R bR

f ′R f R (p′R , pR)δ f ′L f L δp′L pL , η = R,

P (pn = p | kn = k) = δppη , (5)

where δ denotes Kronecker’s delta.
Using this model, one can estimate the sequence of

latent variables k1:N from a pitch sequence p1:N . This can
be done by maximizing the probability P (k1:N | p1:N) ∝
P (k1:N , p1:N). The most probable sequence k̂1:N has the
information of the optimal configuration of hands η̂1:N ,
which yields separated two hand parts and the optimal fin-
gering for both hands ( f̂ L

1:N and f̂ R
1:N). For more details, see

[18]. The Gaussian model and the no-information model
can be similarly extended to models for both hands.

B) Performance difficulty
1) Difficulty measures
One can define a quantitative measure of performance dif-
ficulty based on the cost of music performance. From the
statistical viewpoint, a natural choice is the probabilistic
cost, which is the negative logarithm of a probability. To
include the dependence on tempo, we define a performance
difficulty as the time rate of the probabilistic cost

D(t) = −ln P ( p(t))/�t. (6)

Here, �t is a time width, p(t) is the sequence of pitches
in the time range [t − �t/2, t + �t/2], and P ( p(t)) is
defined with one of the piano-score models in Section II.A.
With the fingering model, one can use the joint prob-
ability of pitches and fingering to define a difficulty
measure [18]:

D(t) = −ln P ( p(t), f (t))/�t, (7)

where f (t) denotes the fingering corresponding to the
pitches p(t). If the fingering is unknown, one can
substitute the maximum-probability estimate f̂ (t) in
equation (7). For each note n with onset time tn, we write
D(n) = D(tn).
The difficulty measure can be defined for each hand part

using the pitches in that hand part and a piano-score model
for one hand, which is denoted by DL (t) or DR(t). In addi-
tion, the total difficulty can be defined as the sum of difficul-
ties for both hands: DB (t) = DL (t) + DR(t). The quantity
DB (t) can be relevant as well as DL (t) and DR(t) since the
difficulty can be high even if difficulties for individual hand
parts are not so high.
In previous studies [11, 12], features such as playing speed,

note density, pitch entropy, hand displacement rate, hand
stretch, and fingering complexity have been considered to
estimate the difficulty level of piano scores. These features
are incorporated in the above difficulty measures, although
in an implicit manner. If one uses the no-information
model, the difficulty measure takes into account the note
density and playing speed. With the Gaussian model, pitch
entropy and hand displacement rate, and hand stretch are
incorporated in addition. With the fingering model, finger-
ing complexity is further incorporated.

2) Evaluation
To formally examine how the proposed measures reflect
real performance difficulty, we study their relation with the
rate of performance errors. We use a dataset [21] consist-
ing of 90 MIDI piano performance signals of 30 classical
musical pieces; for each piece, there are performances by
three different players that are recorded in international
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Fig. 3. Relations between the difficulty value DB and the number of perfor-
mance errors. Points and bars indicate means and standard deviations. Arrows
indicate onsets of performance errors (see text).

piano competitions. In the dataset, musical notes in a per-
formance signal are matched to notes in the corresponding
score and the following three types of performance errors
are manually annotated: pitch error (a performed note with
a corresponding note in the score but with a different pitch);
extra note (a performed note without a corresponding note
in the score); and missing note (a note in the score without
a corresponding note in the performance). Timing errors
are not annotated in the data and not considered in this
study.
We calculate performance difficulty values for each onset

time and calculate the number of performance errors in the
time range of width �t around the onset time. In the fol-
lowing, we set �t to be 1 s. For the Gaussian model, ε =
4 × 10−4 and p0 is C3 (C5) for the left (right) hand. Other
parameters of the Gaussian and fingering models are taken
fromaprevious study [18]where a different datasetwas used
for training.
Figure 3 shows the relation between difficulty value DB

and the rate of performance errors for the three models. We
see that for each model there is an onset (roughly, 10 for
the no-information model, 30 for the Gaussian model, and
40 for the fingering model) below which the average num-
ber of errors is almost zero and above which it gradually
increases. This suggests that the difficulty measures can be
used as indicators of performance errors.
For comparative evaluation, we predict performance

errors by thresholding the difficulty values and measure
the predictive accuracy for the three models. Using three
thresholds Dth

L , Dth
R , and Dth

B , a prediction of performance
errors at time t is defined positive if one of three con-
ditions (Dth

L > DL (t), Dth
R > DR(t), and Dth

B > DB (t)) is
satisfied. We calculate the number of true positives NT P ,
that of false positives NF P , and that of true negatives
NT N , and the following quantities are used as evaluation
measures:

P = NT P

NT P + NF P
, R = NT P

NT P + NT N
, F = 2PR

P + R .

Table 1. Accuracies of performance error prediction.

Threshold
Model (Dth

R , Dth
L , Dth

B ) F P R Fw Pw Rw

No-information (9, 10, 14) 52.4 43.0 67.1 69.8 63.0 78.1
Gaussian (30, 30, 42) 54.2 46.3 65.2 71.3 66.4 77.0
Fingering (41, 39, 53) 53.9 49.1 59.8 70.6 69.3 73.8

Since more frequent errors indicate larger difficulty, we can
also define the following weighted quantities:

Pw = N ′
T P

N ′
T P + NF P

, Rw = N ′
T P

N ′
T P + N ′

T N

, (8)

Fw = 2PwRw

Pw + Rw

, (9)

where N ′
T P and N ′

T N are obtained by weighting NT P and
NT N with the number of performance errors. The results
are shown in Table 1 where the thresholds are optimized
with respect to Fw for each model. We see that the Gaus-
sian model has the highest F measures, even though the
differences are rather small. A possible reason is the rela-
tively small size of the data used for training the fingering
model. Since the Gaussian model has only one parame-
ter σp to train, it has better generalization ability for such
small training data. Such a trade-off between model com-
plexity and the required amount of training data is common
in many machine-learning problems. We thus use the dif-
ficulty measures defined with the Gaussian model in the
following.

I I I . P IANO REDUCT ION METHOD

In the statistical formulation of piano reduction, we try to
find the optimal reduction score R̂ thatmaximizes the prob-
ability P (R|E ) for a given ensemble score E . In analogy
with the statistical approach formachine translation [13], we
first construct generative models describing the probability
P (R) and P (E |R), respectively, and integrate them for cal-
culating P (R, E ) ∝ P (R|E ). We then derive optimization
algorithms for piano reduction that take into account the
constraints on performance difficulty values.
Prior to the main processing step, we convert an input

ensemble score to a condensed score by removing redun-
dant notes with the same pitch and simultaneous onset time
(the number of such redundant notes is memorized and
used later in the calculation of equation (13)). Although
they are different strictly, we call such a condensed score an
ensemble score in what follows. What is really meant by the
symbol E is also a condensed score.

A) Model for piano reduction
To construct a generative model that yields the probabil-
ity P (R, E ), we integrate a piano-score model describing
the probability P (R) and an edit model that describes the
process yielding P (E |R). As a piano-score model, we can
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use either the Gaussian model or the fingering model dis-
cussed in Section II.A.2, which statistically describes the
naturalness of a generated (reduction) score.
For the edit model, we assign probabilities for edit opera-

tions applied tomusical notes. As in [4], we focus on the two
most common edit operations, note deletion, and octave
pitch shift. As wemodel the inverse process of generating an
ensemble score from a piano score, we introduce probabili-
ties of note addition and octave pitch shift in the edit model.
For each note in the ensemble score, the probability that it
is an added note and not originated from the piano score is
denoted by βNP (“NP” for not played). In this case, the note’s
pitch p is drawn froma uniformdistribution cuni f (p). If it is
originated from the piano score and the corresponding note
has a pitch q , the probability of the note’s pitch p denoted
by cq (p) = P (p|q) is supposed to obey

cq (p) =
{

1 − 2γoct , p = q ;

γoct , p = q ± 12,
(10)

where γoct denotes the probability of an octave shift.
We can integrate the fingering model in Section II.A.2

and the edit model in the following fashion based on the
merged-output HMM (Fig. 4), which leads to tractable
inference algorithms. For each note in the output ensem-
ble score, indexed by m, we introduce a stochastic variable
ξm that can take one of three values {N P , L , R}. It is gener-
ated from a discrete distribution as P (ξm = ξ) = βξ , where
parametersβξ obeyβN P + βL + βR = 1. If ξm = N P , then
its pitch pm has a probability P (pm = p) = cuni f (p). If
ξm = L or R, then its pitch is generated from the compo-
nent fingering model of the corresponding hand part and
may undergo an octave shift. Writing f L , pL , f R , and pR

for the finger and pitch variables of the two component fin-
gering models, the latent state of the merged-output HMM
is described by a set of variables r = (ξ , f L , pL , f R , pR).
The transition and output probabilities are defined as

P (rm = r | rm−1 = r ′)

=

⎧⎪⎨⎪⎩
βN P δ f L f ′L δ f R f ′R δpL p′L δpR p′R , ξ = N P ;

βL aL
f ′L f L bL

f ′L f L (p′L , pL )δ f R f ′R δpR p′R , ξ = L ;

βRaR
f ′R f R bR

f ′R f R (p′R , pR)δ f L f ′L δpL p′L , ξ = R,

P (pm = p | rm = r ) =

⎧⎪⎨⎪⎩
cuni f (p), ξ = N P ;

c pL (p), ξ = L ;

c pR (p), ξ = R.

(11)

The model indeed generates a piano score specified by
(pL

m, pR
m)m and an ensemble score specified by (pm)m.

Fig. 4. Generative process of the model for piano reduction.

In the process of piano reduction, which is explained in
the next section, the parameter βN P represents how much
notes in the ensemble score are removed. Thus, properly
adjusting βN P is crucial to control the performance dif-
ficulty of resulting reduction scores. Roughly speaking, if
the note density around a note is high, it is necessary to
remove more notes around that note by setting βN P large.
In addition, some notes like melodic notes and bass notes
are musically more important than others and should have
a small probability of deletion, or small βN P in the present
model. These conditions can be realized in the following
form of βN P (m), which depends on each notem:

βN P (m) = (
1 − ζ(m)

)
e−κh(m), (12)

where h(m) ≥ 0 represents the musical importance of note
n, κ > 0 is a coefficient to control the effect of h(m), and
ζ(m) ∈ [0, 1] is a factor to control the overall rate of note
deletion. If ζ(m) � 1, βN P (m) � 0 and almost all notes
remain in the reduction score. If ζ(m) � 0, βN P (m) � 1
unless κh(m) is large (i.e. note m is musically important),
so most musically unimportant notes will be removed.
In addition to the importance of melodic and bass notes,

it is not difficult to imagine that pitches in an ensemble score
that are played simultaneously by multiple instruments are
musically important. Thus, the following form is used for
defining musical importance h(m):

h(m) = I(m ∈ M) + I(m ∈ B) + a Mult(m), (13)

where I(C) = 1 if a condition C is true and 0 otherwise,M
denotes the set of melodic notes, B denotes the set of bass
notes, and Mult(m) is the multiplicity of note m, defined
as the number of notes in the ensemble score having the
same pitch and onset time as notem excludingm itself. The
parameters κ and a are adjustable parameters, and ζ(m) is
adjusted according to target difficulty values as explained in
the next section.

B) Algorithms for piano reduction
Let us derive algorithms for piano reduction based on
the model in Section III.A and the difficulty measures in
Section II.B. The piano reduction problem is here for-
mulated as finding a reduction score R that maximizes
P (R|E ) for a given ensemble score E with constraints on
R’s performance difficulty values. Specifically, we impose
the following constraints for each note n in R:

[DL (n) < D̃L ] ∧ [DR(n) < D̃R] ∧ [DB (n) < D̃B ],
(14)

where D̃L , D̃R , and D̃B are some target difficulty values.
Without the constraints (14), finding the maximum of

P (R|E ) is a basic inference problem for HMMs and can be
achieved with the Viterbi algorithm [19]. However, the con-
straints (14) cannot be easily treated because difficulty val-
ues at each note depends on the existence of other notes in
the time range of�t, which violates theMarkovian assump-
tion for the Viterbi algorithm. In other words, if we know
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appropriate values of ζ(m) in equation (12) for control-
ling difficulty values, the optimization problem is directly
solvable, but finding those values is not easy.
In the following, we present two strategies for optimiza-

tion. In a previous study [4], appropriate values of ζ(m)

were estimated and the Viterbi algorithm was applied once
to obtain the result. A slight extension of this one-time opti-
mization method is presented in Section III.B.1. On the
other hand, if one can apply theViterbi algorithm iteratively,
it would be possible to find appropriate values of ζ(m) from
tentative results, by starting from ζ(m) = 1 and gradually
lessening it. This iterative optimizationmethod is developed
in Section III.B.2.

1) One-time optimization algorithm
In [4], appropriate values of ζ(m)were estimated bymatch-
ing the expected difficulty values to the target values with
the following equation:

ζ(m) = min

{
D̃L

DL (m)
,

D̃R

DR(m)

}
, (15)

where DL (m), etc., represent the difficulty values calculated
for the ensemble score at its mth note. One can include a
factor involving DB (m) in the above equation in general.
We can generalize this method by introducing a scaling

factor ρ and modifying equation (15) to

ζ(m) = ρ min

{
D̃L

DL (m)
,

D̃R

DR(m)

}
. (16)

By choosing the value of ρ, one can control the expected
average of resulting difficulty values. For example, one can
use a maximum value of ρ that can satisfy the constraints
(14) for most outcomes.

2) Iterative optimization algorithm
For iterative optimization, the Viterbi algorithm is applied
in each iteration to obtain a tentative reduction score R(i),
with tentative values of ζ (i)(m) (i is an index for iterations).
For each note n in R(i), we calculate the difficulty values
D(i)

L (n), D(i)
R (n), and D(i)

B (n). If the constraints (14) are not
all satisfied at note n, then we lessen the values of ζ(m) for
all notesm in the ensemble score around n within the time
range of width�t as

ζ (i+1)(m) = λζ (i)(m) (17)

with some constant 0 < λ < 1.
The iterative algorithm is initialized with ζ (i=1)(m) = 1

for all notes m. The algorithm ends when the constraints
(14) are satisfied at every note in the reduction score, or the
number of iterations exceed somepredefined value imax . For
efficient and stable computation, the Viterbi algorithm at
iteration i + 1 is applied only to those regions of the ensem-
ble score where the constraints (14) are not still satisfied at
iteration i . Specifically, we first construct a set of notesm in
the ensemble score whose onset time tm is included in the
range [tn − �t/2, tn + �t/2] around some onset time tn in

the reduction score for which the difficulty constraints are
not satisfied. This set is then split into a set � of isolated
regions of notes. For each such isolated region, the Viterbi
algorithm is applied with fixed boundary states at one note
before the beginning of the region and one note after the
end.
The iterative algorithm is summarized as follows.

(i) Initialize ζ (i=1)(m) = 1 and apply theViterbi algorithm
to the whole ensemble score.

(ii) Calculate difficulty values and obtain regions � where
the constraints (14) are not satisfied. Exit if � is empty
or i ≥ imax .

(iii) Update the control factor ζ(m) as in equation (17)
and apply the Viterbi algorithm to each region of � .
Increment i and go back to step (ii).

I V . EVALUAT ION OF P IANO
REDUCT ION ALGOR ITHMS

A) Setup
To evaluate the piano reduction algorithms, we prepared
a dataset of orchestral pieces of Western classical music.
The dataset consists of 10 pieces by different composers
and with different instrumentations; each piece has a length
of around 20 bars. The list of the pieces is available in the
accompanying webpage.2
We compare one-time optimization algorithms and iter-

ative optimization algorithms based on the Gaussian model
and the fingering model; in total, we have four methods
labeled as One-time Gaussian, One-time Fingering, Iterated
Gaussian, and Iterated Fingering methods. The parame-
ters of the piano-score models are set as in Section II.B.2.
The other parameters are set as follows: a = 0.01, κ =
11, λ = 0.85, γoct = 0.001, and βR(m) = βL (m) = (1 −
βN P (m))/2 where βN P (m) is set as in equation (12). Diffi-
culty values are calculatedwith the difficultymeasures using
the Gaussian model with�t = 1 s . These parameter values
were fixed after some trials by one of the authors and there
is room for further optimization.
As a baselinemethod,we also implement amethod based

on a simple piano-score model (called the distance model)
that takes into account the distance between each note in the
ensemble score and its closest melodic or bass note, but not
sequential dependence of pitches. Specifically, for each note
m in the ensemble score, the closest melodic or bass notes
C MB(m) is obtained by first searching in the direction of
onset time and then in the direction of pitches. Then the
probability of its pitch pm is given as

P (pm) ∝ Gauss (pm; C MB(m), σ 2
p). (18)

Integrating this piano-scoremodel into the piano reduction
model in Section III.A and using the iterative optimization
algorithm, a baseline Iterated Distancemethod is obtained.

2http://pianoarrangement.github.io/demo.html
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B) Quantitative evaluation of difficulty
control
Wefirst examine the effect of the iterative optimization algo-
rithms in controlling the difficulty values of output reduc-
tion scores, in comparison with the one-time optimization
algorithms. We run the four algorithms, One-time Gaus-
sian, One-time Fingering, Iterated Gaussian, and Iterated
Fingering, for the test dataset with three sets of target dif-
ficulty values (D̃L , D̃R , D̃B ) = (15, 15, 30), (30, 30, 40), and
(40, 40, 50). For the scaling factor ρ for the one-time opti-
mization algorithms, we test values in {0.1, 0.2, . . . , 1.0}. For
the iterative optimization algorithms, imax is set to 50. To
evaluate a reduction score R, we compute difficulty values
(DL (n) etc.) for each note n in R and calculate the following
measures:

• Mean difficulty values {DL , DR , DB }:

DL = 1

#R

∑
n∈R

DL (n) etc . (19)

• Maximum difficulty values {Dmax
L , Dmax

R , Dmax
B }:

Dmax
L = max

n∈R
{DL (n)} etc . (20)

• Out-of-range rate (proportion of regions where difficulty
values exceed target values) {AL

out , AR
out , AB

out}:

AL
out = #

{
n ∈ R

∣∣DL (n) > D̃L
}

#R
etc . (21)

• Additional-note rate (proportion of notes in the reduction
score other than melodic and bass notes) Aadd :

Aadd = #R − #M − #B
#M + #B . (22)

Variations of difficulty values of the reduction scores by
the One-time Gaussian method are shown in Fig. 5, with
corresponding values for the Iterated Gaussian method.
Here, for simplicity, only difficulty values for both hands

Fig. 5. Difficulty metrics for the One-time Gaussianmethod for varying ρ, for
three cases of target difficulty values (D̃L , D̃R , D̃B ) indicated in the insets. Dif-
ficulty values are those for both hands (DB , Dmax

B , etc.) and horizontal lines
indicate corresponding values for the Iterated Gaussianmethod.

(DB , Dmax
B , etc.) are shown. It is observed that for those

values of ρ where AB
out is equivalent to that for the iterative

optimization method, DB and Dmax
B are smaller compared

with the iterative optimization method. This means that
with the same level of satisfaction for the difficulty con-
straints, results of the iterative optimization method have
larger difficulty values on the average, which is a desired
property. On the other hand, if ρ is increased sufficiently,
it is possible for the one-time optimization algorithm to
achieve the same level of DB as the iterative optimization
method, but then AB

out is larger, meaning that the difficulty
constraints are less strictly satisfied. Analyses of difficulty
values for each hand and comparison between One-time
Fingering and Iterated Fingering methods reveal similar
tendencies.
The results for all three kinds of difficulty values (for each

of two hands and for both hands) are shown inTable 2.Here,
for one-time optimization methods, results are shown for
the smallest value of ρ such that all three out-of-range rates
exceed those for the corresponding iterative optimization
methods. In addition to the same tendencies as found in
the above analysis, one can observe that for the same level
of satisfaction of difficulty constraints, the iterative opti-
mization methods yield larger additional-note rates than
the corresponding one-time optimization methods. These
results indicate that the iterative optimization methods are
more appropriate for controlling difficulty values.
Even for iterative optimization algorithms, the out-of-

range rates can be non-zero, especially for small target diffi-
culty values. One reason for this is that for some pieces the
minimal reduction score with only melodic and bass notes
has difficulty values larger than the target values. Another
reason is the greedy-like nature of the iterative optimiza-
tion algorithms: when some regions of the reduction score
is fixed and used as boundary conditions for updates, the
Viterbi search sometimes cannot reduce notes even for
smaller values of ζ(m). Comparing iterative optimization
methods in cases of target difficulty values (30, 30, 40) and
(40, 40, 50), we find that while the Iterated Gaussianmethod
has the largest additional-note rate, it has the least values
for most difficulty evaluation measures. If the additional-
note rate increases with the fidelity to the original ensem-
ble score, this indicates the Iterated Gaussian method has
the ability to efficiently increase the fidelity while retaining
low difficulty values. This is probably because the Gaussian
model is used for calculating difficulty measures.

C) Subjective evaluation
We conduct a subjective evaluation experiment to evaluate
the quality of reduction scores by the proposed algorithms.3
In particular, we examine howmuch of the additional notes
(notes other than melodic and bass notes) are actually
playable and how the musical quality such as fidelity and
difficulty changes with varying target difficulty values. For

3Readers who wish to have access to the raw experimental data and
source code should contact the authors.
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Table 2. Comparison of average values of difficulty metrics for reduction scores. Triplet values in parentheses indicate one for left-hand part,
right-hand part, and both hand parts, from left to right.

Algorithm Target difficulty Mean difficulty Max. difficulty Out-of-range rate () Aout ()

One-time Gaussian (15, 15, 30) (10.0, 5.4, 15.4) (22.5, 14.6, 30.5) (18.6, 7.3, 2.3) 7.1
Iterated Gaussian (15, 15, 30) (11.0, 6.1, 17.0) (22.3, 15.5, 31.8) (18.2, 7.2, 2.2) 20.3
One-time fingering (15, 15, 30) (12.9, 9.1, 22.0) (30.7, 27.8, 50.5) (30.0, 18.0, 20.9) 30.9
Iterated fingering (15, 15, 30) (12.7, 8.4, 21.1) (29.0, 23.9, 46.5) (27.5, 15.7, 14.9) 31.7
Iterated distance (15, 15, 30) (11.9, 6.1, 18.0) (28.0, 15.7, 37.3) (23.4, 7.4, 5.2) 21.8

One-time Gaussian (30, 30, 40) (10.4, 5.5, 15.9) (23.2, 15.4, 30.7) (0.7, 0, 0.6) 11.4
Iterated Gaussian (30, 30, 40) (16.2, 8.3, 24.5) (30.0, 21.2, 39.8) (0.4, 0, 0.6) 62.3
One-time fingering (30, 30, 40) (13.2, 9.4, 22.7) (31.8, 28.6, 51.2) (6.5, 5.8, 11.6) 33.4
Iterated fingering (30, 30, 40) (16.3, 10.6, 26.9) (34.3, 28.6, 50.9) (3.6, 3.0, 6.3) 60.1
Iterated distance (30, 30, 40) (17.8, 8.3, 26.0) (35.9, 21.7, 44.8) (2.4, 0, 2.3) 61.9

One-time Gaussian (40, 40, 50) (13.4, 7.0, 20.4) (30.6, 19.2, 40.1) (0.1, 0, 0.1) 39.0
Iterated Gaussian (40, 40, 50) (20.9, 11.1, 32.0) (36.8, 27.8, 48.8) (0, 0, 0) 98.3
One-time fingering (40, 40, 50) (13.5, 9.5, 22.9) (32.4, 29.2, 51.7) (2.8, 3.4, 5.7) 34.7
Iterated fingering (40, 40, 50) (20.2, 13.6, 33.8) (40.1, 33.1, 54.9) (1.7, 1.0, 1.6) 88.9
Iterated distance (40, 40, 50) (22.1, 10.3, 32.4) (42.5, 27.3, 53.6) (0.8, 0, 0.8) 88.3

this, we asked professional piano arrangers to evaluate the
piano reductions generated by the Iterated Fingering, Iter-
ated Gaussian, and Iterated Distance methods with three
sets of target difficulty values (15, 15, 30), (30, 30, 40), and
(40, 40, 50). Twomusic arrangers participated in the evalua-
tion and each reduction score was evaluated by one of them.
Evaluators are provided manually typeset reduction scores,
the input condensed scores, and corresponding audio files
of the 10 tested musical pieces, which are uploaded to the
accompanying demo page.4 The evaluation metrics are as
follows:

• Musical fidelity (10 steps; 1: not faithful at all, . . ., 10:
very faithful) —How the reduction score is faithful to the
original ensemble score in terms of music acoustics.

• Subjective difficulty (10 steps; 1: very easy, . . ., 10: very dif-
ficult) — How difficult the reduction score is for playing
with two hands.

• Musical naturalness (10 steps; 1 very unnatural, . . ., 10:
very natural) — How natural the reduction score is as a
piano score.

• Number of unplayable notes Nunp — How many notes
and which notes should be removed from the reduction
score to make it playable by a skillful pianist. We define
the unplayable-note rate Aunp , a quantity normalized by
the number of additional notes:

Aunp = Nunp

#R − #M − #B . (23)

Results are summarized in Fig. 6, where statistics (mean
and standard deviation) are shown for each evaluationmet-
rics and for each method. The results in Figs 6(a) and
6(b) indicate that subjective difficulty and musical fidelity
monotonically increase with the additional note rate, which
confirms the ability of the proposedmethods for controlling

4http://pianoarrangement.github.io/demo.html

performance difficulty. For these two quantities, few dif-
ferences can be found in the results for the three meth-
ods. The result in Fig. 6(c) shows that musical naturalness
tends to decrease when increasing the additional-note rate.
This can be understood from the fact when Aadd � 0 the
reduction score consists mostly of melodic and bass notes,
which should have high naturalness, and for larger Aadd it
becomes more demanding for the models to retain natu-
ralness. For the highest difficulty case with target difficulty
values (40, 40, 50) and Aadd ∼ 90–100%, the Iterated Gaus-
sian and Iterated Fingering methods outperform the base-
line Iterated Distancemethod. This suggests the importance
of incorporating sequential dependence of pitches in the
piano score model for improving musical naturalness.
The result in Fig. 6(d) shows that, especially in the high

difficulty regime, the unplayable-note rate is reduced by
incorporating sequential dependence of pitches in the piano
scoremodel and even further so by incorporating the finger-
ing motion. This suggests that although the same difficulty
measure is used and it is not a perfectmeasure for describing
the real difficulty of a piano score, a better piano scoremodel
can generate reduction scores with less unplayable notes.

D) Example results and discussions
Examples of piano reduction scores obtained by the Iter-
ated Fingering method are shown in Fig. 7, together with
the results of the subjective evaluation (the evaluation scores
are given for the whole piece including the part not shown
in the figure).5 We see that results for larger target difficulty
values have more harmonizing notes and are given larger
fidelity and subjective-difficulty values. In the cases with
(D̃L , D̃R , D̃B ) = (15, 15, 30) and (30, 30, 40), all notes are
playable in the shown section and the latter case has a larger

5See http://pianoarrangement.github.io/demo.html for more
examples with sound files.
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Fig. 6. Subjective evaluation results. For each method, the average results for the three sets of target difficulty are indicated with points. Bars indicate their standard
errors.

musical-naturalness value. On the other hand, there are
several unplayable notes in the case with (D̃L , D̃R , D̃B ) =
(40, 40, 50), which leads to a smaller musical-naturalness
value.
We were informed from the evaluators (professional

music arrangers) that keeping more notes in a reduction
score does not always improve musical naturalness. One
reason is that flexibility for performance expression can be
reduced by adding too many notes. We have therefore two
important directions to further improve the piano reduc-
tion methods. One is to construct a more precise fingering
model and difficulty measures based on it. However, as we
discussed in Section II.B.2, a more complex model typi-
cally requires more training data for appropriate learning.
Since a large-scale fingering dataset is currently not avail-
able, construction of such a dataset is also an important
issue. Another is to incorporate more musical knowledge
in the piano reduction model, particularly on harmonic
aspects (e.g. completion of chordal notes and voice leading)
and cognitive aspects (e.g. restricting notes over melodic
notes to avoid mishearing of melodies).
Other left issues are identification of melodic and bass

notes and score typesetting for reduction scores, which
are manually done currently. As for the identification of
melodic and bass notes, a simple method of taking the
instrument part with the highest (lowest) mean pitch as
the melody (bass) part for each bar can reproduce 40.6%
(57.0%) of the indications in our test data. While this calls
for a more refined method for automatically estimating the
melodic and bass notes, we noticed that the choice is also
subjective and it may be important to leave room for user
preferences.
Finally, since the evaluation is subjective, it is also impor-

tant to look at multiple ratings given by different evaluators.
Such a large-scale subjective evaluationwould be significant

for revealing finer relations between human’s evaluation and
the model’s prediction.

V . CONCLUS ION

We have described quantitative measures of performance
difficulty for piano scores and a piano reduction method
that can control the difficulty values based on statistical
modeling. We followed the quantification of performance
difficulty using statistical models proposed in [18] and
found that the difficulty values can be used as indicators
of performance errors. For the current amount of train-
ing data, we also found that the difficulty measures based
on the Gaussian model yields the best accuracy of predict-
ing performance errors. The problem of piano reduction is
formalized as a statistical optimization problem following
the framework of [4], and we improved the optimization
method by proposing an iterative method. We confirmed
the efficacy of the iterative optimization method and the
algorithms are shown to be able to control subjective dif-
ficulty and musical fidelity. It was also found that incor-
porating sequential dependence and fingering motion in
the piano-score model by using the Gaussian and finger-
ing model improves generated reduction scores in terms
of musical naturalness and the rate of unplayable notes.
Directions for further improvements were also discussed.
Whereas it has been assumed that the same difficulty

measures apply universally for all players in this study, they
can be different for individual players depending on, for
example, the size of hands. In the present framework, part
of such individuality can be expressed by adapting the fin-
gering model to individual players. This model adaptation
can be realized in principle if one has a sufficient amount
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Fig. 7. Examples of piano reduction scores obtained by the Iterated Fingering method (Wagner: Prelude to Die Meistersinger von Nürnberg). For clear illustration,
only the first nine bars from a 27-bar excerpt in the test data are shown. Unplayable notes indicate those identified by the evaluator.

of musical scores that have been already played by an indi-
vidual player. Another interesting direction is to adapt an
individual’s fingeringmodel using the frequency of errors in
his/her performance data, which could reduce the amount
of necessary data.
A limitation of the present model is that timing errors

and other rhythmic aspects are not considered. Rhythmic
features may become important especially in polyrhyth-
mic passages in which the left- and right-hand parts have
contrasting rhythms (e.g. two against three rhythms). In
such cases, the sum of difficulty values for the two hands
may underestimate the total difficulty. To properly deal with
these problems, it would be necessary to incorporate a per-
formance timing model and interdependence between the
two hands into the present framework.
The present formulation of combining a musical-score

model and an edit model can also be applied to other forms
of music arrangement if one replaces the piano fingering
model with an appropriate score model of the target instru-
mentation/style and adapt the edit model for relevant edit
operations. For example, if we combine a score model for
jazz music and a proper edit model, it would be possible to
develop a method for arranging a given piece in the rock
music style (or other styles) into a piece in the jazz style.
Although this study has focused on piano arrangement,

the framework can also be useful for music transcription
[22]. In music transcription, musical-score models play an
important role to induce an output score to be an appro-
priate one that respects musical grammar, style of target
music, etc. [23, 24]. Especially in piano transcription, results

of multi-pitch detection contain a significant amount of
spurious notes (false positives), which often make the tran-
scription results unplayable [25]. By integrating the present
piano-score model and an acoustic model (instead of the
edit model) and applying the method for optimization
developed in this study, one can impose constraints on per-
formance difficulty of transcription results and reduce these
spurious notes.
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