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LOCAL SPECTRAL PROPERTIES OF COMMUTATORS
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For a pair of continuous linear operators T and S on complex Banach spaces X and Y, respectively, this
paper studies the local spectral properties of the commutator C{S,T) given by C{S, T)(A): = SA-AT for all
A e L(X, Y). Under suitable conditions on T and S, the main results provide the single valued extension
property, a description of the local spectrum, and a characterization of the spectral subspaces of C{S, T),
which encompasses the closedness of these subspaces. The strongest results are obtained for quotients and
restrictions of decomposable operators. The theory is based on the recent characterization of such operators
by Albrecht and Eschmeier and extends the classical results for decomposable operators due to Colojoara,
Foia§, and Vasilescu to considerably larger classes of operators. Counterexamples from the theory of semishifts
are included to illustrate that the assumptions are appropriate. Finally, it is shown that the commutator of
two super-decomposable operators is decomposable.

1991 Mathematics subject classification: 47A11, 47B40.

1. Introduction

One basic issue of local spectral theory is to relate the spectral properties of two
given continuous linear operators TeL(X) and SeL(Y) on complex Banach spaces X
and Y, respectively, when T and S are linked by some continuous linear mapping
A e L(X, Y). The classical monographs on this topic, those of Colojoara-Foias, [8] and
Vasilescu [21], contain several results of this sort, most of them related to the notion of
local spectrum. Recall that the local spectrum aT(x) of the operator T at the vector x e X
is defined as the complement in C of the set pT(x) of all A e C, for which there exists an
analytic function f:U->X on some open neighborhood U of X in C such that
(T—n)/(/i) = x for all fieU. A significant example is the following result of Colojoara
and Foias, [8, Theorem 2.3.3]: if both T and S are decomposable in the sense of Foia§,
then every A e L(X, Y) satisfies

as(Ax)caT(x) VxeX o \\C(S,T)"{A)\\lln-+0 as n-oo, (1)

where C{S,T):L(X,Y)-^L(X,Y) denotes the commutator of T and S given by
C(S, T)(A): = SA — AT for all AeL(X, Y). This result is of basic importance, for instance,
in the theory of quasinilpotent equivalence of decomposable operators [8]. More
generally, for an arbitrary compact set K of C, Foia§ and Vasilescu [10, Theorem 2.5]
have shown that
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<rs(Ax)^aT(x) + K VxeX ~ <xC(S,T)(A)£K, (2)

provided that both T and S are decomposable. In terms of the classical local spectral
subspaces XT(F): = {xeX:aT(x)^F} for all closed F^C, this result may be reformu-
lated as a description of the local spectral subspaces LC(K) of the commutator
C: = C(S, T) on the Banach space L: = L(X, Y) of all continuous linear operators from X
into Y. Indeed, it is easily seen that (2) is equivalent to the identity

LC(K) = {Ae L(X, Y): AXT(F) £ YS(F+K) for all closed F £ C} (3)

for any closed subset K of C.
It is the purpose of this paper to establish results like (1), (2), and (3) for more general

classes of operators, by extending them, in particular, to the much larger classes of
restrictions and quotients of decomposable operators. Thanks to recent work of
Albrecht and Eschmeier [2], we now have intrinsic characterizations of these classes,
phrased in terms that have been significant in local spectral theory for some time. The
relevant parts of this theory will be briefly reviewed in Section 2 below.

It should be noted immediately that results of type (1), (2), and (3) do require some
assumption on the operators involved. In fact, we shall see in Section 2 that these
results do not hold, if T is the unilateral right shift on the Hilbert space <̂ 2(N) or, more
generally, any semishift on a Banach space X and S is simply the zero operator. Since
semishifts are always restrictions of decomposable operators, these examples indicate
that one may expect positive results only in a different direction.

Another obstacle is related to the problem of uniqueness of the analytic functions
which occur in the definition of the local spectra. Recall from [8] that the operator
TeL(X) is said to have the single valued extension property (SVEP) if, for any open set
C/eC, the only analytic solution of the equation (T-A)/(A) = 0 for all XeU is the
constant function / = 0. If T does not have SVEP, then, by [21, Proposition 4.3.6],
there exists some non-zero xeX for which aT(x) is empty. This leads to an obvious
obstruction to (2) and hence also to (3), whenever S has SVEP, A is injective, and K
contains oC(S T)(A). To counteract the effects of the absence of SVEP, we need another
class of spectral subspaces, the so-called glocal spectral subspaces XT{F), the definition of
which simply bypasses this problem: for given TeL(X) and any closed F c C , let

2CT(F): = {xeX: 3 analytic / : C \ F - > * so that (T-X)f(k) = x VAeC\F}.

Note how the analytic functions in this definition are required to be defined globally
outside the set F. These spectral subspaces date back to early work of Errett Bishop [5]
and have been fundamental in the recent progress of local spectral theory, for instance
in connection with functional models and invariant subspaces [2], [7] and also in the
theory of spectral inclusions for operators on Banach spaces [14], [15], [18]. It is
obvious that #Y(F)£.Yr(F) for all closed F s C and that equality holds whenever T has
SVEP. Further properties of the glocal spectral subspaces will be mentioned in
Section 2.
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Probably the most basic problem in the local spectral theory of commutators is to
establish SVEP for the commutator C(S, T) under suitable conditions on T and S. This
problem will be addressed in Section 3. In particular, we shall see that C{S, T) has
SVEP if both T and S are semishifts, although (1), (2), and (3) are bound to fail in this
situation.

We then proceed to the description of the spectral subspaces of the commutator in
the spirit of (3), but with glocal spectral subspaces replacing the local ones. The main
result of Section 4 provides the desired description of the glocal subspaces JJ?C(K) of the
commutator C: = C(S, T) for all convex closed sets K £ C, assuming only that T is the
quotient of a decomposable operator, whereas S is completely arbitrary. This theorem
implies, in particular, a remarkable generalization of the classical result due to
Colojoara and Foias, [8]: the equivalence (1), as it stands, remains valid, whenever T is
a quotient of a decomposable operator and S has SVEP.

In Section 5, we strengthen the assumption on S to that of Dunford's property (C),
thus requiring all of its spectral subspaces to be closed. With the same assumption on T
as before, we shall prove that the local and glocal spectral subspaces of the commutator
C(S, T) coincide and that they allow the desired description of type (3) for arbitrary
closed sets K s C , not just for the convex ones. This implies, in particular, that C{S,T)
inherits Dunford's property (C) from S and extends the result of Foia? and Vasilescu
[10] to the considerably more general case of quotients and restrictions of decompos-
able operators. An essential tool for this extension will be the theory of analytical
functional models developed by Albrecht and Eschmeier [2]. As an application of this
theorem, we finally prove, in Section 6, that the commutator of two super-decomposable
operators is decomposable.

2. Preliminaries from local spectral theory

Throughout this section, we fix a continuous linear operator TeL(X) on a non-trivial
complex Banach space X. Recall that T is said to be decomposable, if any open cover
C = U u V of the complex plane C by two open sets U and V yields a splitting of the
spectrum a(T) and of the space X in the sense that there exist closed T-invariant linear
subspaces Y and Z of X for which a(T\ Y)QU, ff(T|Z)£ V, and X= Y + Z; see [8] and
[21] for an account of the classical theory of decomposable operators.

As mentioned above, Albrecht and Eschmeier [2] have recently given intrinsic
characterizations of restrictions and quotients of decomposable operators. They show
that the operator TeL(X) is similar to the restriction of a decomposable operator to
one of its closed invariant subspaces if and only if T has property (/?), a condition first
considered by Bishop [5]: property (/?) may be expressed by the requirement that, for
every open set C/£C and every sequence of analytic functions fn:U-*X for which
(T — A)/B(A)-»0 as n-KX>, uniformly on compact subsets of U, it follows that /n(A)-»0 as
n-KX>, again uniformly on compact subsets of U.

It is immediate that an operator with property (/?) will have SVEP. Slightly less
trivial, but still straightforward, is the observation that an operator TeL(X) with (/?)
will satisfy Dunford's property (C). The latter means that, for every closed F s C , the
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corresponding local spectral subspace XT(F) is closed. Conceivably, (/?) and (C) are
equivalent, but, intriguingly, this is still an open problem. Incidentally, property (C) also
entails SVEP. This is contained in Proposition 1 below, which also shows that property
(C) is equivalent to the corresponding version for closedness of the glocal spectral
subspaces.

The Albrecht-Eschmeier description of quotients of decomposable operators is in
terms of the glocal subspaces: the operator TeL(X) is similar to a quotient of a
decomposable operator with respect to a closed invariant subspaces if and only if T has
the decomposition property (3), which means that the splitting X = 3fT{U) + 9fT{V) holds
for every open cover {U, V} ofC.

It is not difficult to conclude from [8, Proposition 1.3.8] that T is decomposable if
and only if T has both (S) and (C). In particular, it follows that T is decomposable
if and only if T has both (8) and (/?). Moreover, since restrictions and quotients of
operators are dual concepts, it is no surprise that the Albrecht-Eschmeier descriptions
from [2] encompass a duality, which completes the aspirations of the original Bishop
inquiry: the operator TeL(X) has (8) if and only if its adjoint T*eL(X*) on the dual
space X* has (/?), and the corresponding statement remains valid if both properties are
interchanged.

It will be useful to collect a few basic facts about the glocal subspaces in one place.
Some notation will be needed. The closed disc in the complex plane with center AeC
and radius r^O will be denoted by V(A,r), the corresponding open disc by V(k,r). Given
xeX, the quantity rr(x): = limsupn_00||T

II(x)||1/" is called the local spectral radius of T at
x; the choice of language is justified by part (g) of the following result.

Proposition 1. For any TeL(X), we have:

(a) #>(0) = {0} and SCT(F) = 3CT(F n a(T)) for every closed F s C.

(b) &T-X{F)=2irT(F + Z) for every closed F^C and every AeC.

(c) 2CT(C\*F*)=C\,I%T(F<I) for any family (Fa) of closed convex subsets ofC.

(d) afT(F) = XT(F) for all closed F s C if and only if T has SVEP.

(e) #V(F) is closed for every closed F s C if and only if T has property (C).

(f) #V(V(0,r)) = {xeX:rT(x)gr} for any r^0.

(g) / / T has SVEP, then rT(x) = max{|4XeaT(x)} for all non-zero xeX.

(h) / / T has property (C), then T has SVEP.

Proof. The assertions (a) and (b) are straightforward, (c) has been obtained in [15,
Proposition 1.3], and (d) is part of [14, Proposition 1.1]. To show (e) and (h), we note
that property (C) implies SVEP by [14, Proposition 1.2] and that the corresponding
closedness condition on the glocal spectral subspaces implies SVEP by [19, Theorem
2.13]. The stated equivalence in (e) is then clear from (d). Finally, the identity in part (f)
has been shown in [18, Proposition 2.1], and the assertion (g) follows immediately from
(d) and (f).
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We close this section with some remarks on a special class of operators, which will be
useful to illustrate our general results on commutators. Recall from [11] that an
isometry TeL(X) is said to be a semishift, if f)~=, Tn(X) = {0}. It is not hard to see that
on Hilbert spaces this class of operators coincides with the pure isometries. Further
natural examples include, for any l^pgoo, the unilateral right shift operators of
arbitrary multiplicity on the sequence spaces <fp(N) as well as the right translation
operators on the Lebesgue spaces LP(R+) on the half line R+. Some of the local spectral
theory of semishifts has been developed in [17], but mainly in the context of automatic
continuity theory. Here, we shall need only the following observation.

Proposition 2. / / TeL(X) is a semishift, then T is not decomposable, but has property
(/?) and hence is similar to a restriction of a decomposable operator. Moreover, for any
non-zero xeX, we have <7T(x) = V(0, \) = a(T). Finally, for any closed FzC, we have
Xj(F) = XT(F) = Xif V(0,1) s F, and SCT(F) = XT(F) = {0} if V(0,1) £ F.

Proof. First observe that, by [12, Proposition 1.19], any isometry has property (/?)
and therefore (C) and SVEP. Hence, given any non-zero xeX, it follows from [8,
Proposition 1.3.8] that <x(T| XT(aT(x))) = aT(x). Now suppose that 0epr(x) and choose
an analytic function / : U-*X on an open neighborhood U of 0 such that (T — A)/(A) = x
for all XeU. By [8, Proposition 1.1.2], we have <Jr(x) = ffT(/(0)) and therefore
xeT(XT(aT(x))). Iteration of this argument yields that xef)™=l T"(X) and hence that
x=0 by the semishift property. This contradiction shows that 0e<xr(x) =
o{T\XT(oT(x))), which makes T\XT(aT(x)) a non-invertible isometry. Since the spec-
trum of such isometries is known to be the closed unit disc, we conclude that
ffr(x) = V(0, 1) = <T(T). This shows that a semishift cannot be decomposable and implies
also the stated description of its spectral subspaces.

Note that it follows, in particular, that semishifts do not have property (<5). It is now
easy to see that the results mentioned in the introduction do not hold in general.

Example. The equivalence (1) does not extend to the case that TeL(X) is a
semishift. Indeed, in this case, it is immediate from Proposition 2 that the inclusion
ffs(/4x)e<rT(x) holds for all xeX and all AeL(X, Y), provided only that the operator
SeL(Y) satisfies <x(S)^V(0,1). However, if S = 0 and A is bounded below, then clearly,
by the spectral radius formula, ||C(S,T)n(/l)||1/" = ||/ir"||1/ '1^l as n-»oo, which shows
that, in general, the left hand side of (1) does not imply the right hand side. We note in
passing that the reverse implication in (1) does hold without any restriction on the
operators involved; this is clear from the proof of the classical result [8, Theorem 2.3.3]
and follows also from [14, Proposition 2.2].

Similarly, neither (2) not (3) is valid, when TeL(X) is a semishift and SeL{Y) is the
zero operator. More precisely, in this situation, the space on the right hand side of (3)
coincides with the whole space L(X,Y), whenever the closed set K e C satisfies
K n V(0,1)#0. However, the identity LC(K) = L(X, Y) can only hold for the commutator
C: = C(0, T), when K contains the entire unit circle, since, by elementary local spectral
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theory, the surjectivity spectrum asu(C): = {keC: C—k is not surjective} of the commuta-
tor C contains the boundary of <r(C) = — a(T) = V(0,1) and since aJ^C) = crc(A) for at
least one AeL(X, Y), see [16, Lemmas 1 and 2]. Consequently, in this case, (2) and (3)
do not hold for any closed set K s C which touches the unit disc, but does not contain
the unit circle.

In the following section, we shall modify these ideas to obtain counterexamples of this
type, even when the commutator C(S, T) has SVEP.

3. The single valued extension property for C(S, T)

Our standard situation in this section will be that TeL(X) and SeL(Y) are given
operators on complex Banach spaces X and Y, respectively, and that C: = C(C,T) is
their commutator on the Banach space L(X, Y). It is routine to verify that

C"(i4)= j ; ( " ) ( - l )*S" -M7* for all neN and AeL{X,Y). (4)

If A i= 0 and C has SVEP, then the local spectral radius formula of Propostion 1 shows
that rc(A) = 0 if and only if ac(A) = {0}. Since [10] proves that C has SVEP, when both
T and S are decomposable, this means that the equivalence (1) is indeed a special case
of (2), as implied earlier.

We shall now uncover more general conditions under which SVEP for the commuta-
tor can be obtained. The following result is implicit in the proof of [14, Theorem 2.4],
but for completeness we include a short argument.

Lemma 3. Suppose that the operator SeL(Y) has property (C) and that, for a given
e>0, the operator TeL(X) satisfies the condition that the linear span of the set of all
xeX with diamoT{x)^e is dense in X. If H: U-*L(X, Y) is analytic on an open disc U of
radius e and if(C-k)H(k) = 0 for all JieU, then H = 0onU.

Proof. Given any keU, we have {S-k)H(k) = H(k)T. For all xeX, it follows that
as-x(H(k)x)^oT(x) and hence H(A)xe Ys_x(<rT(x))= Ys(oT(x) + k). Now choose two
closed discs DltD2^U with non-empty interiors and distance strictly greater than e.
For fc=l,2 and arbitrary xeX, we obtain that H(k)xe Ys(aT(x) + Dk) for all keDk and
consequently, by property (C) and the identity theorem for analytic functions, even for
all keU. Thus H(k)xe Ys((aT(x) + D1)n(aT(x) + D2)) for all keU. Since Oj-W + Di and
0T(x) + D2 are disjoint whenever diamar(x)ge and since Ys(0) = {O} by SVEP, we
conclude that H(k)x = 0 for all keU and all xeX with diamffT(x)^e. The assumption
on T now implies that H = 0 on U.

Proposition 4. IfSeL(Y) has property (C) and TeL(X) has property (S), then C(S, T)
has SVEP.
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Proof. Because of (5), we know that T is the quotient of some decomposable
operator R on a suitable Banach space Z. Given an arbitrary e > 0, choose finitely many
open discs of^iiameter e so that CT(R)£ U I u • • • u [/„. By_[21, Theorem ̂ 4.28], it follows
that Z = ZR{(Ul)+-+ZR(Un) and hence that X = XT(Ul)+-+XT(Vn), which shows
that T satisfies the condition of Lemma 3. The assertion follows.

Property (<5) is not the only spectral decomposition condition on T which, in
conjunction with property (C) for S, will ensure the applicability of Lemma 3. For
instance, it follows easily from this lemma that C(S, T) will have SVEP, whenever S has
property (C) and T has the weak spectral decomposition property. This property means
that, for every open cover {l/i,..., [/„} of C, there exist closed T-invariant linear
subspaces Xk of X, for which o(T\Xk)^Uk for k=\,...,n and for which the sum
Xi + •• -+Xn is dense in X. Note that the example of Albrecht [1] shows that operators
with the weak spectral decomposition property need not have property {5), even if one
insists on property (C) as an additional assumption. Conversely, it has been observed in
[14, Example 1.5] that the unilateral left shift on the Hilbert space <f2(N) has property
(<5), but not the weak spectral decomposition property.

We shall now describe a rather different situation, in which we also may conclude
that the commutator has SVEP. Recently, Sun [20] has obtained the remarkable result
that the sum and product of two commuting continuous linear operators, both with
property (C), will have SVEP. This is based on the following interesting lemma from
[20], restated here with the minimal assumptions available: property (C) is needed only
for S, not for T.

Lemma 5. Suppose that S,TeL(X) are commuting operators of which S has property
(C) and that Z is a closed linear subspace of X, which is hyperinvariant for T. Suppose
also that f:U-*Z is an analytic function on some open disc U of radius e>0 such that
(S + T-X)f(X)=0 for all A el/. Then diam<7(T|Z)<2£ implies that / = 0 on U, while
diam<x(T
diama(r

Z) ^ 2e implies that there exists a closed set F £ C with diam F ^
Z)-2e such that f(X)eXs(F) for all A el/.

We mention this somewhat technical looking result, because it has an interesting
consequence for perturbations of semishifts. Note that the only condition on the
perturbation T in the following result involves the size of its spectrum.

Proposition 6. Let S, TeL(X) be commuting operators such that S is a semishift and
that diama(T)g2. Then S+T has SVEP.

Proof. Consider an analytic function f:U-*Y on an open disc U such that
(S + T-A)/(A) = 0 for all A eU, let e denote the radius of U, and apply the preceding
lemma with Z=Y. The case diama(T)<26 brings us directly to the conclusion desired
for SVEP, so we may suppose that diam<r(T)^2s. Thus we obtain a closed set F s C
with diamFSdiamff(T)-2e<2 for which f(X)eXs(F) for all XeU. But diamF<2
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implies that V(0, \)£F and therefore X^F) — {Q} by Proposition 2. We conclude that
/ = 0on U.

In Proposition 6, the condition diam<r(T)^2 is sharp in the following sense: as soon
as the commutant of S contains at least one operator V without SVEP, we have an
example to show that this condition cannot be weakened. Indeed, we may suppose that
||K|| = 1 and then take T: = eV—S for any chosen e>0. This operator T will have
diam<7(T)^2 + e, yet S + T will not have SVEP.

The following easy consequence of Proposition 6 supplements our list of results on
SVEP for commutators.

Corollary 7. If SeL(Y) is a semishift and TeL(X) satisfies diama(T)^2, then
C(S,T) has SVEP.

Proof. Consider the multiplication operators Ls and RT on L(X, Y) given by
LS(A): = SA and RT(A): = AT for all AeL(X, Y). Then Ls is a semishift and
diama(/?r)^2. Since Ls and RT commute and satisfy C(S,T) = LS — RT, it follows from
Proposition 6 that C(S, T) has SVEP.

Proposition 8. / / TeL(X) and SeL(Y) are arbitrary semishifts, then T and S are
restrictions of decomposable operators and the commutator C: = C(S,T) has SVEP, but
none of the statements (1), (2), or (3) hold in this situation.

Proof. The first assertions are clear from Proposition 2 and Corollary 7. Next
observe that <7(C) = CTSU(C) = V(0,2). Indeed, elementary spectral theory shows that
a{C)^a(Ls)-<j(RT) = a(S)-a(T) = V(0,2), and conversely it follows from [9, Theorem
5] that <T(C)3<7SU(C)3CTSO(S) — <rap(T) = V(0,2), since, for any non-invertible isometry, the
surjectivity spectrum is the unit disc and the approximate point spectrum is the unit
circle. Now, if K £ C is any closed set with Oe K, then it is clear from Proposition 2 that
every AeL(X, Y) satisfies AXT(F)£ YS(F+~K) for all closed F^C.On the other hand, it
follows from [16, Lemma 2] that LC(K) = L(X, Y) holds if and only if K contains
ff(C) = <rSII(C) = V(0,2). We conclude that here the identity (3) ceases to be true in a
rather drastic way: it does not hold for any closed set K s C which contains the origin,
but not the entire spectrum CT(C) = V(0,2). In particular, it follows that the equivalences
(1) and (2) cannot hold in the present situation.

Example. It is also easy to give a more concrete counterexample in this setting: take
T = S to be the right shift and A to be the left shift on the Hilbert space X:= Y: = S2(N).
Then it is easily seen that C(T, T)"(A)= — T"~lP for all neN, where P denotes the
projection onto the first component. It follows that \\C(T, T)"(A)\\ = l for all neN and
therefore rC(T T)(A) = l, although aT{Ax)£oT(x) for all xeX by Proposition 2. This
illustrates how (1), (2), and (3) fail to hold in this situation.
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4. Spectral subspaces of C(S, T): the convex case

The first observation of this section is simple enough and seemingly innocuous.
However, as we shall see in the proof of Theorem 10, it has quite far-reaching
consequences. As before, let X and Y denote complex Banach spaces.

Lemma 9. / / r^O and if the operators TneL(X,Y) for all neN satisfy the condition
that limsup,,^ ||rnx||1/n^r for all xeX, then limsupn^00||Tn||1/n^r.

Proof. Let e>0 be given. Since limsupn-.00||Tnx|j1/'Igr for all xeX, it follows that,
for each xeX, there is a number JWX^1 such that llTnX^r+eyll^M* for all n e N . The
uniform boundedness principle then implies the existence of a number M ̂  1 for which
||Tn/(r + e)"||<;M for all neN, and from this we conclude that limsupn^00||Tn||1/n^r + e.
Since e > 0 is arbitrary, the claim of the lemma follows.

An immediate application of Lemma 9 is the following: if we take Tn: = T" for all
neN with the arbitrary operator TeL(X), then we obtain for the spectral radius r(T)
that r{T) = supxeXrT(x). Of course, this relationship between the spectral radius and its
local counterpart may also be seen in other ways.

Given two operators TeL{X) and SeL(Y), we now proceed to characterize the glocal
spectral subspaces S£C{K) of the commutator C: = C(S,T) on the space L: = L(X, Y) for
certain closed sets K s C . Note that the spaces &C(K) coincide with the corresponding
local spectral subspaces LC(K), whenever C has SVEP. In (3) the analogue of one of the
inclusions holds in general, if phrased in terms of the glocal subspaces. This version has
been obtained in [15, Proposition 2.1] by a refinement of the Foias-Vasilescu methods
[10] and asserts that

&c(K)c{AeL(X, Y):A&T(F)c<&s(F + K) for all closed FgC}, (5)

without any particular assumption on the operators T and S and the closed set K £ C.
From Proposition 8, we know that the inclusion (5) will be strict in general, even if T is
the restriction of a decomposable operator. However, the dual condition on T, namely
that of being the quotient of a decomposable operator, together with a geometric
restriction on the set K, will allow us to obtain the following positive result for
completely arbitrary SeL(Y).

Theorem 10. / / TeL(X) has property (<5) then, for any SeL(Y) and any closed convex
set K £ C, we have that

£ec(K) = {AeL(X,Y):AarT(F)£<3/s(F + K) for all closed F s C } . (6)

Proof. Clearly, this result covers the case where K is a closed disc, and indeed our
proof is based on establishing the equality for such sets first. We start with the special
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case that K is a closed disc of the form K = V(0, r) for some r ̂  0. By (5), it suffices to
verify the inclusion 2 of (6). Hence let AeL(X, Y) be any operator such that
A&T(F)z<&s(F + V(0,r)) for all closed F s C . By part (f) of Proposition 1, we have to
prove that rc(A)^r. Since we assume the operator T to have property (5), we know
from [2] that there exist a decomposable operator ReL(Z) on some Banach space Z
and a surjection QBL(Z,X) such that TQ = QR. Let e>0 be given and choose, by
compactness, finitely many Aj,...,AmeC such that a(R)Q F(A1,e)u---u V(Xm,e). Let
Z,: = ZR(V(A,-,c)) and note that Z; = ZR_Xi(V(0,e)) for z = l,...,m, by part (b) of Proposi-
tion 1. Since R is decomposable, we have Z = Zx + ---+Zm, and each of the spaces Z,
for i= l , . . . ,m is closed and invariant under R. Moreover, if we let Rt=(R — A,)|Zf, then
o-(/?i)SV(0,e) for i=l,...,m, for instance, by [8, Proposition 1.3.8]. Hence, by the
formula for the spectral radius, there exists a number M e ^ l such that ||i?J'||^Afe(2e)"
for each i=\,...,m and all neN. Next, let Yi: = <&s_Xl(V(0,£ + r)) = !3fs{y{ki,E + r)) and
S,:=(S—A,-)| y; for i=l,...,m. Since the condition TQ = QR obviously yields QZ.s
#"r(V(A,-,e)), it follows from our assumption on A that AQZ^Yt for i=l, . . . ,m. Thus
part (f) of Proposition 1 implies that limsupn^ao||S"Ag2||1/n^r+e for all zeZ,- and
i=l,...,m. Consequently, from Lemma 9 applied to Tn: = S"AQ\Zi for all neN, we
obtain a number iVe^l such that ||S"/4Q|Zi||^A^e(r + 2£)" for each i=l,...,m and all
neN. Now, let xeX be arbitrarily given and write x = Qz^-\- \-Qzm, where ZjeZ,- for
i=\,...,m. Then, for each neN, we obtain, via (4), that

^ E \\C(Si,Ri)
n(AQ)zi\\

\\
i=l\\k =

It follows that limsupn^^ 11C(S, T)"(A)x\\1"'^r+4e for each xeX. Another application
of Lemma 9 yields that limsupn..0O||C(S, T)(1(/l)||1/"gr+4£. Since £>0 is arbitrary, it
follows that rc(/4)gr. By part (f) of Proposition 1, this means precisely that
A e JS?C(V(O, r)), which completes the proof of (6) for the special case of a disc of the form
K = V(0,r).

Next, given an arbitrary closed disc /C = V(A,r) centered at AeC, we obtain, via part
(b) of Proposition 1, that
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s. r,( V( A, r)) = J?C(S. r ) _ ,(V(0, r)) = J2fC(S _ ,. T)( V(0, r))

)) for all closed F<=

= {AeL(X, Y):A£T(F)'=<$/s(F + V(X,r)) for all closed F e C } .

This shows that (6) holds for all closed discs.
Now, let K be any closed, convex and bounded subset of C. In this case, K is the

intersection of all the closed discs containing it, i.e. we have K = f)xKa for a family of
closed discs KX^C. To establish the inclusion 2 of (6) in this case, consider an
arbitrary operator AeL{X, Y), for which A2FT(F)c<S/s(F + K) for all closed F^C. Then
we have / 1 # Y ( F ) C ^ S ( F + K J for every a and every closed set F s C . Hence, by the
preceding part of the proof, we see that /4ei?c(Ka) for every a and therefore
Aef)ayc(Kx). Since all the sets Ka are convex, it follows from part (c) of Proposition 1
that the latter space equals ^C(K)- Thus A e yc(

K)> which, together with (5), completes
the proof of the identity (6) in the case of bounded sets.

The final step consists in reducing the general case to the bounded one. This may be
done as follows: given an arbitrary closed convex set K s C , we choose a radius s^O
large enough that <7(T)u<x(S)£V(0,s). Then K n V(0,2s) is closed, convex and bounded.
If AeL(X, Y) has the property that A3CT{F)^'&S(F + K) for all closed sets F s C , then it
follows from part (a) of Proposition 1 that

ASCT{F) = A9CT{Fr\a{T)) = ASCT{Fr\ V(0, s)) c <&S({F n V(0, s)) + K)

n V(0,s)) + K) n V(0,s))£%(F+(Kn V(0,2s)))

for all closed F s C . Consequently, we obtain from the result in the bounded case that
A €^C(K n V(0,2s))£i?c(K). By (5), this completes the proof of the theorem.

The following is a general version of the equivalence (1).

Corollary 11. / / TeL(X) has property (<5) and SeL(Y) has SVEP, then the following
assertions are equivalent:

(a) AXT(F) E YS(F) for all closed F £ C.

(b) ASCT(F)^<&S(F) for all closed F s C .

(c) rC(S,r)(/l) = 0.

Proof. With K: = {0}, the equivalence of (b) and (c) is immediate from Theorem 10
and Proposition 1, while (c) always implies (a) by [14, Proposition 2.2]. Finally, since S
is assumed to have SVEP, assertion (a) implies that ASCT(F)<^AXT(F)<=:YS(F)=<&S(F)
for all closed F e C and hence (b).

S. Spectral subspaces of QS, T): the general case

The purpose of this section is to obtain, for suitable operators T and S, the
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description (6) of the spectral subspaces S£C(K) of the commutator C: = C(S, T) without
any geometric condition on the underlying closed subset K of the complex plane. As
mentioned earlier, Foias. and Vasilescu have established formula (3) for arbitrary
compact sets K E C , provided that both T and S are decomposable; see [10, Theorem
2.5] and also [21, Theorem 4.6.7]. Examination of their proof reveals that the condition
on S may be relaxed to that of assuming only Dunford's property (C). Moreover, using
the argument from the last step in the proof of Theorem 10, it is easily seen that the
formula extends from compact sets to arbitrary closed subsets. It follows that the
identity (6) holds for arbitrary closed K^C, whenever T is decomposable and S has
property (C).

In Theorem 13, we shall extend this result to the case that T has property (8) and S
has property (C). It seems that the very long and technical argument of [10] is hard to
mimic in this more general situation, but fortunately the Albrecht-Eschmeier characteri-
zation [2] of property (5) suggests another natural approach. In fact, if T has (<5), then
T is similar to the quotient of a decomposable operator R on a suitable Banach space
Z, hence the classical Foias-Vasilescu result will apply to the commutator C(S,R), and
it remains to compare the local spectra of C(S, R) and C(S, T). The last step turns out to
be a bit harder than one might expect and will require a closer look at the analytic
functional models developed by Albrecht and Eschmeier [2].

A diagram will illustrate what is going on. We assume that X, Y, and Z are complex
Banach spaces and that TeL(X), SeL(Y), and ReL(Z) are given operators. Moreover,
we suppose that T is a quotient of R; thus there exists a surjective operator Q e L(Z, X),
which intertwines in the sense that TQ = QR. Let the kernel of Q be denoted by Zo.
Then Zo is invariant under R, and we may define R0: = R\Z0eL(Z0). Finally, let
ieL(Z0,Z) be the canonical injection and consider an arbitrary operator AeL(X, Y).
Note that the following diagram commutes on the left side and in the middle, but there
is no such restriction on the right.

(7)

Lemma 12. //, in diagram (7), the commutator C(S,R0) has SVEP, then we have
)(^6) = (Tc(s.r((^)- ln particular, this identity holds whenever Ro has property (<5) and

S has property (C).

Proof. By Proposition 4, the last statement is indeed a consequence of the first. As
pointed out to the authors by the referee, the main claim is immediate from the
following simple principle, which has to be applied to suitable commutators: if

is an exact sequence of continuous linear operators between Banach spaces which

z
Ri
z

A X ^*

Ti
X -^*

Y

Si
Y
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intertwines the operators TeL(X), SeL(Y), and ReL(Z) and if the operator R has
SVEP, then as{j(x)) = aT(x) holds for all xeX.

It is not hard to see that <rC(S,R)(AQ) is always contained in oC(ST)(A) and that these
two sets have the same polynomially convex hull whenever C(S,R) has SVEP. The
following example will show, however, that, in (7), we may well have <rC(S_R)(AQ) #
CTC(S T)(A), even if both R and S are decomposable. Note that, in this case, C(S, R) will
have SVEP by Proposition 4, while C{S,R0) cannot have SVEP by Lemma 12.

Example. Consider the Hilbert spaces X:=Y: = S2(N) and Z:=<?2(Z), let TeL(X)
and ReL(Z) denote the left shifts on X and Z, respectively, and let QeL(Z,X) be the
canonical surjection such that TQ = QR. Then R is a unitary operator and therefore
decomposable, and it is well-known and easily seen that <j(/?)=T, the unit circle. If we
take S to be the zero operator on ^2(N), then C(S,R) becomes right multiplication by
-R on the space L(Z,X), which implies that a{C(S,R))= -<r(R)=T. In particular, it
follows that aC{SR)(AQ)^<j(C(S,R)) = T for all AeL(X). On the other hand, note that T
is a quotient of the decomposable operator R and therefore has property (<5). Moreover,
C(S, T) is the operator of right multiplication by — T on L(X), and from this it is easily
seen that C(S,T) is a semishift. By Proposition 2, we conclude that ffc<s, nM) = ̂ (0,1) =
o(C(S, T)) for all non-zero A e L(X). Combining these observations, we obtain that
oC(S R)(AQ) is strictly contained in oC{ST){A), whenever AsL(X) is non-zero.

We now state and prove the main result of this section.

Theorem 13. Suppose that TeL(X) has property (5) and that SeL(Y) has property
(C). Then the commutator C: = C(S, T) on the space L: = L(X, Y) has property (C), and, for
each closed K^C, we have that

for all closed F^C}.

Proof. We first employ the Albrecht-Eschmeier functional model given in [2,
Theorem 2.9]: for any operator TeL(X), there exist Banach spaces Z t and Z, a
decomposable operator R^&LiZ^), an operator ReL(Z) with property (/?), and
operators JeL(ZuZ) and QeL(Z,X) so that the following diagram is commutative
with exact rows:

0— Z , ^ Z A X - > 0

Remarkably, the Albrecht-Eschmeier model holds for any T, and one may even choose
Rt to be generalized scalar and R to be a restriction of a generalized scalar operator,
but this additional information will not be needed here. Since we assume that our given
operator T has property (5), we conclude from [2, Lemma 1.2] that R has (5) as well.
But R already has property (/?) and hence becomes decomposable. Moreover, by
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exactness, the operator R0: = R\kerQ is similar to Rt and hence also decomposable.
This means that Lemma 12 applies to the present situation. Now, to prove the theorem,
we first note that C(S,T) has SVEP by Proposition 4 and hence that LC(S> T)(K) =
•^C(S.D(^) fof each closed K^C It remains to show the converse inclusion in (5). Let
J ( £ C b e a given closed set, and suppose that AeL(X, Y) satisfies /l^"r(F)s^s(F + /C)
for every closed set F g C . Since TQ = QR, we have that QZR(F) = Q£?R(F)^&T(F) and
hence AQZR(F)^%(F + K)=YS(F + K) for all closed FeC . By the Foia§-Vasilescu
result [10, Theorem 2.5], we see that AQsLC(SR)(K) and thus ffC(StJ!|(/lg)c/(. But from
Lemma 12 we know that aC(S R)(AQ) = aC(S_ T)(A) and therefore A e LC{S T)(K). Using (5),
we thus obtain the desired description of the spectral subspaces of C(S, T). This
characterization shows, in particular, that C(S, T) inherits property (C) from S. The
theorem is proved.

Remark. As an immediate consequence of the preceding result, we obtain descrip-
tions of the spectral subspaces for the right and left multiplication operators RT and Ls

on the space L: = L(X,Y), where, as before, RT(A): = AT and LS(A): = SA for all
AeL(X, Y). Indeed, if TeL(X) has property (<5), then Theorem 13 shows that RT has
property (C) and that the identity

LRT(K) = {AeL(X, Y):A&T(F) = {0} for all closed FcC\K} (8)

holds for each closed X s C . Similarly, if SeL(Y) has property (C), then the left
multiplication operator Ls has property (C), and, for each closed K^C, we have

LLs(K) = {AeL(X,Y):AX^Ys(K)}. (9)

It is interesting to note that the last formula remains valid under the weaker assumption
that S has SVEP. In fact, in this case, it is straightforward to verify the Ls has SVEP
and that the inclusion £ holds in (9). To see the converse, let K s C be closed and
AeL(X,Y) be such that AX^YS(K). If HK denotes the Frechet space of all analytic
functions f:C\K->Y, we obtain a mapping F:X-+HK such that (S-k)(F{x)(X)) = Ax for
all xeX and all XeC\K. Since S has SVEP, it follows that F is linear. Moreover, if
xneX and feHK are given such that xn-*0 in X and F(xn)->f in the topology of HK,
then, for each fixed keC\K, we have that (S-A)/(l) = limn^0O(S-A)(F(xn)(A)) =
limn_0O^xn = 0 and therefore f = 0 on C\K, again by SVEP. The closed graph theorem
now implies that F is continuous. In particular, it follows that, for each XeC\K, the
operator Fk:X-*Y, given by Fx(x): = F(x)(X) for all xeX, belongs to L{X, Y). Since
(Ls — A)FX = A for all AeC\K, it remains to be seen that Fx depends analytically on
AeC\K. By Morera's theorem, it suffices to show that this operator function is norm
continuous. Hence, let A e C\K and choose r > 0 such that V(A, 2r) s C\K. Then, for each
fixed xeX, a standard application of Cauchy's integral formula leads to the estimate
\\(Fx(x)-F,(x))/(X-ti)\\^MJr for all tieV(lr) with ^X, where Mx: = sup{||F;(x)||
:(eV(A,2r)}<oo. By the uniform boundedness principle, we obtain a constant M>0
such that \\(Fi-FJ/{X-n)\\^M and therefore | |FA-Fj^M|A-// | for all /<eV(A,r)

https://doi.org/10.1017/S0013091500019106 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019106


LOCAL SPECTRAL PROPERTIES OF COMMUTATORS 327

with n#A. This shows that Fx does indeed depend continuously on AeC\K and hence
completes the proof of (9). It would be interesting to know if the corresponding formula
(8) for the right multiplication operator RT can be obtained under suitable weaker
assumptions on T. For instance, we do not know if (8) holds, when T* has SVEP.

6. Decomposability of C(S, T)

We finally turn to the problem of decomposability for commutators and multiplica-
tion operators. In the case of Hilbert spaces X and Y, this problem has been settled in
[3]: indeed, in this case, an operator TeL(X) is decomposable if and only if RT is
decomposable on L(X, Y), and similarly, an operator SeL(Y) is decomposable if and
only if Ls is decomposable on L(X, Y); moreover, if T,SeL(X) are both decomposable,
then the commutator C(S, T) is decomposable not only on L(X), but also on various
operator ideals of L(X), for instance, on the compact operators and on the Hilbert-
Schmidt operators. However, in the case of Banach spaces, it seems to be an open
problem whether the commutator of two decomposable operators has to be decompos-
able. Here we shall obtain a positive result for a slightly restricted class of operators,
which is large enough to contain basically all the prominent examples of decomposable
operators.

Recall from [13] that an operator TeL(X) on an arbitrary complex Banach space X
is said to be super-decomposable if, for every open cover {U, V} of C, there exists an
operator QeL(X), which commutes with T and satisfies o(T\Q(X))^U and
CT(T|(/ — Q)(X))^ V, where / denotes the identity operator on X. Standard examples
include the spectral operators in the sense of Dunford and, more generally, all operators
with a non-analytic functional calculus on an algebra of functions with partitions of
unity; see [13] for the theory of super-decomposable operators and [3] for an example
of a decomposable operator, which is not super-decomposable. If an operator TeL(X)
has property (C), then it is clear from [8, Proposition 1.3.8] and [13, Theorem 1.4] that
T is super-decomposable if and only if, for every open cover {U, V) of C, there is a
QeL(X) such that QT=TQ, Q{X)^X-,{€), and (/-Q)(X)£XT(V). From this charac-
terization and the descriptions (8) and (9) of the spectral subspaces of multiplication
operators, we obtain immediately the following permanence property.

Proposition 14. / / TeL(X) and SeL(Y) are super-decomposable on the complex
Banach spaces X and Y, respectively, then so are the corresponding multiplication
operators RT and Ls on the space L(X, Y).

Proof. Given arbitrary open sets U, KsC with t /u V=C, we choose QeL(X) such
that QT = TQ, Q(X)^XT(O), and (I-Q)(X)^XT(V). For each closed set F s C with
F n l / = 0, we obtain that QXT(F)^XT(F)nXL(U) = XT(Fn U) = XT(Q) = {0}. By
formula (8), this implies that RQ(A) = AQeLRT(U) for all_ A eL(X,Y). The same
argument shows that R,-Q maps L(X, Y) into the space LRT(V). Since RT has property
(C) and commutes with RQ, we conclude that RT is super-decomposable. In the case of
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Ls, the proof is even shorter and therefore omitted; see also [13, Theorem 3.6] for the
special case X = Y.

Note that, by [3, Corollary 1.2], there is a certain converse to the preceding result: if
the operators RT and Ls are decomposable, so are T and S, provided, of course, that
the underlying Banach spaces are non-zero. Proposition 14 leads to our final result.

Theorem 15. Let TeL(X) and SeL(Y) be operators on complex Banach spaces X and
Y. If RT and Ls are decomposable on the spaces L{X) and L(Y), respectively, then the
commutator C(S, T) is decomposable on L(X, Y). In particular, C(S, T) is decomposable
whenever both T and S are super-decomposable.

Proof. We may assume that both spaces X and Y are non-zero and consider first
the special case X = Y, in which L(X, Y) = L(X) becomes a unital Banach algebra. Then
clearly RT(AB) = ART{B) and LS(AB) = LS(A)B for all A,BeL(X). Since RT and Ls have
property (5), we conclude from [18, Theorem 3.1] that C(S,T) has (5). On the other
hand, since we know from [3, Corollary 1.2] that T and S are decomposable, we infer
from Theorem 13 that C(S, T) also has property (C) and hence becomes decomposable.
This settles the case X = Y. The general case can be reduced to this special case by
considering the canonical extensions of the operators T and S to the direct sum
Z: = X@Y. Indeed, let T,SeL(Z) be given by T(x,y):=(Tx,0) and S(x,y): = (0,Sy) for
all xeX and yeY. By [3, Corollary 1.2] and [8, Proposition 2.1.8], the operators t and
S are decomposable on Z. Using (8) and (9), it is then easily seen that the corresponding
multiplication operators Rf and Lj are decomposable on the space L(Z). By the first
part of the proof, this implies that C(S, T) is decomposable on L(Z). A simple
verification, based on the description of the spectral subspaces given in Theorem 13,
shows that this entails the decomposability of C(S, T) on L{X, Y), which completes the
proof of the main assertion. The final statement is now clear from Proposition 14. As
pointed out by the referee, this last assertion also follows directly from [4, Theorem 3.4]
or [6, Corollary 2.5].
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