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ABSTRACT 

Simulation of light curve effects in Algol systems that are near 
contact or that may evolve into contact requires a different model than 
the tri-axial ellipsoid used in many current studies. A new light 
synthesis optimization program, based on the Roche model, satisfies the 
model requirements and determines system parameters with excellent 
accuracy, given a sufficiently large set of observations. 

A widely used criterion for stopping iterative solutions is 
inadequate. A working criterion is proposed as a replacement. 

I. Introduction 

Extensive analysis of Algol-type light curves has been performed 
with a tri-axial ellipsoid model (Etzel 1981, Etzel and Olson 1985). 
This model is demonstrably adequate when the lobe-filling inner radius 
is less than 0.35 (Etzel and Olson 1985). However, this model breaks 
down for closer component spacing. 

The widely-used Wilson-Devinney (1971, hereafter WD) program, 
based on the Roche model, also has been applied to Algol systems 
(Wilson, et. al. 1972, Giuricin, Mardirossian, and Mezzetti 1983 and 
references therein). The Roche model has the advantage that its 
parameters apply no matter what the component spacing, including 
contact. Radii for equivalent spherical volumes are separately 
calculable, for comparison with tri-axial ellipsoid results. Easily 
available computer power now permits routine use of Roche model 
algorithms. 

This author has completed a new light synthesis optimization 
program based on the Roche model and has begun application to contact 
binary systems. It was of interest to test its operation on simulated 
data for a system like Algol. 

II. Program Description 

A light synthesis simulation of an eclipsing binary, based on the 
Roche model, requires assigned values for 14 parameters: q, £J1( ft2, i_, 
Tlt T2, A n A2, b_!, b2, u,, u2, L3, and L_ , where q = mass ratio, filt 
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Q2 are the photospheric Roche potentials, _i = orbital inclination, A,, 
A2 are bolometric albedos, b1( b2 are gravity brightening exponents, 
u. j , u2 are limb darkening coefficients, L3 is fractional system light 
due to a third component, and L, is a light reference value which 
normally equals 1.0. The first four parameters are geometric and the 
next eight are physical. Note that T( and T2 refer to the polar 
temperatures of the respective components. 

Most optimization programs (e.g. WD) use differential corrections. 
The required light derivative with respect to a given parameter, at a 
given orbital phase, is determined by differencing the calculated 
system light at two closely spaced values of that parameter and 
dividing by the parameter increment. If the number of parameters 
subject to optimization is appreciable, many calculated light values 
are necessary to evaluate the derivatives, and the entire process must 
be repeated for each iteration. If the parameter increment is small 
the light values are nearly equal and effects of computational noise in 
their difference become amplified in dividing by the small increment. 
If the parameter increment is large the calculated derivative may be 
inaccurate. 

These considerations have led to development of an optimization 
procedure based on the simplex technique (Kallrath and Linnell 1987, 
Linnell and Kallrath 1987). This technique requires no light 
derivatives. However the simplex technique provides no convenient 
means to calculate a covariance matrix, so it is possible only to 
estimate probable errors of optimized system parameters. The simplex 
technique also lacks good means to calculate correlations among 
parameters. These additional considerations have prompted a re­
examination of the differentials corrections approach. 

The light at a given orbital phase is given, schematically, by 

f f 2 f f 2 

I = [i, cosY -—- sine] d<)>d0 + [l~ cosY -—- sine] d<))de J J L 1 cosfi J J J L 2 cosg J 

e <$> 0 (|> 

f r 2 

- j j [ i 1 > 2 COSY ^ s ine] d$ de, (1) 
9,eel <j>,ecl 

where the integer subscr ipts designate the components. The reason for 
the term "schematically" in the l a s t sentence i s t h i s : I_, and I_2 are in 
phys i ca l u n i t s , so _8, i s i n i t i a l l y in p h y s i c a l u n i t s and must 
subsequent ly be normalized. See a separate publication (Linnell 1989) 
for d e t a i l s . Consider the der ivat ive of _£ with r e s p e c t to one of the 
p h y s i c a l pa r ame te r s , T_lt say . I t can be shown by Leibni tz ' s theorem 
(Linnell 1989) that 
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9 1 , 2 
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" I I [ - 4 ^ cosY ^ — - s i n e ] d*d0, (2) 

G.ecl <)),ecl 
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Now 

and 

and 

2, 
I 1 = I 1 ( T = 0 ) [1 - U 1 - u 2 + u 1 cosY + u 2 c o s ' Y ] , (3) 

6F(T ) 
T (x=0) - -^ _ ° _ — , (4) 

1 i t(6 - 2u1 - 3u2) 

F ( T o ) =
 A5 e x p ( c , 7 v f j - 1 ' ( 5 ) 

on the black body approximation. T relates to T f f on the Eddington 
approximation by T „ = 1.2324 T . d? (T )/dT follows directly from 

—e 11 —o — o —o 
eq. (5). Thus it is possible to calculate SJ^/BTi analytically. Then 
H/3p, where p is any of the physical parameters, can be calculated via 
eq. (2) during the same process that calculates % via eq. (1). No 
differencing of two light values is necessary. 

This procedure does not work for the geometric variables because 
the limits of integration are functions of those variables. An 
improvement over the standard practice still is possible. 

Stirling's formula for the derivative of a function y(x), based on 
finite diagonal differences is 

**. • n Ay-i + A y ° + , A +^i^£^^+...] , (6) 
dx hL 2 ^ ' y -1 3 ! 2 . . . j , \vj 

x - x„ 
where y = 

Choose the spac ings of geometr ic p a r a m e t e r s so t h a t t h i r d and h i g h e r 
d i f f e r e n c e s a r e s m a l l enough t o be n e g l e c t e d . For a p a r t i c u l a r 
geometr ic pa ramete r , say _i, and a t a p a r t i c u l a r o r b i t a l l o n g i t u d e i>, 
t he d i f f e r e n c e t a b l e for our problem i s 

i I, . 

AS. 

i I, . A28, . 
o \JJ, 10 -1 

A *0 

1 K.g ip,i8.g 
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Since t h i s formulation is second order in the differences, spacing for 
a given parameter can be somewhat l a r g e r than for the f i r s t order 
approximation in current use. 

The l igh t synthesis program (Linnell 1984) ca lcu la tes system l ight 
a t a s p e c i f i e d se t of f i d u c i a l o r b i t a l longitudes. Light values for 
specif ic observational phases are calculated by in terpola t ion among the 
f i d u c i a l v a l u e s . C a l c u l a t i o n of 3_2,/3j. a t the f i d u c i a l o r b i t a l 
longitudes then requires three f i l e s of l igh t values I, , 8,. , H. „ . 
As i_ changes with successive i t e r a t i o n s , only u, from eq. (6) , changes. 
Provided i < i < i . , the three tab les of l i gh t values for i need not 

—sm — — — —x»Pu — 
be r e c a l c u l a t e d . S i m i l a r comments apply to the o the r geometric 
parameters. Since one cent ra l reference l igh t ca lcula t ion i s common to 
a l l geometric parameters, a t o t a l of nine f i l e s of l igh t values permits 
ca lcula t ion of f iducia l longitude l igh t de r iva t ives for a l l geometric 
p a r a m e t e r s . A l i g h t d e r i v a t i v e a t a p a r t i c u l a r observational phase 
follows by in te rpola t ion . 

A summary of important f e a t u r e s of the l i gh t synthesis program 
package i s useful a t t h i s point . (1) The program a s s i g n s i n d i v i d u a l 
f i r s t - o r d e r and second-order limb darkening c o e f f i c i e n t s to each 
pho tosphe r i c mesh po in t by 3D i n t e r p o l a t i o n ( w a v e l e n g t h , l o c a l 
t e m p e r a t u r e , l o c a l log gravi ty) in an external data f i l e . Thus, limb 
darkening coeff ic ients normally are not adjustment pa r ame te r s . The 
p a r t i c u l a r e x t e r n a l data f i l e can be changed by declara t ion in the 
program execution f i l e . The limb darkening c o e f f i c i e n t s used in the 
study are by Wade and Rucinski (1985), based on Kurucz atmospheres. (2) 
The normal in tens i ty a t each mesh point can be calculated e i ther by the 
black body law or by 3D interpola t ion in an external model atmosphere 
data f i l e . As with limb darken ing , the p a r t i c u l a r model atmosphere 
data f i l e can be changed by declarat ion in the program execution f i l e . 
(3) I r r ad ia t ion at a given mesh point follows by in tegra t ion over the 
l imb-darkened v i s i b l e d isk of the companion at tha t mesh period. I t 
ful ly allows for penumbral region e f f ec t s . (4) The system l igh t at an 
a r b i t r a r y o r b i t a l phase fol lows by in t e rpo la t ion among the f iducial 
po in t s . This pe rmi t s the program to handle an i n d e f i n i t e l y l a rge 
number of i n d i v i d u a l o b s e r v a t i o n s . (5) The program automatically 
accommodates to a contact , semi-detached, or detached conf igura t ion by 
s e t t i n g l o g i c a l c o n s t r a i n t s on p e r m i s s i b l e Roche pho tospher ic 
po ten t i a l s . 

The d i f f e r en t i a l correct ions program, cal led DIFCORR, l inks to the 
output of the l igh t synthesis program package by an execution f i l e . An 
input f i l e s p e c i f i e s the parameters to be optimized. DIFCORR solves 
for increments to the o p t i m i z a t i o n pa rame te r s , p r e d i c t s t h e n e x t 
i t e r a t i o n i n d i v i d u a l r e s i d u a l s , c a l c u l a t e s a covariance matrix and 
probable e r rors for the incremented parameters, ca lcula tes an a r ray of 
s i m p l e c o r r e l a t i o n c o e f f i c i e n t s , an a r r a y of p a r t i a l c o r r e l a t i o n 
coef f ic ien ts , t e s t s for i n c i p i e n t s o l u t i o n inde te rminacy , s o r t s the 
r e s i d u a l s i n t o a h i s t o g r a m , and a p p l i e s the Kolmogorov-Smirnov 
goodness-of-fit t e s t for a normal d i s t r ibu t ion of weighted res idua l s . 

The program package produces a large number of f i l e s for useful 
o f f - l ine p l o t s . 
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II. Test on Simulated Algol Data 

A more detailed discussion of the program and an application to 
synthetic data for a contact binary is in a separate publication 
(Linnell 1989). This paper concentrates on the analysis of synthetic 
data for a system like Algol, omitting the third component. The 
adopted true system parameters were from the papers by Hill, et. al. 
(1971) and Hill and Hutchings (1970). The true system parameters are q 
= 0.21739, a = 5.30, a = 2.28, J. = 81.60°, T = 10800(K), T = 
4600(K), A = 1.0, A =S0.5, b = 0.25, b = 0.%8. For simplicity, 
this investigation used the black body law. Separate tests on a 
contact system simulation demonstrate proper operation with model 
atmospheres substituted. The optimization of physical parameters, 
based on analytic derivatives of the black body law, continues to 
produce convergence when model atmosphere values are substituted for 
normal intensities. 

Modern automated observing techniques permit easy acquisition of 
substantial data bases. Thus high speed photometry of W UMa produced 
about 15,000 UBVRI observations in a single night (Linnell 1985). 
DeLandtsheer (1983a) obtained nearly 6000 observations of TV Cas in 
four spectral bands. Accordingly, simulated UBV light curves were 
produced with 2600 observations in each spectral band. Adopted 
observational dispersions were o = 0.006, o_ = 0.005, o = 0.008, 
values consistent with actual observational experience. 

There recently has been controversy concerning the convergence 
criterion (Wilson 1983, deLandtsheer 1983b) and the use of the Method 
of Multiple Subsets. Solution of simulated data, for which the model 
is precisely defined and the exact solution known in advance, can be of 
help in this controversy. Note that deLandtsheer performed more than 
150 iterations on TV Cas. 

The test solution had several objectives: (1) To test operation of 
the differentials correction program on an Algol-like system; (2) To 
determine the number of iterations necessary to recover known system 
parameters; (3) To measure the accuracy with which parameters can be 
recovered in the presence of observational errors similar to those 
actually found in practice; (4) To discover whether the optimization 
program can start from a relatively poor fit and achieve a high quality 
fit, without concern for possible secondary minima in the variance. 
(5) To test the commonly-adopted convergence criterion. 

Popper (1980) has emphasized the observational difficulties in 
spectroscopic determinations of mass ratios for Algol systems. 
Photometric determinations of q are possible (see the remarks by Wilson 
1980 p. 205), but typically use the boundary condition that the 
secondary fill its Roche lobe (Wilson 1980, p.263). It is desirable to 
relax this constraint. It is a more satisfying scientific result if 
the observations demand that the mass loser fill its Roche lobe than if 
that component satisfy the control condition because of a theoretical 
argument that it should do so. In the present simulation, the fact that 
the system is partially eclipsing places more extreme demands on the 
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parameter recovery process than would be true for the case of complete 
eclipses. 

The initially assumed parameters are on data line 2 of Table 2. 
Parameters subject to optimization are q, fl , fl„. _i, T and L 
These initially assumed parameters give a poor fit to the observational 
data. 

A comment is in order concerning limb darkening coefficients. For 
the mass loser, gravity varies over the photosphere by more than a 
factor 10, and temperature by more than 1000 K. Limb darkening 
coefficients, from model atmospheres, show an appreciable variation 
(Table 1). The photometric effect for Algol is not significant because 
the loser contributes so little light. The effect is more pronounced 
for contact binaries. Limb darkening coefficients do not occur in 
isolation in eclipsing binary model parameters. They also connect via 
the source function to model atmosphere fits to observed stellar 
spectra, which generally are quite good. For this reason it is 
preferable to use theoretical limb darkening coefficients for cases in 
which one or both stellar components are severely distorted from a 
sphere. 

The optimization run results are in Table 2. The last column 
gives the standard deviation of the residuals in V. The usual 
criterion to stop iterations is to stop when the standard deviation of 
the formal parameter errors is as small as the calculated parameter 
increments. If Ji were chosen as the test parameter, this condition 
initially would oe met in going from iteration 2 to iteration 3, but 
convergence is far from complete. The criterion is essentially 
satisfied for all geometric parameters in going from iteration 9 to 
iteration 10, yet some of the geometric parameters are capable of 
substantial improvement with further iterations. The value of o does 
not decrease monotonically with successive iterations, a reminder that 
optimization is a highly nonlinear process and the least squares 
process uses linearized equations of condition. The change of the 
residuals o with successive iterations is so slow that it appears 
nearly constant, and visual examination of plots of the residuals 
disclose no apparent trends that imply incomplete convergence. What 
criterion is appropriate to terminate iterations? Table 2 shows a 
monotonic average drift in some parameter values, eventually ceasing. 
A similar result has been found for a contact system. The working rule 
which this investigation suggests is: Iterations should be continued 
until average _drift in each parameter ceases. It is important to 
emphasize the word average. As successive iterations occur, the change 
in a given parameter may not always be monotonic. The indication of 
this investigation and a corresponding study of a contact system is 
that perhaps 20 or more iterations may be necessary with the current 
program if the initial approximation is quite inaccurate. Note that 
the first two or three iterations may appear to diverge. 

The proposed test to stop iterations is a stop-gap at best. This 
topic deserves more detailed study. Table 3 shows the final solution, 
in V, together with the calculated parameter probable errors, the 
composite UBV solution, and the true values, repeated for easy 
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comparison. The program produces a separate solution in each spectral 
band of observation and calculates a weighted combination for the next 
iteration parameter set. The calculated values of q, a , H , and i are 

— S K — 

within 1 o of their true values. T still differs from its true value 
by an amount five times the formally calculated probable error. This 
is perhaps not surprising since the component in question contributes 
only 5% of the system light in V, and correspondingly less in B and U. 
Also, the temperature distribution of the loser is strongly influenced 
by irradiation by the companion, and this temperature distribution in 
turn depends on the adopted bolometric albedo of the loser. 

The remarkable accuracy of the composite q is fortuitous since a 
single iteration with assumed parameters exactly equal to true values 
produces a composite next iteration q of 0.21996. Nevertheless, the 
optimization program, together with a large data set, is able to 
recover q to within 1?, for this partially eclipsing system, while 
simultaneously determining the other geometric parameters to within a 
few tenths of a percent after 18 iterations. 

Table 4 lists the simple correlation coefficients among optimized 
parameters. It is clear that an idealization such as this may prove 
very different, practically, from a corresponding data set on a real 
Algol system. There is the problem of night errors in photometry, 
familiar to all of us, which complicates the combination of data from 
several nights. During a single night there are azimuthal extinction 
problems requiring different extinction coefficients on different sides 
of the meridian. Observations from space may be necessary to eliminate 
these sources of error. The important point is that a sufficiently 
large data set and an efficient parameter optimization program 
recovered simulation model parameters with high accuracy in 
approximately 20 iterations, for the particular system investigated 
here. A separate simulation solution should accompany a solution of 
actual observational data in individual cases. 

III. Conclusions 

This study leads to the following conclusions: 
1. The new optimization program, together with a synthesized data set 

10 times larger than current standard observational practice, 
determined Roche model geometric parameters for a particular Algol 
system to 1? in q and a few tenths of a percent in the other 
parameters, without recourse to the Method of Multiple Subsets. 

2. The calculated T_ may differ from its true value by a much larger 
amount than indrcated by the formal probable error, if the 
corresponding component contributes a minor fraction of the system 
light. 

3. The widely used criterion for stopping iterations, when the 
standard deviation of formal parameter errors equals or is greater 
than the calculated parameter increments, is inadequate in the 
case tested. 

4. A working rule is to continue iterations as long as there is a 
secular average trend in any optimized parameter. 
These conclusions, following from a single example, require much 
more extensive test before deserving general acceptance. 
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Table 1 
Theoretical limb darkening coefficients 

Coefficients are in the sequence first order, second order 

Gainer Loser 

Pole 
Point 
Back 
Side 

0.759, 
0.762, 
0.762, 

-0.265 
-0.265 
-0.265 

0.763,-0.265 

0.772,0.035 
0.807,-0.102 
0.767,0.046 
0.748,0.072 

https://doi.org/10.1017/S0252921100087868 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100087868


TEST ON SIMULATED ALGOL DATA 277 

Table 2 
Log of Op t imiza t ion Run 

IT q a a i ( deg ) T (K) a 
Z s g Z ~? 

t r u e 0.21739 5.30000 2.28000 81.6000 4600.0 
0 0.22500 5.35000 2.30000 84.0000 4800.0 
1 0.23560 5.48924 2.31724 81.2405 4817.1 0.02502 
2 0.24467 5.41813 2.33662 81.3421 4702.3 0.00661 
3 0.23422 5.40818 2.34618 81.4013 4656.8 0.00839 
4 0.23064 5.38334 2.33622 81.2561 4583.1 0.00686 
5 0.22438 5.30090 2.32820 81.6240 4549.0 0.00811 
6 0.21944 5.26987 2.31333 81.5653 4511.6 0.00796 
7 0.21501 5.19514 2.29995 81.8872 4483.7 0.00901 
8 0.21165 5.21246 2.28078 81.7778 4466.3 0.00738 
9 0.21009 5.22726 2.26081 81.7456 4471.4 0.00692 
10 0.21173 5.24460 2.26039 81.6805 4495.5 0.00584 
11 0.21394 5.26448 2.27322 81.6379 4529.3 0.00586 
12 0.21573 5.26847 2.27034 81.5892 4527.7 0.00588 
13 0.21776 5.28339 2.28392 81.6128 4549.5 0.00587 
14 0.21688 5.29048 2.27977 81.5956 4543.7 0.00581 
15 0.21699 5.28935 2.27816 81.5853 4542.6 0.00580 
16 0.21738 5.29065 2.27998 81.5923 4545.6 0.00579 
17 0.21736 5.29221 2.28024 81.5923 4546.1 0.00579 
18 0.21734 5.29221 2.27998 81.5891 4545.7 0.00579 

Table 3 
V S o l u t i o n , Composite, True Values 

q n a i ( d e g ) T (K) 
S g 5 

0.21595^0.00098 5.3043+0.0088 2.2772+0.0020 81.589+0.029 4561.2+8.3 
0.21734 5.2922 2.2800 81.589 4545.6 
0.21739 5.3000 2.2800 81.600 4600.0 

Table 4 
Simple Correlation Coefficients 

Param. q flg flg i(deg) Tg(K) L_ref 

q 1.0000 -.1826 0.8574 -.5074 -.2700 -.4721 
a -.1826 1.0000 -.4725 -.5701 0.2618 0.3729 
flS 0.8574 -.4725 1.0000 -.0121 -.1753 -.4080 
j.g -.5074 -.5701 -.0121 1.0000 0.2651 0.2562 
T -.2700 0.2618 -.1753 0.2651 1.0000 0.9589 
Lg _ -.4721 0.3729 -.4080 0.2562 0.9589 1.0000 
-ref 
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DISCUSSION 

Wilson asked if Linnell never needed to use the method of multiple sub­
sets or only had not needed it in this example. Linnell replied that he 
did not need it in this case; he did not yet know about other cases. 
Wilson also asked if Linnell could solve simultaneously light-curves in 
different colours. Linnell replied that he solved each colour (e.g. 
UBV) separately and then, to obtain the geometric parameters appropriate 
for all wavelengths, he made a weighted mean final solution. Leung 
commented that a correlation coefficient of 0.85 was not very high and 
that it should be possible to obtain a solution without using the sub­
sets approach. Linnell replied that he had had no difficulty but could 
not tell what would happen with correlation coefficients of 0.9 or more. 

Budding thought the study would be very useful in helping us to 
understand the information content of light-curves. If Linnell would 
vary the number and distribution of his data points and the size of the 
simulated observational errors, it would be possible to find out how 
many parameters could be specified by light-curves of various qualities. 
Linnell agreed that his program lent itself to such numerical experi­
ments. 

Hill thought the model good but suggested that computing time could 
be saved, in accordance with an idea put forward by Lucy some years ago, 
by calculating the differentials at a reduced quadrature. The differ­
ential-correction technique could be grafted onto the end of the Simplex 
algorithm to provide errors. Responding to Budding, Hill also commented 
that accurate errors could be computed by the method of "bootstrap 
statistics", but only at the cost of computing about a thousand light-
curves - so Hill does not recommend the method. Wilson finally 
commented that although the application of Leibnitz' theorem was 
elegant, it did not save much computing time since the part of the com­
putations for which it was used were not very time-consuming anyway. 
Linnell replied that his procedure also had the advantage of avoiding 
the differencing of nearly equal numbers. 
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