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Abstract
The shallow ice approximation (SIA) model in strong form is commonly used for inferring the
flow dynamics of grounded ice sheets. The solution to the SIA model is a closed-form expression
for the velocity field. When that velocity field is used to advance the ice surface in time, the time
steps have to take small values due to quadratic scaling in the horizontal mesh size. In this paper,
we write the SIA model in weak form and add in the free-surface stabilization algorithm (FSSA)
terms. We find numerically that the time-step restriction scaling is improved from quadratic to
linear, but only for large horizontal mesh sizes. We then modify the weak form by adding the ini-
tially neglected normal stress terms.This allows for a linear time-step restriction across the whole
range of horizontal mesh sizes, leading to improve efficiency. Theoretical analysis demonstrates
that the inclusion of FSSA stabilization terms transitions the explicit time-stepping treatment of
second derivative surface terms to an implicit approach. Moreover, a computational cost analy-
sis, combined with numerical results on stability and accuracy, advocates for preferring the SIA
models written in weak form over the standard SIA model.

1. Introduction

The shallow ice approximation (SIA) problem is a commonly used momentum balance model
which describes the non-Newtonian, viscous, gravity driven flow of the ice in grounded ice
sheets (Hutter, 1983). The model is typically used either as a standalone model or in combina-
tion with the shallow shelf approximation (SSA) in hybrid models for sea-level rise predictions
(Goelzer and others, 2020, Seroussi and others, 2020) on time scales of a few hundred years.
Another use case is paleoclimate spin-up simulations (Seroussi and others, 2019) and pale-
osimulations with duration 10 000 years (Weber and others, 2021) and 5 million years (Pollard
and DeConto, 2009). The SIA model is a simplification of the nonlinear (full) Stokes problem
on the premise that an ice sheet is thin, neglecting all stress-components except vertical shear
stresses. The advantages of the SIA problem over the nonlinear full Stokes problem are that the
standard SIA problem is linear with respect to the velocity and computationally less expensive
to solve. Some of the disadvantages when compared to the nonlinear Stokes problem are (i) the
degraded model accuracy and (ii) that when coupled to the free-surface equation the simula-
tion time steps have to be taken very small at high mesh resolutions. The time-step restriction
for an SIA model with an explicit or a semi-implicit discretization of the free-surface equation
is of the form Δt < CΔx2, where Δt is the time step, and Δx is the horizontal mesh reso-
lution (Hindmarsh and Payne, 1996, Hindmarsh, 2001, Bueler and others, 2005, Cheng and
others, 2017). Only for extremely thin ice or steep surface gradients, a linear time-step restric-
tion occurs (Cheng and others, 2017). A recent study showed that this quadratic behaviour
carries over to hybrid models combining the SIA model with the SSA model (Robinson and
others, 2022). Resolving complex coastal ice dynamics requires a fine spatial resolution in the
horizontal direction, so that Δx may be less than 1 km locally, and a time resolution of around
0.1–10 years (Bueler, 2023). Using the SIA velocity fields, the simulations, however, require sig-
nificantly finer time resolutions due to numerical instabilities, rather than physical instabilities
(Bueler, 2023). To alleviate the problem when considering moving ice margins, the SIA model
was combined with a fully implicit time stepping scheme in Bueler (2016). This requires an
implementation of a nonlinear iteration increasing the computational cost and is not guaranteed
to converge for bedrocks with steep gradients when the horizontal resolution is fine.

The SIA model is most commonly posed in strong form from which a closed-form solution
(explicit expressions) is obtained. Evaluating the closed-form solution requires (i) numerical
differentiation of the ice surface position and (ii) numerical integration in the vertical direction,
observed from the bedrock to the ice surface. To facilitate (ii), the mesh vertices have to be
aligned over lines following the vertical direction, i.e. extruded meshes are needed. A simpler
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approach to implementing the SIA model in software based on
finite elementmethod (FEM) is to pose the SIAmodel inweak form
and solve the problem as a coupled system.This is computationally
more expensive as compared to evaluating a closed-form solution,
but theweak formSIAmodels are still a linear problemwith respect
to the velocity, in addition allowing for fully unstructured meshes
and an easier implementation using one of the FEM libraries. SIA
models are implemented in a weak form in at least two of the large-
scale FEM ice sheet models (Larour and others, 2012, Gagliardini
and others, 2013).

FSSA (free-surface stabilization algorithm) is an easy-to-
implement, computationally inexpensive method for overcoming
the small time steps invented for mantle convection simulations
(Kaus and others, 2010) and later introduced in the scope of ice
sheet modelling for the nonlinear (full) Stokes problem (L ̈ofgren
and others, 2022, 2023). One of the requirements of the stabiliza-
tionmethod is that the governing equations are written as a system
of equations in weak form.

In this paper, we consider the SIA models written as a sys-
tem of equations in weak form. This makes it possible to add the
FSSA stabilization terms. We discuss how the weak SIA formu-
lation can best be implemented using FEM and how it can be
combined with FSSA. We show computationally that when the
SIA problem is stabilized by using the FSSA terms, the time-step
restriction is improved from quadratic to linear scaling in terms of
the horizontal mesh size. We further modify the weak SIA formu-
lation to the weak linear Stokes formulation, which is a full Stokes
model using the SIA viscosity function.Themodel does not require
evaluating nonlinear iterations but at the same time includes all
stress components in the momentum balance. We argue that this
improves the model robustness in terms of the numerical stability
but also improves the model accuracy (as compared to the weak
SIA formulation) for a negligible increase in the computational
cost. For all the enhanced SIA formulations, we give a theoreti-
cal performance analysis estimating the operation count and draw
a comparison towards the operation count of the standard SIA
formulation. We focus our study on simplified two-dimensional
(2-D) ice sheet domains: slab on a slope with a surface perturba-
tion (Hindmarsh, 2001, Cheng and others, 2017), an idealized ice
cap and a horizontal cross section of Greenland (Morlighem and
others, 2017).

The paper is organized as follows. In Section 2, we state the
different SIA and Stokes formulations that we consider in this
paper, togetherwith the free-surface equation. In Section 3, we pro-
vide information on the semi-implicit time-stepping method for
solving the free-surface equation. In Section 4, we outline the spa-
tial discretization methods for solving the momentum balances.
In Section 5, we define the FSSA stabilization terms and make
indications on how their addition to the SIA model impacts the
free-surface equation. In Section 6, we outline a computational
cost analysis of the considered SIA formulations. In Section 7, we
provide the results to a set of numerical experiments assessing
the time-step restrictions and the error vs runtime ratios for all
the considered SIA formulations. In Section 8, we give our final
remarks.

2. Governing equations

In this paper, we consider ice sheets that evolve in their shape as a
function of time t. A simplified 2-D ice sheet geometry is accounted
for by a computational domain Ω = Ω(t). One of the approaches
to advance Ω(t) from time tk to time tk+1 is to:

Figure 1. A sketch representing the ice sheet boundary 𝜕Ω subdivision into parts:
Γl (the two lateral boundaries), Γs (the ice sheet free surface) and Γb (the ice sheet
bedrock).

(1) solve the momentum balance equations over Ω(tk) for hori-
zontal and vertical velocity components uk1 and uk2,

(2) extract the ice sheet surface velocities uk1,s and uk2,s from uk1 and
uk2 respectively,

(3) solve the free-surface equation using uk1,s, uk2,s as data coeffi-
cients to get a new ice sheet domain Ωk+1.

In this section, we state the free-surface equation and all the
different momentum balance equations that we consider in this
paper.

2.1. Free-surface equation for advancing the ice surface in time

To compute the evolution of the ice surface function h = h(x, t) in
time, we solve the free-surface equation:

𝜕th = −u1,s(x, h) 𝜕xh + u2,s(x, h) + a(x, h),
t > 0, x ∈ Ω⟂,

(1)

where Ω⟂ is a projected domain only taking into account the hor-
izontal components of Ω. Furthermore, u1,s(x, h) and u2,s(x, h)
are the surface horizontal and vertical velocity functions respec-
tively. Term a = a(x, h) is the surface mass balance in this paper
set to a(x, h) = 0. We chose to work with the free-surface equa-
tion rather than the thickness equation (common when using the
SIA models), as this allows for better flexibility in terms of using
the free-surface equation discretizations already available from the
existing full Stokes model codes such as Elmer or ISSM. The two
equations can be derived one from another without any spurious
residual terms.Their properties in terms of the largest feasible time
step do not differ from an asymptotical perspective (comparing
Cheng and others (2017) and Appendix A).

The evolution of the ice surface height h defines the evolution
of shape of the domain Ω, where Ω is representing the volume of
an ice sheet.The boundary of the domain 𝜕Ω ⊂ ℝ consists of three
disjoint parts:

𝜕Ω = Γb ∪ Γs ∪ Γl,

where Γb is the ice sheet bedrock, Γs is the ice sheet free surface
defined by the surface height h andΓl is the ice sheet lateral bound-
ary. A sketch of an ice sheet with the corresponding domain parts
is given in Fig. 1.

As is observed from (1), the surface h is a function of the veloc-
ities u1 and u2. The velocities are computed before solving (1), by
solving the momentum balance equations (SIA or Stokes) over Ω.
The coupling between h, u1 and u2 has an important impact on the
time-step restriction in the ice sheet simulations and is thus one of
the main focus points of this paper.

When solving (1), we impose the boundary conditions as fol-
lows. We let the lateral margins of the ice sheet surface fixed and
use either the periodic boundary conditions:
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h(xL, t) = h(xR, t), (2)

where xL = minx∈Ω x and xR = maxx∈Ω x or Dirichlet boundary
conditions:

h(xL, t) = 0, h(xR, t) = 0. (3)

This excludes influence from nonlinearities introduced by the
moving lateral boundaries, which is a complex problem in itself
(Werder and others, 2013,Wirbel and Jarosch, 2020, Bueler, 2023).
The margins are sometimes fixed in practice for technical rea-
sons, see some of the models in the ISMIP6 Antarctica benchmark
(Seroussi and others, 2020), but it is important to get the right
physical response.

2.2. Strong form nonlinear full Stokes equations

We use the full Stokes equations as a reference model for com-
puting the velocity field u = (u1, u2) over an ice sheet geometry,
when drawing the comparison towards solutions of the differ-
ent SIA model formulations. This is reasonable as the SIA model
is an approximation of the full Stokes equations. The full Stokes
equations are:

−∇ ⋅ (2𝜇*(Du)Du) + ∇p = 𝜌g onΩ,
∇ ⋅ u = 0 onΩ,

(4)

where 𝜌> 0 is the ice density, g = (0, −9.81)ms−2 is the gravita-
tional acceleration, p is the pressure and the symmetric strain rate
tensorDu = 1

2
(∇u + ∇uT) is defined through four components:

D11 = 𝜕xu1, D12 = 1
2 (𝜕yu1 + 𝜕xu2),

D21 = D12, D22 = 𝜕yu2.
(5)

The viscosity function 𝜇* = 𝜇*(Du) relates the strain rates to the
deviatoric stress tensor Su as

Su = 2𝜇*(Du)Du, (6)

and is defined by:

𝜇*(Du) = A(T)− 1

n (12 ‖Du‖2F + 𝜀2)
1−n

2n . (7)

Here n> 0 is Glen’s exponent (we use n= 3 throughout the paper),
A(T) is constant since we consider isothermal conditions and 𝜀 is
the regularization parameter (a small number) which we define as
in Hirn (2013).

In all the considered test cases, we impose stress-free boundary
conditions (Du− pI) ⋅ n = 0 at the ice sheet surface Γs, where n is
the normal vector pointing outwards of Γs. Depending on the test
case, we impose either the periodic or the no-slip (u = 0) bound-
ary conditions over the ice sheet lateral boundary Γl. On the ice
sheet bedrock Γb, we impose no-slip boundary conditions in all
test cases.

In this paper, we use full Stokes equations written in weak
form (abbreviated W-Stokes) defined later in the final paragraph
of Section 2.5. The full Stokes equations are nonlinear which leads
to an increase in computational cost when discretized and solved
on a computer, as compared to a linear problem such as the SIA
equations.

2.3. Strong form SIA equations (SIA)

The SIA model is derived by using that the normal stress devia-
tors are negligible compared to vertical shear stress. Also, due to

the disparity in the order of magnitudes of the spatial derivatives of
velocity components, the horizontal derivative of the vertical veloc-
ity can be neglected. The stress tensor S as defined in (6) is then
(Greve and Blatter, 2009):

S = [S11 S12
S12 S22

] ≈ [ 0 S12
S12 0 ] = [ 0 𝜇𝜕yu1

𝜇𝜕yu1 0 ] . (8)

The strong form SIA equations are:

−𝜕y𝜇𝜕yu1 + 𝜕xp = 0 onΩ,
𝜕yp = 𝜌g onΩ,

𝜕xu1 + 𝜕yu2 = 0 onΩ,
(9)

where g = −9.81ms−2 is the second component of the gravity vec-
tor g defined in the scope of Section 2.2. The boundary conditions
for (9) are:

u1 = 0 onΓb, u2 = 0 onΓb,
p = 0 onΓs, S12 = 0 onΓs,

(10)

where the different ice sheet domain parts are illustrated in Fig. 1.
We let y ∈ [b(x), h(x)] be the vertical ice sheet coordinate, where
b(x) and h(x) are the bedrock height and the free-surface height
respectively, and where x is the horizontal coordinate of an ice
sheet. As the pressure is decoupled from u1 and u2, we first solve
the second equation of (9) for pressure. We vertically integrate the
equation from y to h(x) and obtain:

p = 𝜌g(y − h), (11)

where we additionally used that p(x, y = h) = 0. Inserting this
hydrostatic pressure in the first equation of (9) and solving for
S12 = 𝜇𝜕yu1 using the vertical integration give:

S12 = 𝜌g 𝜕x(y − h), (12)

where we also used that S12(x, y = h) = 0. We then compute
the SIA viscosity 𝜇 starting at the relation of fluidity (Greve and
Blatter, 2009): 𝜇−1 = 2A(T)𝜎n−1

e = 2A(T)‖S‖n−1
F . In the rela-

tion, we first use n= 3 and then ‖S‖2F ≈ S212 arising from (8).
Simplifying A(T) ≈ A0 and taking an inverse of the fluidity rela-
tion give 𝜇 = 1

2
A−1
0 (S212)−1. Finally, inserting (12) gives the SIA

viscosity:

𝜇 = 1
2A

−1
0 (𝜌g)−2 (y − h(x))−2 (|𝜕xh(x)|2)−1

≈ 1
2(A0(𝜌g)2(y − h(x))2(|𝜕xh(x)|2 + 𝜀)−1,

(13)

where we have in the end also added Hirn’s regularization param-
eter preventing the viscosity from taking infinite values where
|𝜕xh(x)|2 ≈ 0.We observe that the SIA viscosity (13) only depends
on y and h(x), but not on the velocity. To derive (13), we also
assumed isothermal conditions A(T) = A0 = 100 MPa−3yr−1,
where T is the temperature, but this is generally not a limitation
of the SIA model. Using the viscosity function (13), the horizontal
velocity u1 is given by integrating the first equation of (9) along a
vertical line from the bedrock height b(x) to y and inserting that
u1|b(x) = 0. The vertical velocity u2 is obtained by inserting the
computed u1 into the third equation of (9), integrating over a ver-
tical line from b(x) to y and inserting u2|b(x) = 0. The closed-form
expressions are:
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u1 = −1
2A0(𝜌g)3(𝜕xh)3 ((y − h)4 − (b − h)4)

u2 = 1
2A0 (𝜌g)3

× ( (1
5 (y − h)5 − 1

5 (b − h)5 − (b − h)4 (y − b))

× 3(𝜕xh)2 𝜕xxh + ⋯ − (𝜕xh)4 ((y − h)4 − (b − h)4)

− 4(𝜕xb − 𝜕xh) (𝜕xh)3(b − h)3 ((y − h) − (b − h))).

(14)
These closed-form velocity expressions are computationally inex-
pensive to evaluate as compared to solving the full nonlinear Stokes
system.The vertical integration, however, requires the mesh nodes
to be aligned in the vertical direction in the case of adiabatic
conditions, that is, when A varies with depth.

The free-surface equation requires the velocities to be evaluated
at the surface. Setting y= h in (14) leads to:

u1,s = 1
2A0(𝜌g)3(𝜕xh)3 ((b − h)4)

u2,s = 1
2A0 (𝜌g)3

× (( − 3
5 (b − h)5 + 3(b − h)5) (𝜕xh)2 𝜕xxh

+ (4(b − h)4 𝜕xb (𝜕xh)2 − 3(b − h)4(𝜕xh)3) 𝜕xh).

(15)

The derivatives in this expression are evaluated by (i) interpolating
the surface function onto a piecewise linear finite element space,
(ii) taking a derivative within each element of a mesh and (iii) L2-
projecting the element-wise derivative back to the piecewise linear
finite element space.

After inserting the SIA velocities from (14) to the free-surface
Eqn. (1), we write the free-surface equation problem as a nonlinear
advection-diffusion partial differential equation (PDE):

𝜕th = −u1,s 𝜕xh + u2,s = C1(h) 𝜕xh + C2(h) 𝜕xxh, (16)

where:

C1(h) = 1
2A0(𝜌g)3

× ((b − h)4 (𝜕xh)2 + 4(b − h)4 𝜕xb (𝜕xh)2

− 3(b − h)4(𝜕xh)3)

C2(h) = 1
2A0 (𝜌g)3 (−3

5 (b − h)5 (𝜕xh)2

+3(b − h)5 (𝜕xh)2) .

(17)

The time-step restriction has a quadratic scaling in terms of the
mesh size due to the second derivative term (diffusive term) 𝜕xxh in
(16). The standard way to theoretically assess the timestep restric-
tion is to linearize (16) with respect to h and then perform a von
Neumann (Fourier) analysis.Thiswas done in, e.g., Cheng and oth-
ers (2017) for the thickness equation in the case of a perturbed slab
on a slope. We repeat this exercise for the free-surface equation in
the appendix andwill revisit it for a new SIA formulationwhere the
FSSA stabilization of (L ̈ofgren and others, 2022, 2023) is added.

2.4. Weak form SIA equations (W-SIA)

The easiest approach to implementing the SIA equations within an
existing FEM code— such as Elmer, ISSM or FEniCS—is to write
(9) in weak form and discretize the weak form using the standard
FEMs.This also allows for fully unstructuredmeshes, which can be
of higher quality on certain geometries, and is sometimes techni-
cally easier to construct. The weak SIA formulation is obtained by
multiplying each equation of (9) using piecewise continuous test
functions v1 = v1(x, y), v2 = v2(x, y), q = q(x, y), respectively,
and integrating over Ω. The first term of the first equation is addi-
tionally integrated by parts. In the end, the weak SIA formulation
is:

∫
Ω

𝜇𝜕yu1 𝜕yv1 dΩ − ∫
Ω

𝜕xp v1 dΩ = 0,

− ∫
Ω

𝜕yp v2 dΩ = ∫
Ω

𝜌g v2 dΩ,

∫
Ω

(𝜕xu1 + 𝜕yu2) q dΩ = 0,

(18)

where 𝜇 is the SIA viscosity defined in (13). In this paper, we
abbreviate the weak SIA formulation as W-SIA. Solving W-SIA on
a computer is cheaper as compared to solving the full nonlinear
Stokes system (4), since W-SIA is a linear problem due to that the
viscosity is not a function of the computed velocity. W-SIA is pos-
sible to solve in terms of three subsequent matrix systems: first for
pressure, second for u1 and last for u2. This only holds as long as
W-SIA is not further stabilized using the additional stabilization
terms that couple the velocity functions. Adisadvantagewhen solv-
ing W-SIA is that the many stress components are not present in
(18). This implies that the full stress term Su is not guaranteed to
have an upper bound when the problem is solved on a computer
and the mesh size approaches zero. A consequence is potentially
sharp velocity gradients that deteriorate the numerical stability as
well as the solution accuracy.

Under the assumption that the PDEdata are regular enough, the
solution to the weak formulation is identical to that of the strong
formulation. However, we do not expect this to be true numeri-
cally acrossW-SIA (18) and SIA (9), as the surface derivatives in the
closed-form SIA solution (15) are evaluated numerically. The dif-
ferences across the solutions are highly dependent on the choice of
the numerical evaluation of the derivatives. This is also a potential
source of the differences across the two formulations in the largest
feasible time step when using the velocities to advance the surface
function in time.

2.5. Weak form linear Stokes equations employing the SIA
viscosity function (W-SIAStokes)

We add themissing stress components back to (18) resulting in the
following weak formulation:

∫
Ω
2𝜇𝜕xu1 𝜕xv1 dΩ + ∫

Ω
𝜇(𝜕yu1 + 𝜕xu2) 𝜕yv1 dΩ

− ∫
Ω

𝜕xp v1 dΩ = 0,

∫
Ω

𝜇(𝜕yu1 + 𝜕xu2) 𝜕xv2 dΩ + ∫
Ω
2𝜇𝜕yu2 𝜕yv2 dΩ

− ∫
Ω

𝜕yp v2 dΩ = ∫
Ω

𝜌g v2 dΩ,

∫
Ω

(𝜕xu1 + 𝜕yu2) q dΩ = 0.

(19)
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We abbreviate (19) as W-SIAStokes, as that formulation com-
bines the full Stokes problem and the SIA viscosity function. W-
SIAStokes is a linear problem, computationally less expensive to
solve as compared to the full nonlinear Stokes problem. However,
the system can no longer be solved as three separate matrix sys-
tems as is the case in the unstabilized W-SIA formulation (18).
An advantage of W-SIAStokes over W-SIA is a guaranteed bound
over the full stress term Su, which improves the numerical stability
properties as the mesh size goes to 0.

Wenote that the nonlinear full Stokes problem (4) butwritten in
weak form (W-Stokes) takes exactly the same form asW-SIAStokes
(19), where we use the (full) viscosity function (7) instead of the
SIA viscosity (13).

3. Finite difference discretization of the free-surface
equation

We first denote that h = h(x, t) and discretize the free-surface
Eqn. (1) in time using the first order semi-implicit Euler method.
This results in:

hk+1 − hk

Δt = −uk1,s𝜕xhk+1 + uk2,s, k = 1, 2, 3, … (20)

where hk, hk+1 are h(x, tk), h(x, tk+1) respectively, and where uk1,s,
uk2,s are the surface velocities u1(xk, yks ), u2(xk, yks ) extracted from
the bulk velocity functions defined over an ice sheet domain Ωk at
tk. We note that x ∈ Ω⟂, where this domain is defined in the scope
of Section 2.1. Now we discretize the spatial derivatives in (20)
using the second-order accurate centred finite difference stencil
weights, resulting in the following system of equations:

hk+1 − hk

Δt = −diag(uk1,s)Dxhk+1 + uk2,s, k = 1, 2, 3, … (21)

where hk+1
i = h(xi, tk+1), hki = h(xi, tk), (uk+1

1 )i = u1(xi, ys),
(uk+1

2 )i = u2(xi, ys), i = 1, … ,N . The components of the matrix
Dx are defined by the second-order accurate finite difference sten-
cil weights that discretize the first-order derivative operator. The
final time-stepping iteration scheme is:

hk+1 = (I+Δt diag(uk1,s)Dx)−1 (hk+Δt uk2,s), k = 1, 2, 3, … .
(22)

We impose the boundary conditions as described within the scope
of Section 2.1 by reducing the system of equations (22) in the
unknowns related to the Dirichlet conditions or by transforming
the Dx matrix into a circulant matrix in the case when we use the
periodic boundary conditions.

Using a fully implicit schemewould require access to uk+1
1 , uk+1

2 ,
but this is computationally expensive as the velocity functions and
the surface position are coupled. The surface h depends on uk+1

1 ,
uk+1
2 due to (20), while the velocities depend on the surface that

determines the shape of the computational domain Ω on which
we solve the momentum balance equations. As a consequence,
computing uk+1

1 , uk+1
2 requires an expensive nonlinear iteration as

demonstrated in the SIA model case in Bueler (2016).

4. Finite element discretization of the SIA/Stokes models

Throughout the paper, we use FEM not only to solve partial differ-
ential equations in weak form but also to evaluate the surface gra-
dient functions. The meshes we use are extruded. To create a 2-D
ice sheet mesh, we first generate a rectangular mesh with dimen-
sions [xmin, xmax] × [0, 1], where xmin and xmax are the minimum

and maximum horizontal coordinates of the ice sheet geometry.
Thenwe transform the vertical mesh coordinates using an ice sheet
initial surface function.

When evaluating the SIA velocities using the closed-form
expression (14), we employ FEM to evaluate 𝜕xh, the gradient of
the ice sheet surface. We first interpolate h into a piecewise linear
finite element space. After that, we compute the gradient 𝜕xh|Ki

,
i = 1, … ,N over each mesh element Ki. As the gradient of the
piecewise linear function across the element interfaces is discontin-
uous (not well defined), we L2 project the computed gradients back
into a piecewise linear finite element space. By that, we compute a
continuous (well-defined) surface gradient.

When solving the nonlinear Stokes problem (4) in the weak
form, we use Taylor–Hood elements (P2P1) to fulfil the inf-
sup condition (Babuska, 1973, Brezzi, 1974), that is, piecewise
quadratic polynomials for approximating the velocity functions
and piecewise linear polynomials for approximating the pressure
function. This is a requirement to make the finite element dis-
cretization numerically stable.

When solving W-SIAStokes (19), we use the same type of ele-
ments as in the nonlinear Stokes problem case, for the very same
reasons related to numerical stability.

When solvingW-SIA the inf-sup condition does not need to be
fulfilled, and we can therefore use piecewise linear finite elements
(P1P1) for approximating the velocity functions as well as the pres-
sure function. This is an advantage as the amount of unknowns
when using P1P1 elements is smaller as compared to when using
P2P1 elements. This is attributed to the fact that P2 finite element
spaces require an addition of three midpoints over the edges of
a triangle in a mesh, which then increases the total count of the
degrees of freedom.

5. FSSA for the SIA/Stokes models

In L ̈ofgren and others (2022, 2023), the authors introduced FSSA
for the full nonlinear Stokes model to mimic an associated implicit
solver advancing the ice surface from time tk to time tk+1, k =
1, … ,N , where tk+1 > tk. This is done by predicting the gravita-
tional force in the weak form at tk+1 by adding an extra surface
force term:

∫
Ωk+1

𝜌g v2 ≈ ∫
Ωk

𝜌g v2 + 𝜃Δt ∫
𝜕Ωk

(u ⋅ n) 𝜌g v2 ds. (23)

Here 𝜃 ∈ [0, 1] is a user-defined constant parameter. The rela-
tion (23) was derived from a finite difference discretization of the
Reynolds transport theorem (the multi-dimensional Leibniz rule).
The FSSA thus relies on the assumption that the flow is predomi-
nantly gravity-driven so that computing the gravitational force at
tk+1 leads to a good approximation of the ice flow at tk+1. This, in
turn, enables taking larger time steps when solving the free-surface
equation. Hence it is an implicit discretization (L ̈ofgren and oth-
ers, 2022, 2023). From a physics standpoint, the FSSA term is an
extra surface pressure term acting as a damping term—when the
ice is rising, the FSSA term acts as an extra surface pressure, and
when the ice is sinking, it reduces the pressure. FSSA was origi-
nally introduced by Kaus and others (2010) for mantle convection
simulations.

In this paper, we add the FSSA stabilization term to the ver-
tical momentum balance equation. In the W-SIAStokes case (19)
(and similar in theW-Stokes case), the verticalmomentumbalance
equation becomes:
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∫
Ω

𝜇(𝜕yu1 + 𝜕xu2) 𝜕xv2 dΩ + ∫
Ω
2𝜇𝜕yu2 𝜕yv2 dΩ

− ∫
Ω

𝜕yp v2 dΩ = ∫
Ω

𝜌g v2 dΩ + 𝜃Δt ∫
𝜕Ω

(u ⋅ n) 𝜌g v2 ds.

(24)
In the W-SIA case (18), the vertical momentum balance, after
adding the FSSA stabilization term, becomes:

− ∫
Ω

𝜕yp v2 dΩ = ∫
Ω

𝜌g v2 dΩ + 𝜃Δt ∫
𝜕Ω

(u ⋅ n) 𝜌g v2 ds. (25)

In this case, it is the added FSSA term that couples the pres-
sure to surface velocities us. Without the FSSA term, the pressure
is decoupled from the velocity, reducing the computational cost
of the solution procedure. The coupling is, however, essential for
numerical stability reasons.

5.1. Effects of the added FSSA terms onW-SIA

The FSSA term is using the discretized free-surface equation (22)
to estimate how the force of gravity will change between times tk
and tk+1. The argumentation is provided as follows. Assume the
domain Ω is such that the horizontal and vertical integration can
be separated, i.e. ∫Ω(⋅)dΩ = ∫Ω⟂ ∫

y
(⋅)dy dx, where Ω⟂ only con-

tains the horizontal coordinates of Ω and is defined in the scope of
(1).Then the vertical momentum equation (25), after setting 𝜃 = 1,
becomes:

− ∫
Ω⟂

∫
hk

b
𝜕yp v2 dy dx = ∫

Ω⟂
∫

hk

b
𝜌g v2 dy dx

+ Δt ∫
Γk
s

(u ⋅ n) 𝜌g v2 ds.
(26)

As the normal vector and the arc length of a surface are, respec-
tively, defined as n = (−𝜕xh, 1)/√𝜕xh)2 + 12 and ds =
√𝜕xh)2 + 12 dx, we have that (u ⋅ n) ds = (−u1,s𝜕xh + u2,s) dx.
Using that, and (20) to make an additional relation to the dis-
cretized free-surface equation, we write the FSSA term in (26)
as:

Δt ∫
Γk
s

(u ⋅ n) 𝜌g v2 ds = Δt ∫
Ω⟂

𝜌g (−u1,s𝜕xh + u2,s) v2 dx

= ∫
Ω⟂

𝜌g (hk+1 − hk) v2 dx.
(27)

We now look at the expression (hk+1 − hk) v2 as a left point
rule approximation of the integral ∫hk+1

hk
v2 dy. Then we have

∫Ω⟂ 𝜌g (hk+1 − hk) v2 dx ≈ ∫Ω⟂ ∫hk+1

hk
𝜌g v2 dy dx. Combining this

with (27) and then with (26), we obtain:

− ∫
Ω⟂

∫
hk

b
𝜕yp v2 dy dx ≈ ∫

Ω⟂
∫

hk

b
𝜌g v2 dy dx

+ ∫
Ω⟂

∫
hk+1

hk
𝜌g v2 dy dx = ∫

Ω⟂
∫

hk+1

b
𝜌g v2 dy dx.

(28)

Rewriting the double integration in the equation above back to
integration overΩ and inserting that to the FSSA-stabilized vertical
momentum balance (25), we have that:

− ∫
Ωk

𝜕yp v2 dΩ = ∫
Ωk

𝜌g v2 dΩ + Δt ∫
𝜕Ωk

(u ⋅ n) 𝜌g v2 ds

≈ ∫
Ωk+1

𝜌g v2 dΩ.
(29)

The left-hand-side integral of (29) is integrated over Ωk. However,
we observe that the addition of the FSSA terms implies that the
right-hand-side forcing term of (29) is integrated over Ωk+1 in
place ofΩk.Thus, we expect that the solution p from (29) is approx-
imated at time tk+1. When this p is used to compute the velocity in
(18), we expect the computed velocities to also be approximated at
time tk+1. Using such velocities when advancing the free surface in
time through (22) renders an approximately implicit time stepping
treatment, which in turn allows taking larger time steps. A more
precise observation on this effect is given for the strong form SIA
model, which is the focus of the next section.

5.2. Stability analysis of SIA combined with FSSA

In the following section, we show how a strong form version of the
FSSA terms impacts numerical stability of SIA. The strong setting
allows us to derive formulas for the FSSA-stabilized pressure and
also for Fourier analysis. We note that the analysis is meant to give
a better insight into how FSSA works.The results, however, cannot
be directly transferred to the weak setting.

We construct a strong form of FSSA for the strong SIA vertical
momentum equation (9).We do that by starting at the SIA pressure
(11) evaluated at tk, and then adding a scaled normal velocity term,
inspired by the FSSA stabilization term in (25). We have:

pk* = 𝜌g(y − hk) − Δt 𝜌g (u ⋅ n)|y=hk(x). (30)

Assuming that the free surface is close to flat we have that (𝜕xh)2 ≈
0 (equivalent to (𝜕xh)2 ≪ 1). The surface normal is then n =
(−𝜕xh, 1)/√(𝜕xh)2 + 12 ≈ (−𝜕xh, 1). Using this in (30), we
have:

pk* ≈ 𝜌g (y − hk) − Δt 𝜌g (−u1,s 𝜕xh + u2,s). (31)

Using (22) on the second term of the right-hand side of equation
above, we arrive at:

pk* ≈ 𝜌g (y − hk) − 𝜌g (hk+1 − hk)
= 𝜌g (y − hk + hk − hk+1) = 𝜌g (y − hk+1) = pk+1.

(32)

Hence, the FSSA-inspired correction to the SIA pressure in (30)
contributes to approximating pressure at time tk+1. In Appendix A,
we perform the Fourier analysis to show that when using pk+1 to
compute the strong SIA velocities (i.e. using an implicit representa-
tion of the pressure) is enough to alleviate the quadratic time-step
restrictionΔt < CΔx2 when solving the free-surface equation. To
derive this result, we extended the von Neumann type analysis for
a slab on a slope test case from (Cheng and others, 2017). In Cheng
and others (2017), the authors show that, assuming thick ice with
low surface inclination, the quadratic dependence on Δx is:

Δt < 3
5A0|𝜌g|3C2

𝛼 ̄H5(Δx)2, (33)

where C𝛼 is the average surface slope andH the ice thickness. The
result stems from that the vertical velocity u2 contains a second
derivative of the surface 𝜕xxh. Furthermore, the second deriva-
tive of the surface origins from the vertical velocity is a function
of 𝜕xu1, which is in turn a function of the horizontal pressure
derivative 𝜕xp = 𝜌g 𝜕xhk. Following the derivation of the compact
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form free-surface equation (16) with the coefficients (17), we now
write the time discretized free-surface equation when assuming
that the velocities are derived from pk+1, but that the intermediate
integration steps involve hk. We have:

hk+1 = hk + C0 𝜕xhk + C1 𝜕xhk+1 + C2 𝜕xxhk+1 (34)

where:

C0 = 1
2A0(𝜌g)3 (−3(b − hk)4(𝜕xhk+1)3)

C1 = 1
2A0(𝜌g)3((b − hk)4 (𝜕xhk+1)3

+ 4(b − hk)4 𝜕xb 𝜕xhk+1)

C2 = 1
2A0 (𝜌g)3( − 3

5 (b − hk)5 (𝜕xhk+1)2

+ 3(b − hk)5 (𝜕xhk+1)2) .

(35)

We now have an implicit treatment of the leading diffusive 𝜕xxh
term in (34) which leads to a linear time-step constraint:

Δt ≤ (3
2A0|𝜌g|3C3

𝛼 ̄H4)
−1

Δx, (36)

where C𝛼 is the average surface slope. We derive the above time-
step restriction for the slab on a slope with a perturbed ice surface
case in Appendix A and validate the estimate numerically for W-
SIA and W-SIAStokes in the numerical experiments section.

6. Computational cost estimation for the different
SIA/Stokes formulations

The computational work when solving momentum balance mod-
els is highly dependent on both software and hardware. However,
it is still possible to make estimates of the computational cost, for
instance, a type of performance analysis approach of Bueler (2023).
In this section, we make rough estimates of the computational cost
for ice sheet simulations, where the velocity functions are com-
puted using SIA (9), W-SIA (18), W-SIAStokes (19) and W-Stokes
(7), and the ice surface is advanced from time tk to time tk+1,
k = 1, … ,NΔt , using the discretized free-surface equation (22).
We write the approximate computational cost on the form:

Computational cost = C(d, 𝛼)CSm1+𝛾/(d−1)+𝛼,

where:

• m is the number of mesh vertices (nodes) in the horizontal
direction,

• 𝛼 ∈ [0, 2]denotes the choice of a linear solver (𝛼 = 2 dense direct
solver, 𝛼 = 1 sparse direct solver, 𝛼 = 0.05 algebraic multigrid
solver (Bueler, 2023)). For pure SIA, no linear solver is needed
and 𝛼 = 0.

• 𝛾 is the scaling exponent in the simulation time-step restriction
Δt ≤ Ct Δx𝛾, where Δx is the horizontal internodal distance.

• CS is a constant specific to the computational cost of the nonlin-
ear Stokes problem which involves the nonlinear iteration count
and the choice of hardware,

• C(d, 𝛼) is a constant depending on 𝛼 and d, where d is the
dimension count of the considered ice sheet geometry.

Following Bueler (2023), we have that W-Stokes requires
CSm1+𝛼 floating point operations until convergence per one time
step.

Table 1. Computational cost estimates for obtaining the numerical solutions
to a set of considered models. Here, m is the number of mesh vertices in the
horizontal direction, d is the number of dimensions, 𝛼 denotes the choice of a
linear solver, 𝛾 is the time-step vs mesh size scaling exponent, CS is a constant,
related to the choice of the nonlinear solver, that scales the number of nonlinear
iterations used to solve the reference nonlinear Stokes problem (W-Stokes) and
Niter is the number of iterations to solve W-Stokes

Model Computational cost estimate

W-Stokes CSm1+𝛾/(d−1)+𝛼

W-Stokes-FSSA CSm1+𝛾/(d−1)+𝛼

W-SIAStokes 1

Niter
CSm1+𝛾/(d−1)+𝛼

W-SIAStokes-FSSA 1

Niter
CSm1+𝛾/(d−1)+𝛼

W-SIA d+1

(d+1)1+𝛼
1

Niter
CSm1+𝛾/(d−1)+𝛼

W-SIA-FSSA 1

Niter
CSm1+𝛾/(d−1)+𝛼

SIA CSIAm1+𝛾/(d−1)

In the W-SIAStokes case, the computational cost is the same as
inW-Stokes but divided by the nonlinear iteration countNiter. The
cost is 1

Niter
CSm1+𝛼. This is due to that W-SIAStokes only differs

fromW-SIA in the choice of the viscosity function (linear) (13) and
thus requires one iteration to be solved.Whenmaking the estimate
we also assumed that the different viscosity function preserves the
preconditioning quality.

When W-SIA (18) is not FSSA stabilized, then the three (d + 1
equations in general) equations are solved one by one, and so, in
this case, m → m

d+1
. This gives the estimate d+1

(d+1)1+𝛼

1

Niter
CSm1+𝛼.

When W-SIA is FSSA stabilized, then the decoupled solution
procedure is not possible to perform anymore and the compu-
tational cost is the same as in the W-SIAStokes case, that is,
1

Niter
CSm1+𝛼.
Computing the SIA velocities by means of the closed-form

expressions (9) requires CSIAm floating point operations.
The computational cost for advancing the ice surface from the

initial state to time t =T is proportional to the number of time
steps NΔt we take along the way. The number of time steps itself is
given by NΔt = T

Δt
∼ 1

Δt
. For a time-step restriction on the form

Δt ≤ Ct Δx𝛾, we have that NΔt ∼ 1

Δx𝛾
∼ m𝛾/(d−1).

We now combine the computational cost estimates for obtain-
ing the velocity functions, with the computational cost estimate
for advancing the ice surface in time. The estimates for all the
considered formulations are gathered in Table 1. All the param-
eters to evaluate the computational costs in the above table are
known, except for the time-step restriction exponent 𝛾 in the case
of some SIA formulations. We numerically compute the exponents
𝛾 in Section 7, and then compare the computational cost across the
different formulations.

7. Numerical study

In this section, we solve SIA (9),W-SIA (18) andW-SIAStokes (19).
We numerically compute the largest stable time-step size Δt when
the free surface of an ice sheet is advected in time as described in
Section 7.1. We find the dependence between Δt and the horizon-
tal mesh size Δx (the Courant–Friedrich–Levy [CFL] condition),
compare the errors of the different SIA solutions to the nonlinear
Stokes solution and relate them to runtimes. We do this for three
different geometries. The experiments are performed by using the
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FEniCS 2019 library (Alnaes and others, 2014, Alnæ s and others,
2015) on a laptop with the AMD Ryzen 7 PRO 6850U processor
and 16 GB RAM.

7.1. An algorithm for computing the largest feasible time step
when solving the free-surface equation

In this section, we provide the criterion which we use to numer-
ically compute the largest feasible time step Δt* when updating
the ice sheet surface in time using the free-surface Eqn. (1) over
domain Ω⟂ as defined in the scope of Section 2.1. CFL condition
limits Δt* in terms of the mesh size Δx:

Δt* = C min
xi∈Ω⟂

(Δx)p, p > 0, (37)

where C> 0 is the CFL number depending on the type of the
discretization of (1) and the data in (1), and the mesh size is:

Δx = min
(xi≠xj)∈Ω⟂

h

‖xi − xj‖2. (38)

We are interested in the exponent p from (37), where the severity
of the time-step restriction increases with an increased p, whereas
p= 0 implies no dependence of Δt* on Δx. To compute Δt*
numerically, we use the stability criterion:

∫
Ω⟂

(h(x, tk+1))2 dΩ⟂ − ∫
Ω⟂

(h(x, tk))2 dΩ⟂ ≤ 0, k = 1, 2, 3, …

(39)
which has to hold for each time tk < T , where k = 1, 2, 3, ….
The above stability criterion measures the difference in the energy
of the free-surface function across two consecutive time samples.
The relation between (39) and the von Neumann analysis is the
following. Within the von Neumann analysis, the surface func-
tion is written as h(x, tk) = ∑M

j=−M 𝛿j(tk) eiwjx, where wj = 2𝜋 j

|P|
are wavenumbers, |P| is the domain (interval) size and 𝛿kj =
1

|P|
∫
P
h(x, tk) e−iwjx dx are the Fourier coefficients. The final state-

ment of the von Neumann analysis is that there exists Δt > 0 such
that:

|𝛿k+1
j | ≤ |𝛿kj |.

Thus, ∑N
j=1 |𝛿k+1

j | ≤ ∑N
j=1 |𝛿kj |, and using Parseval’s identity

∑N
j=1 |𝛿kj | = ∫L

−L
h(x, t)2 dΩ⟂ on each side of the inequality, and

then moving the right-hand-side term to the left-hand-side we
obtain (39). We pose the computation of Δt* as the following
optimization problem. FindmaxΔt* subject to:

∫
Ω⟂

(h(x, tk+1))2 dΩ⟂ − ∫
Ω⟂

(h(x, tk))2 dΩ⟂ < 0,

k = 1, 2, … ,NT ,
(40)

where ∫Ω⟂(h(x, tk+1))2 dΩ⟂ and ∫Ω⟂(h(x, tk))2 dΩ⟂ are the free-
surface energies evaluated in two consecutive time steps, and NT
is the number of time steps to perform the simulations in time
t ∈ (0,T]. The stability criterion (40) applies to simulations where
the physical (exact) surface energy does not grow in time.

To understand how Δt* depends on Δx, we discretize (1) using
different mesh sizes (Δx)j, j = 1, 2, …, and then for each (Δx)j
compute (Δt*)j by solving one optimization problem (40). We
solve the optimization problem using the bisection method. Once
all the data pairs ((Δx*)j, Δt*)j), j = 1, 2, …, are known, we
approximate the exponent p in (37) by fitting a linear function to

the transformed data pairs ((log10 Δx*)j, (log10 Δt*)j), j = 1, 2, …,
where p takes the value of the slope of the fitted linear function.
Note that this is a fairly computationally expensive procedure,
which is the reason why we restrict ourselves to two dimensions
in this study.

7.2. Slab on a slope with perturbed surface

7.2.1. Configuration
First, we run experiments for a slab on a slope with a perturbed
surface, as this is the setting of the von Neumann analysis in (A).
The ice sheet is a 2-D slab, L = 80×103m long and H = 1×103m
thick, inclinedwith𝛼 = 0.75∘ measured in the clockwise direction,
with the initial surface:

h(x, 0) = H + e−5×10−8(x− L

2
)2.

For the free-surface Eqn. (1), we impose periodic boundary
conditions (2) as this is required for the vonNeumann analysis.We
impose no-slip boundary conditions on Γb, stress-free boundary
conditions on Γs and periodic boundary conditions on Γl.

The relation between the number of discretization points in the
horizontal direction nx = m and Δx that we use to perform the
experiments is given in Table 2. Note that ny = 11 (corresponding
to Δy = 90m) is fixed for all experiments and the FSSA scaling
parameter is fixed at 𝜃 = 1, unless stated otherwise.

7.2.2. Accuracy
In Fig. 2, we showhow the perturbed surface evolves in time, where
the final simulation time is t = 100 years. Here the solution is com-
puted using the nonlinear Stokes problem which we consider a
reference, with a small time step Δt = 0.1 years, the horizontal
mesh size Δx = 250m and the vertical mesh size Δy = 90m. In
Fig. 3, we plot the solutions of the different SIA problem formula-
tions to the reference solution, where all the solutions are evaluated
at t = 6 years. We observe that all the solutions are close to the
reference solution. The solution to W-SIAStokes appears overall
closest to the reference.The addition of the FSSA stabilization term
increases the error, but not significantly.

7.2.3. Time-step restriction scaling
Now we compute Δt* as a function of Δx as described in Section
7.1. We run the simulations with and without the FSSA terms
defined in the scope of Section 5. The final simulation times are
adjusted to the magnitude of the largest time-step sizes making
the comparison more realistic. We use the final simulation times:
t = 100 years (W-SIAStokes-FSSA and W-SIA-FSSA), t = 12 years
(W-SIAStokes and W-SIA) and t = 5 years (SIA). The results are
shown in the first plot of Fig. 4. We observe that the largest stable
time step Δt* is allowed to be from 10 times (coarse resolution) to
100 times (fine resolution) larger when usingW-SIAStokes as com-
pared toW-SIA. Furthermore, inW-SIAStokes, Δt* has a constant
relation to Δx over the whole range of the chosen Δx except for
the finest resolutionwhere the relation becomes linear.The allowed
time steps when using SIA andW-SIAStokes are small. The Δ*t vs
Δx scaling in the latter two formulations is quadratic which is less
desired.

7.2.4. Run-time versus accuracy
Next, we perform an experiment measuring the ratio between
the relative model error and the computational (wall clock)
runtime for each of the SIA formulations. This is important
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Table 2. Number of the discretization points in the horizontal direction nx and the corresponding horizontal mesh size Δx for the slab on a slope surface case

Slab on a slope surface case
(Number of elements and the mesh size)

nx 20 30 40 50 60 70 80 120 160 200
Δx 4000.0 2666.7 2000.0 1600.0 1333.3 1142.9 1000.0 666.7 500.0 400.0
nx 240 280 320 480 640 1000 1280 1560 1800
Δx 333.3 285.7 250.0 166.7 125.0 80.0 62.5 51.3 44.4

Slab on a slope surface case
Surface elevation propagation in time (reference solution)
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Figure 2. Propagation of the surface elevation function in time
when computed as a solution to the nonlinear Stokes problem
(reference), where the simulation time step is Δt = 0.1 years.
Horizontal mesh size and vertical mesh size are Δx = 250m and
Δy = 90m, respectively.

Slab on a slope surface case

Surface elevations at t = 6 years (SIA solutions)
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Figure 3. Surface elevations at simulation time t = 6 years
for different SIA problem formulations and the reference for-
mulation (nonlinear Stokes problem). Horizontal and vertical
mesh sizes are Δx = 250m and Δy = 90m, respectively.
The largest feasible time step Δt* for the given Δx and Δy
is chosen for each formulation: Δt* = 6 years, Δt* = 12
years, Δt* = 1.8 years, Δt* = 0.04 years, Δt* = 0.008
years, Δt = 0.1 years for W-SIAStokes-FSSA, W-SIA-FSSA,
W-SIAStokes, W-SIA, SIA, Reference, respectively.

as a small Δt does not necessarily imply a small computa-
tional time for the whole simulation. This depends on the
computational time required to evaluate the velocity functions
in each time step. We set the final simulation time to t = 20
years. For W-SIAStokes-FSSA, we used Δt = 6, 3, 1.5, 0.75.
For W-SIA-FSSA, we used Δt = 12, 6, 3, 1.5, 0.75, 0.4. For
W-SIAStokes, we used Δt = 1.8, 0.9, 0.45, 0.2. For W-SIA,
we used Δt = 0.04, 0.03, 0.02, 0.01, and for SIA we used
Δt = 0.008, 0.007, 0.006, 0.005. The error is computed with the
nonlinear Stokes solution as a reference with Δt = 0.1 years. In
all cases, the mesh sizes Δx = 250m and Δy = 90m are fixed.
The result is given in the second plot of Fig. 4. We observe that
W-SIAStokes-FSSA allows small computational runtimes with
only amild increase in themodel error.W-SIA-FSSAalso allows for
small computational runtimes, but the model error is larger than
in theW-SIAStokes-FSSA case.The unstabilized (weak nor strong)
SIA formulations do not allow for small computational runtimes,
except in the case when we use the W-SIAStokes formulation.

7.2.5. Impact of the FSSA parameter 𝜃 on the time-step
restriction scaling
As we demonstrated in the previous paragraphs, W-SIAStokes-
FSSA allows for the largest time steps among all the considered
formulations. The FSSA parameter in those experiments was fixed

at 𝜃 = 1. In Fig. 5, we illustrate the effect of the choice of 𝜃 on the
scaling of the largest feasible time step Δt* as a function of Δx. We
observe that choice of small 𝜃 leads to a non-robustΔt* vsΔx scal-
ing behaviour, where Δt* has to be taken around 10 times smaller
as 𝜃 → 0. As the FSSA parameter approaches 𝜃 = 0.2 then the Δt*
vs Δx scaling approaches the linear behaviour as also observed in
Fig. 4. Furthermore, the scaling stays the same for 𝜃> 0.2. This
implies that, for the given test case, the choice of 𝜃 is not sensi-
tive and can be left at 𝜃 = 1 without losing the length of the largest
feasible time step.

7.3. An idealized ice sheet surface case

7.3.1. Configuration
We now change the configuration to study the impact of ice sheet
margins.The ice sheet configuration in this test case takes horizon-
tal values x ∈ [−L, L] and vertical values y ∈ [0,H], where the ice
sheet half half-length is L = 750×103m and the ice sheet height is
H = 3×103m. To construct the ice sheet surface for this test case,
we define the following auxiliary profile:

h1(x) = (3 − (x
L)

2
)
0.58

,
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Slab on a slope surface case
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Figure 4. (a) Scaling of the largest feasible time step Δt* as a function of the horizontal mesh size Δx when the vertical mesh size Δy = 90m is fixed. (b) The model error as
a function of the wall clock runtime when the nonlinear Stokes solution is taken as a reference. In all cases, the final time is fixed at t = 20 years. Mesh sizes Δx = 250m and
Δy = 90m are also fixed. The time step is refined starting at the formulation largest feasible time step Δt = Δt*, Δt*/2, Δt*/4, … . The time step for the reference solution
is fixed at Δt = 0.1 years.

Slab on a slope surface case, varying θ (FSSA parameter), W-SIAStokes-FSSA

Δy = 83.3 m Δy = 41.67 m
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Figure 5. Largest feasible time step Δt* as a function of the horizontal mesh size Δx for the W-SIAStokes-FSSA formulation, when the FSSA parameter 𝜃 varies. Vertical mesh
size is fixed at Δy = 83.3m in (a) and at Δy = 41.67m in (b).

and then use it in the initial surface definition:

h(x, 0) = H
h1(x) − h1(−L)

h1(0) .

When solving the free-surface Eqn. (1), we set Dirichlet bound-
ary conditions h(−L, t) = h(−L, 0) on the left boundary and
h(L, t) = h(L, 0) on the right boundary. When solving one of the
momentum balances, we impose no-slip boundary conditions on
Γb and Γl, whereas on Γs we set stress-free boundary conditions.

The relation between the number of horizontal mesh elements
nx and horizontal mesh size Δx that we use to perform the exper-
iments is given in Table 3.

Note that the number of vertical mesh elements is ny = 12 (cor-
responding to vertical mesh size Δy = 250m) and is fixed for all
experiments unless stated otherwise. The FSSA scaling parameter
is always fixed at 𝜃 = 1.

Table 3. Number of the discretization points in the horizontal direction nx and
the corresponding horizontal mesh size Δx for the idealized ice sheet surface
case.

An idealized ice sheet surface case
(Number of elements and the mesh size)

nx 80 200 400 600 800 1000
Δx 18750 7500 3750 2500 1875 1500

7.3.2. Time-step restriction scaling
In the left plot of Fig. 6, we display the largest feasible time
step Δt* as a function of Δx for the different SIA formula-
tions. Time step Δt* scales linearly with respect to Δx for W-
SIAStokes andW-SIAStokes-FSSA. For SIA andW-SIA,we observe
a quadratic scaling. The benefits when using the FSSA stabi-
lization terms together with W-SIA disappear as the Δx is fine
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Figure 6. (a) Scaling of the largest feasible time step Δt*
as a function of the horizontal mesh size Δx when the ver-
tical mesh size Δy = 90m is fixed. (b) The model error
as a function of the wall clock runtime when the nonlin-
ear Stokes solution is taken as a reference. In all cases, the
final time is fixed at t = 20 years. Mesh sizes Δx = 250m
and Δy = 90m are also fixed.

Idealized ice sheet surface case

Surface elevations at t = 104 years

W-SIA-FSSAW-SIAStokes-FSSA

)b()a(

Figure 7. Two surface evolutions after t = 104 years. The horizontal mesh size is Δx = 1500m, whereas the vertical mesh size is Δy = 250m. The time steps take the
largest feasible values for the given mesh sizes: Δt = 58.2 years for W-SIAStokes in (a) and Δt = 7.5 years for W-SIA in (b). Both formulations are stabilized using the FSSA
stabilization terms with the FSSA parameter set to 𝜃 = 1.

enough. Among all the formulations, the largest time steps can
be taken when W-SIAStokes W-SIAStokes-FSSA are used. For
W-SIAStokes-FSSA, the time steps increase approximately 100
times, across the whole range of the considered mesh sizes. In
the W-SIAStokes case, the addition of the FSSA stabilization
terms allows for a significantly smaller computational time but
gives rise to a (typically small) increase in the approximation
error.

7.3.3. Run-time versus accuracy
In the next experiment, we compute the ratio between the com-
putational runtime (wall clock) and the modelling error. For all
formulations, we fixed the horizontal mesh size to Δx = 3750m
and ran the simulation until t = 100 years. The error is com-
puted using the nonlinear Stokes solution as a reference, where
the time step is Δt = 0.1 years. The maximum time steps for
testing each SIA formulation is taken in line with the largest fea-
sible time step for Δx = 3750m from Fig. 6. For both FSSA
stabilized weak SIA formulations, we used Δt = 50, 25, 12.5, 6, 1.
For W-SIAStokes, we used Δt = 1.6, 0.8, 0.4, 0.2. For W-SIA,
we used Δt = 1, 0.8, 0.4, 0.2 and for SIA we used Δt =
0.16, 0.1, 0.08, 0.04. The results are presented in Fig. 6, plot on the

right. Runtime vs error ratio of W-SIASTokes is favourable over
all the other formulations that we consider. This is, both, when
the FSSA terms are present, and when the FSSA terms are not
present.

7.3.4. Long time simulations
We now compute the surface evolution over a long period: the
final time is t = 104 years. We choose a fine mesh size Δx =
1500m. The time step is chosen in line with Fig. 6 (left plot)
for the given Δx, that is, Δt = 58.2 years for W-SIAStokes
and Δt = 7.5 years for W-SIA. In Fig. 7, we show the solu-
tions obtained from the two formulations. The solution obtained
using W-SIAStokes does not entail any oscillations, whereas the
solution in the W-SIA case entails oscillations close to the lateral
boundaries.We have not fully explored the behaviour.However, we
speculate that this is due to the lack of control over all strain com-
ponents in W-SIA (see (18)) in contrast with W-SIAStokes (19),
where all the strain components are present. This implies that a
bound ‖Du‖L2(Ω) ≤ ‖f‖L2(Ω), where f is the gravity field, can be
obtained by using Korn’s inequality. This provides control over the
derivatives of the velocities u, which prevents u from being too
oscillatory.
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Greenland The 2D Greenland geometry

(b)(a)

Figure 8. Top view over the Greenland geometry (Morlighem and oth-
ers, 2017) (a), where the intersecting red line gives the boundary of the
Greenland cross section (b) used as one of the computational domains in
this paper.

Table 4. Number of the discretization points in the horizontal direction nx and
the corresponding horizontal mesh size Δx for the Greenland (2-D) profile case

Greenland (2-D) profile case
(Number of elements and the mesh size)

nx 80 200 400 600 800 1000
Δx 12 362 4945 2472 1648 1236 989

7.4. A 2-D cross section of Greenland

7.4.1. Configuration
In this test case, we still consider a 2-D ice sheet geometry, but with
a more realistic initial surface elevation as well as a more realistic
bedrock elevation. We simplify the full three-dimensional (3-D)
Greenland geometry obtained from BedMachine Morlighem and
others (2017) and intersect it with a horizontal line to get the
boundary points over a cross section as displayed in Fig. 8.Thenwe
represent the surface elevation and the bedrock elevation by using
a cubic spline interpolation. This allows for evaluating the sur-
faces at an arbitrary location, which we employ when considering
horizontally varying mesh sizes in our computational study.

When solving the free-surface Eqn. (1), we set Dirichlet bound-
ary conditions h(−L, t) = h(−L, 0) on the left boundary and
h(L, t) = h(L, 0) on the right boundary. When solving one of the
momentum balances, we impose no-slip boundary conditions on
Γb and Γl, whereas on Γs we set stress-free boundary conditions.

The relation between the number of horizontal mesh elements
nx and horizontal mesh size Δx that we use to perform the exper-
iments is given in Table 4.

7.4.2. Time-step restriction scaling
In Fig. 9 (left plot), we investigate the scaling of Δt as a function
of Δx. We observe that in the case of W-SIAStokes, the order of
scaling is∼0.75, whereas in theW-SIAStokes-FSSA case, the order
of scaling is close to 0.5. The scaling in the W-SIA case is approx-
imately of order 2, which is similar as in all previous test cases.
WhenW-SIA-FSSA is used the scaling behaves unpredictably, sim-
ilar as in Section 7.3. Among all the formulations, the time steps are
the largest in the W-SIAStokes-FSSA.

7.4.3. Upwinding
After visualizing the computed solutions using all the consid-
ered SIA formulations, we observed spurious oscillations over

the western part of the 2-D Greenland geometry (see Fig. 10).
For that reason, we in addition combined the SIA formulations
with the first-order viscosity (also upwind viscosity) operator
added to the free-surface equation. The role of that operator is
dampening of the spurious oscillations. In Fig. 9 (right plot),
we compute the scaling of Δt as a function of Δx when the
first-order viscosity operator is added to the free-surface equa-
tion, for each of the considered SIA formulations. We observe
that the scaling does not change when no FSSA terms are
added W-SIAStokes or W-SIA. However, the scaling, when the
FSSA terms are employed, changes from linear (no first-order
viscosity) to constant (with first-order viscosity). The latter is
favourable.

7.4.4. Long time simulations
In Fig. 10, we, for each of the considered SIA formulations, plot
the surface elevations after t = 400 years of simulation time, at
Δx = 2472m, and make a comparison towards the surface ele-
vations computed using the nonlinear Stokes problem (reference).
We observe that all the SIA formulation solutions are overall a
good approximation to the reference solution. As stated in the
previous paragraph, the solutions in cases W-SIAStokes-FSSA, W-
SIA-FSSA, W-SIAStokes, and W-SIA, displayed in Fig. 10 involve
spurious oscillation at the western part of the 2-D Greenland
geometry. The plots in the last row of Fig. 10 display the viscous
solutions, that is, W-SIAStokes-FSSA-UV and W-SIA-FSSA-UV,
a where we observe that the oscillations have disappeared. The
oscillations in the W-SIAStokes-FSSA-UV and W-SIA-FSSA-UV
cases were also removed at $t=10000$ years, as t = 10 000 in
Fig. 12

7.4.5. Run-time versus accuracy
In Fig. 11, compute the ratio between the computational run-
time (wall clock) and the modelling error. For all formula-
tions, we fixed the horizontal mesh size to Δx = 2472 m
and ran the simulation until t = 400 years. The error is com-
puted using the nonlinear Stokes solution as a reference, where
the time step is Δt = 0.4 years. The maximum time steps
for testing each SIA formulation is taken in line with the
largest feasible time step for Δx = 2472m from Fig. 9. For
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Figure 9. (a) Scaling of the largest feasible time step Δt*
as a function of the horizontal mesh size Δx when the ver-
tical mesh size is fixed. (b) The model error as a function
of the wall clock runtime when the nonlinear Stokes solu-
tion is taken as a reference. In all cases, the final time is
fixed at t = 400 years. The horizontal mesh size is fixed at
Δx = 2472m.

Greenland (2D) surface case

Surface elevation comparison against the reference at t = 400 years

ASSF-AIS-WASSF-sekotSAIS-W

AIS-WsekotSAIS-W

VU-ASSF-AIS-WVU-ASSF-sekotSAIS-W

Figure 10. Surface evolutions computed using different SIA formulations, after t = 400 years. The horizontal mesh size is Δx = 2472m. The time steps take the largest feasible
values for the given mesh sizes (see Figure 9).

W-SIAStokes-FSSA, we used Δt = 249, 125, 60, 30, 10, 1, 0.5
years. For W-SIA-FSSA, we used Δt = 5, 2.5, 1, 0.5, 0.4 years.
For W-SIAStokes, we used Δt = 1.37, 0.9, 0.65, 0.4 years.
For W-SIA, we used Δt = 0.76, 0.6, 0.5, 0.4. When W-
SIAStokes-FSSA and W-SIA-FSSA are further augmented with

the with upwind viscosity in the free-surface equation, we used
Δt = 800, 400, 200, 100, 50, 25, 12.5 years. We observe that
the FSSA stabilized weak formulations augmented with the
upwind viscosity term have by far the best error vs runtime
ratio.
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Greenland (2D) surface case
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Figure 11. Approximate model error as a function of the wall clock runtime when
the nonlinear Stokes solution is taken as a reference. In all cases, the final time is
fixed at t = 400 years. The horizontal mesh size is Δx = 2472.

7.5. Computational cost estimates with the parameters
inferred from the numerical experiments

In the subsections above, we gathered experimental data on the
slope of the scaling of the time-step restriction as a function of
the horizontal mesh size. In this subsection, we use those slopes
in place of the parameter 𝛾 in Section 6, to speculate on the
relation between computational work and the number of horizon-
tal mesh nodes m for the different momentum models. Across
the experiments, we observe that W-SIA-FSSA, W-SIAStokes and
W-SIAStokes-FSSA have a linear time-step constraint 𝛾 = 1. On
Greenland with upwind viscosity, we saw that 𝛾 can also be smaller
than 1, but we here chose the worst-case scenario value (𝛾 = 1)
for W-SIA-FSSA and W-SIAStokes. In the W-SIA model case, the
worst case is 𝛾 = 2.The sameholds for the standard SIAmodel case.
We gather these results in Table 5. In the W-Stokes-FSSA case, we
get 𝛾 = 1, whereas in the W-Stokes case, we have 𝛾 = 1 when the
horizontal mesh size is small and 𝛾 = 0 for larger horizontal mesh
sizes—the worst case is then 𝛾 = 1.

We observe that the SIA model has the lowest asymptotic cost
scaling m2. The next best is W-SIAStokes-FSSA with m2.5 when
𝛼 = 1 (sparse direct solver).We argue that the computational cost is
in the two cases comparable when it comes to the asymptotic scal-
ing as m → ∞. However, knowing that the SIA model is a crude
simplification of the Stokes model (4), and that the W-SIAStokes
model only carries minor simplified elements (the viscosity) as
compared to W-Stokes, the W-SIAStokes model is more accurate
as we could also observe from the runtime vs error experiments
figures. The computational cost in the W-SIA model also scales
as m1.5+𝛼, but this does not hold for all the horizontal mesh size
choices as observed from the experiments. We note that Nnlin is
large for large Δt. This is due to that the nonlinear iteration ini-
tial guess to compute the solution at time tk+1 is the solution from
time tk, and the two solutions when Δt = tk+1 − tk is large are
typically very different, implying that the nonlinear iteration count
is large.

The time-step sizes can also be restricted by some other com-
ponents of an ice sheet model, such as the temperature evolution
or climate data. However, when these time-step sizes are small, it is

Table 5. Computational cost estimate comparison across the different formu-
lations of the shallow ice approximation (SIA) model, when using the solution
(the velocity) to advance the ice sheet surface in time. Here, m is the number
of mesh vertices in the horizontal direction, d is the number of dimensions, 𝛼
denotes the choice of a linear solver, 𝛾 is the time-step vs mesh size scaling
exponent, CS is a constant, related to the choice of the nonlinear solver, that
scales the number of nonlinear iterations used to solve the reference nonlin-
ear Stokes problem (W-Stokes) and Niter is the number of iterations to solve
W-Stokes

Model 𝛾 Computational cost estimate
Evaluated with

𝛾 and d = 3

W-Stokes 1 CSm1+𝛾/(d−1)+𝛼 CSm1.5+𝛼

W-Stokes-FSSA 1 CSm1+𝛾/(d−1)+𝛼 CSm1.5+𝛼

W-SIAStokes 1 1

Niter
CSm1+𝛾/(d−1)+𝛼 1

Niter
CSm1.5+𝛼

W-SIAStokes-
FSSA

1 1

Niter
CSm1+𝛾/(d−1)+𝛼 1

Niter
CSm1.5+𝛼

W-SIA 2 d+1

(d+1)1+𝛼
1

Niter
CSm1+𝛾/(d−1)+𝛼 4

41+𝛼
1

Niter
CSm2+𝛼

W-SIA-FSSA 1 1

Niter
CSm1+𝛾/(d−1)+𝛼 1

Niter
CSm1.5+𝛼

SIA 2 CSIAm1+𝛾/(d−1) CSIAm2

still not certain that the velocity solution has to be updated at the
same small time step as, e.g., the temperature. This study is out of
the scope of this paper.

8. Final remarks

In this paper, we investigated the benefits when using the SIA
momentum balance model (A1) written on different weak formu-
lations. We referred to the weak SIA model (18) as W-SIA, the
modified weak SIA model alias weak form linear Stokes equations
employing the SIA viscosity function asW-SIAStokes, theweak full
nonlinear Stokes problem as W-SIA and to the standard (strong
form) SIA model as SIA. When the different SIA forms were addi-
tionally stabilized by mean of the FSSA terms (23), we appended
an abbreviation FSSA to each of the form abbreviations.

The key outcomes of the present study are that in the considered
test cases:

• W-SIA-FSSA allows for large time steps with linear scaling, but
limited to coarse Δx.

• W-SIAStokes and W-SIAStokes-FSSA have linear time-step
restriction scaling for all Δx.

• W-SIAStokes is numericallymore robust and accurate compared
to W-SIA for a small cost increase.

We expand on the list above in the paragraphs written
below.

The first weak formulation isW-SIA (18). An immediate benefit
when using W-SIA is that we were able to add the FSSA stabi-
lization terms (23) (W-SIA-FSSA). This improved the time-step
restriction from quadratic (W-SIA) to linear (W-SIA-FSSA) scal-
ing in terms of the horizontal mesh size Δx when using theW-SIA
velocities for solving the free-surface equation. Overall, the time-
step sizes in all the considered test cases were increased by at least
approximately 100 times as compared to the standard SIA formu-
lation time-step sizes. However, we observed that whenΔx is small
enough, the largest time-step size behaviour became unpredictable
and started taking values similar to the standard SIA time-step
sizes. We have not experimentally assessed the largest feasible time
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Greenland (2D) surface case

Surface elevations at t = 10000 years

W-SIA-FSSAW-SIAStokes-FSSA

W-SIA-FSSA-UVW-SIAStokes-FSSA-UV

Figure 12. Surface elevations computed using the FSSA stabilized SIA formulations, with and without the first-order (upwind) viscosity added to the free-surface equation.
The surface elevations are evaluated at t = 10 000 years. The horizontal mesh size is Δx = 2472m. The time steps take the largest feasible values for the given mesh sizes
(see Figure 9).

steps in 3-D. However, according to our computational cost esti-
mates, the differences across SIA and W-SIA-FSSA are smaller in
3-D.

As a remedy, we modified W-SIA to W-SIAStokes (19) by
adding the originally neglected stress terms back to W-SIA but
kept the SIA viscosity (13) intact so that W-SIAStokes remained
a linear problem. We observed predictable largest time-step size
behaviour. The time step scaled linearly in terms of Δx without
even adding the FSSA stabilization terms to the weak formula-
tion. After we added the FSSA stabilization terms to W-SIAStokes
(W-SIAStokes-FSSA), the scaling remained linear, but the largest
time-step sizes have in general significantly increased, whereas the
approximation error increased only slightly. In one of the tests we
compared W-SIAStokes to W-Stokes and found that the time-step
sizes, including the scaling in terms of Δx, were comparable.

When compared to the standard SIA model, W-SIA and W-
SIAStokesmodels had a smaller error, taking theW-Stokes solution
as a reference. This held also when the FSSA stabilization terms
were added to the two weak formulations and very long time
steps were used. The error vs runtime ratio was also favourable in
the case of both weak formulations (with and without the FSSA
stabilization) over the standard SIA solution. Among the two, W-
SIAStokes had a better error vs runtime ratio (with andwithout the
FSSA stabilization).We note that the runtimemeasurements could
differ depending on the code implementation of the different SIA
formulations.

To view the observed runtime measurements from another
angle, we performed a theoretical computational cost estimation in
Section 6. Based on that, we conclude that the computational cost
of W-SIA and W-SIAStokes is comparable to that of the standard
SIA model, in terms of the asymptotic behaviour, that is, when the
number of the horizontal mesh vertices is increased.

Throughout the paper, we used no-slip boundary conditions
for simplicity. The FSSA stabilization terms are effective also when

using the moderate slip boundary conditions (L ̈ofgren and others,
2023).

We anticipate that glaciologists interested in the ice spin-up
simulations of which the simulation length is on the order of hun-
dreds of thousands of years could benefit from using the W-SIA-
FSSA model or the W-SIAStokes-FSSA model over the standard
SIA model. Note that our results are for isothermal simulations.
More studies are needed to investigate the time-step restrictions
related to temperature evolution and other physical processes.
However, we believe resolving the restriction due to the velocity-
surface coupling is the most difficult problem.

We speculate that the W-SIAStokes model is a good choice to
replace the standard SIA model within the scope of coupled mod-
els. One of them is the ISCAL (Ice Sheet Coupled Approximation
Level) model (Ahlkrona and others, 2016) where the standard
SIA model and the W-Stokes model are used dynamically over an
ice sheet geometry, depending on the desired modelling accuracy.
When both models are coupled together, the time-step restriction
is bound to that of the SIA model (quadratic scaling in terms of
Δx), whereas the W-SIAStokes model allows for linear scaling.
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Appendix A. Von Neumann stability analysis

A.1. Without FSSA

A.1.1. Coupling
The solution to the strong form SIA

−
𝜕p
𝜕x + 𝜕

𝜕y (𝜇 𝜕ux
𝜕y ) = 0 (A1)

−
𝜕p
𝜕y = 𝜌g (A2)

is in the isothermal case

p = 𝜌g(h − y)

u1 = − 1
2𝔄(𝜌g)3 ( 𝜕h

𝜕x)
3

((h − b)4 − (h − y)4) ,

u2 = ∫
y

b

𝜕ux
𝜕x dy

= 1
2𝔄(𝜌g)3 (3( 𝜕h

𝜕x)
2 𝜕2h

𝜕x2 ((h − b)4(y − b) +
(h − y)5

5 −
(h − b)5

5 )

+ 4( 𝜕h
𝜕x)

3
((h − b)3 ( 𝜕h

𝜕x − 𝜕b
𝜕x) (y − b)

+
(h − y)4

4
𝜕h
𝜕x −

(h − b)4
4

𝜕h
𝜕x))

defining H = (h − b) and considering only the surface y= h we get:

u1 = − 1
2𝔄(𝜌g)3 ( 𝜕h

𝜕x)
3
H4

u2 = 1
2𝔄(𝜌g)3 (3( 𝜕h

𝜕x)
2 𝜕2h

𝜕x2 (H5 − H5

5 )

+4( 𝜕h
𝜕x)

3
(H4 𝜕H

𝜕x − H4

4
𝜕h
𝜕x)) .

Inserting the closed-form expressions into the time discretization of the free-
surface equation (34) reveals the full coupled system

hk+1 − hk

Δt + (− 1
2A(𝜌g)3 ( 𝜕h

𝜕x)
3

(h − b)4) 𝜕hk+𝛾

𝜕x

2 = 1
2𝔄(𝜌g)3 (3( 𝜕h

𝜕x)
2 𝜕2h

𝜕x2 (H5 − H5

5 )

+4( 𝜕h
𝜕x)

3
(H4 𝜕H

𝜕x − H4

4
𝜕h
𝜕x)) + as. (A4)
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This is a highly nonlinear equation and needs to be linearized before Fourier
analysis can be used.

Without FSSA, all h and H-terms which do not have a superscript (⋅)k+𝛾

are approximated explicitly, i.e. they all will have a superscript (⋅)k.

A.1.2. Linearization
Following Cheng and others (2017) (where the ice thickness equation was anal-
ysed), we consider a slab on a slope with a small surface perturbation 𝛿 around
an average state ̄h which is just an inclined plane. We write:

h = ̄h + 𝛿 (for h related to velocity), H = ̄H + 𝛿

h = ̄h + ̂𝛿 (for h explicitly in the free surface equation), H = ̄h + ̂𝛿.

Inserting in (A4) yields

𝜕( ̄h + ̂𝛿)
𝜕t + ⎛⎜

⎝
− 1
2A(𝜌g)3 ( 𝜕( ̄h + 𝛿)

𝜕x )
3

(( ̄H + 𝛿))4⎞⎟
⎠

𝜕( ̄h + ̂𝛿)
𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕 ̄h + 𝛿

𝜕x )
2 𝜕2 ̄h + 𝛿

𝜕x2 (( ̄H + 𝛿)5 −
( ̄H + 𝛿)5

5 )

+4( 𝜕 ̄h + 𝛿
𝜕x )

3

(( ̄H + 𝛿)4
𝜕( ̄H + 𝛿)

𝜕x −
( ̄H + 𝛿)4

4
𝜕 ̄h + 𝛿

𝜕x )) + as.

Using that the second derivative of the steady state surface ̄h is zero we get

𝜕( ̂𝛿)
𝜕t + (− 1

2A(𝜌g)3 ( 𝜕 ̄h
𝜕x)

3

( ̄H)4) 𝜕 ̂𝛿
𝜕x

+ ⎛⎜
⎝

− 1
2A(𝜌g)3 ( 𝜕( ̄h + 𝛿)

𝜕x )
3

( ̄H)4⎞⎟
⎠

𝜕h̄
𝜕x

+ (− 1
2A(𝜌g)3 ( 𝜕 ̄h

𝜕x)
3

(( ̄H + 𝛿))4) 𝜕 ̄h
𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕 ̄h

𝜕x)
2 𝜕2𝛿

𝜕x2
4
5

̄H5

+4( 𝜕 ̄h + 𝛿
𝜕x )

3

(( ̄H)4
𝜕( ̄H)

𝜕x −
( ̄H)4
4

𝜕 ̄h
𝜕x))

+ 4( 𝜕 ̄h
𝜕x)

3

(( ̄H + 𝛿)4
𝜕( ̄H)

𝜕x + ( ̄H)4
𝜕( ̄H + 𝛿)

𝜕x

−
( ̄H + 𝛿)4

4
𝜕 ̄h
𝜕x −

( ̄H)4
4

𝜕h̄ + 𝛿
𝜕x )) + as.

Ignoring higher order terms in 𝛿 furthermore yields

𝜕( ̂𝛿)
𝜕t + (− 1

2A(𝜌g)3 ( 𝜕 ̄h
𝜕x)

3

( ̄H)4) 𝜕 ̂𝛿
𝜕x

+ ⎛⎜
⎝

− 1
2A(𝜌g)33( 𝜕( ̄h)

𝜕x )
2

( 𝜕(𝛿)
𝜕x ) ( ̄H)4⎞⎟

⎠

𝜕 ̄h
𝜕x

+ (− 1
2A(𝜌g)3 ( 𝜕 ̄h

𝜕x)
3

4 ̄H3𝛿) 𝜕 ̄h
𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕 ̄h

𝜕x)
2 𝜕2𝛿

𝜕x2
4
5

̄H5

+12( 𝜕 ̄h
𝜕x)

2 𝜕𝛿
𝜕x (( ̄H)4

𝜕( ̄H)
𝜕x −

( ̄H)4
4

𝜕 ̄h
𝜕x)

+4( 𝜕 ̄h
𝜕x)

3

(4 ̄H3𝛿
𝜕( ̄H)

𝜕x + ( ̄H)4
𝜕(𝛿)
𝜕x − ̄H3𝛿 𝜕 ̄h

𝜕x −
( ̄H)4
4

𝜕𝛿
𝜕x )) + as.

Considering that the steady state thickness is zero further simplifies the expres-
sion into

𝜕 ̂𝛿
𝜕t + (− 1

2A(𝜌g)3 ( 𝜕 ̄h
𝜕x)

3
̄H4) 𝜕 ̂𝛿

𝜕x

+ (− 1
2A(𝜌g)33( 𝜕 ̄h

𝜕x)
2

( 𝜕(𝛿)
𝜕x ) ̄H4) 𝜕 ̄h

𝜕x

+ (− 1
2A(𝜌g)3 ( 𝜕 ̄h

𝜕x)
3

4 ̄H3𝛿) 𝜕 ̄h
𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕 ̄h

𝜕x)
2 𝜕2𝛿

𝜕x2
4
5

̄H5 − 3( 𝜕 ̄h
𝜕x)

2 𝜕𝛿
𝜕x

̄H4 𝜕 ̄h
𝜕x

+4( 𝜕 ̄h
𝜕x)

3

( 3
4

̄H4 𝜕𝛿
𝜕x − ̄H3𝛿 𝜕 ̄h

𝜕x)) + as

rearranging and defining 𝜕 ̄h
𝜕x

= C𝛼 we get:

𝜕 ̂𝛿
𝜕t − 1

2𝔄(𝜌g)3C3
𝛼 ̄H4 𝜕 ̂𝛿

𝜕x − 3
2𝔄(𝜌g)3C3

𝛼 ̄H4 𝜕𝛿
𝜕x = 6

5𝔄(𝜌g)3C2
𝛼 ̄H5 𝜕2𝛿

𝜕x2 + as

which we will write on the form

𝜕 ̂𝛿
𝜕t − C1

𝜕 ̂𝛿
𝜕x − C2

𝜕𝛿
𝜕x = C3

𝜕2𝛿
𝜕x2 + as

with C1 = 1
2
𝔄(𝜌g)3C3

𝛼 ̄H4, C2 = 3
2
𝔄(𝜌g)3C3

𝛼 ̄H4 and C3 =
6
5
𝔄(𝜌g)3C2

𝛼 ̄H5. OBS! C1 and C2 are negative!

We can discretize ̂𝛿 using k or k+ 1 (the latter is better of course), while 𝛿
must be taken from time step k as it originates from the velocity.

A.1.3. Fourier analysis
We will now consider the SIA solution in Fourier space. We will thus apply a
Fourier transform, and consider one frequency at a time

𝛿kj → ̃𝛿keinxj = ̃𝛿einjΔx

𝛿kj+1 → ̃𝛿keinxj+1 = ̃𝛿keinjΔxeinΔx.

The factor einjΔx will appear in every term of every equation, and we will hence
divide by that and not write it out from here on. We will also consider the finite
difference discretization which best corresponds to a P1 FEM discretization,
meaning that second derivatives will be represented as central differences so

that 𝜕𝛿
𝜕x

and 𝜕2𝛿
𝜕x2

are discretized and transformed as:

𝜕𝛿
𝜕x ≈

𝛿j+1 − 𝛿j−1

2Δx → ̃𝛿 e
inΔx − e−inΔx

2Δx = ̃𝛿
2isin(nΔx)

2Δx
𝜕2𝛿
𝜕x2 ≈

𝛿j+1 − 2𝛿j + 𝛿j−1

(Δx)2 → ̃𝛿 e
inΔx − 2 + e−inΔx

(Δx)2 = − ̃𝛿
4 sin2(nΔx/2)

(Δx)2 .

Inserting this into the linearized equation, assuming implicit handling of the
free-surface equation𝛼 = 1 itself and explicit handling of velocities, and setting
as = 0 gives

̃𝛿k+1 − ̃𝛿k
Δt − C1 ̃𝛿k+1 2isin(nΔx)

2Δx − C2 ̃𝛿k
2isin(nΔx)

2Δx = −C3
̃𝛿k
4 sin2(nΔx/2)

(Δx)2 .

Using Euler’s formulas and rearranging gives:

̃𝛿k+1 (1 − ΔtC1
2isin(nΔx)

2Δx )

= ̃𝛿k (1 − ΔtC3
4 sin2(nΔx/2)

(Δx)2 + ΔtC2
2isin(nΔx)

2Δx ) .
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In order for each Fourier mode to stay bounded as the simulation runs, i.e. that
| ̃𝛿k+1| ≤ | ̃𝛿k|, we require that

∣1 − ΔtC3
4 sin2(nΔx/2)

(Δx)2
+ ΔtC2

2isin(nΔx)
2Δx

∣

∣1 − ΔtC1
2isin(nΔx)

2Δx
∣

≤ 1. (A7)

The denominator value of the parenthesis of the left-hand side is always
larger than one (which is due to that 𝛼 = 1). We thus only need to
bound the nominator. The complex part of the nominator is bounded as
long as

|C2|Δt
2Δt ≤ 1,

while the real part needs to fulfil

∣1 − ΔtC3
4 sin2(nΔx/2)

(Δx)2 ∣ < 1 ⇒ C3Δt
(Δx)2 < 0.5.

So depending on the balance between C2 and C3, we get a linear or
parabolic time-step constraint. C3 is big for thick ice with flat slopes, i.e. for
the dynamics typical of the interior of an ice sheet, we get a parabolic
constraint.

A.2. With FSSA

A.2.1. Coupling
As observed from (32), the addition of the FSSA termsmakes the discretization
of the pressure implicit:

p(x, y, t) ≈ 𝜌g(hk+1 − y). (A8)

The pressure yields u1 and u1 gives u2, so this implicit discretization will
propagate to the velocity solution in the following way

u1 = − 1
2𝔄(𝜌g)3 ( 𝜕hk+1

𝜕x )
3

((hk − b)4 − (hk − y)4) ,

u2 = ∫
y

b

𝜕ux
𝜕x dy = 3( 𝜕hk+1

𝜕x )
2 𝜕2hk+1

𝜕x2

× ((hk − b)4(y − b) +
(hk − y)5

5 −
(hk − b)5

5 )

+ 4( 𝜕hk+1

𝜕x )
3

((hk − b)3 ( 𝜕hk
𝜕x − 𝜕b

𝜕x) (y − b)

+
(hk − y)4

4
𝜕hk
𝜕x −

(hk − b)4
4

𝜕hk
𝜕x ) .

Then the final expressions at y= h are:

u1 = − 1
2𝔄(𝜌g)3 ( 𝜕hk+1

𝜕x )
3

(Hk)4

u2 = 1
2𝔄(𝜌g)3 (3( 𝜕hk+1

𝜕x )
2 𝜕2hk+1

𝜕x2 ((Hk)5 −
(Hk)5
5 )

+4( 𝜕hk+1

𝜕x )
3

((Hk)4 𝜕Hk

𝜕x −
(Hk)4
4

𝜕hk
𝜕x ))

and the fully coupled system is then

hk+1 − hk

Δt + (− 1
2A(𝜌g)3 ( 𝜕hk+1

𝜕x )
3

(Hk)4) 𝜕hk+𝛾

𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕hk+1

𝜕x )
2 𝜕2hk+1

𝜕x2 ((Hk)5 − H5

5 )

+4( 𝜕hk+1

𝜕x )
3

((Hk)4 𝜕Hk

𝜕x −
(Hk)4
4

𝜕hk
𝜕x )) + as. (A10)

A.2.2. Linearization
With the same approach as before we get

𝜕 ̂𝛿
𝜕t + (− 1

2A(𝜌g)3 ( 𝜕 ̄h
𝜕x)

3
̄H4) 𝜕 ̂𝛿

𝜕x

+ (− 1
2A(𝜌g)33( 𝜕 ̄h

𝜕x)
2

( 𝜕𝛿k+1

𝜕x ) ̄H4) 𝜕 ̄h
𝜕x

+ (− 1
2A(𝜌g)3 ( 𝜕 ̄h

𝜕x)
3

4 ̄H3𝛿k) 𝜕 ̄h
𝜕x

= 1
2𝔄(𝜌g)3 (3( 𝜕 ̄h

𝜕x)
2 𝜕2𝛿k+1

𝜕x2
4
5

̄H5 − 3( 𝜕 ̄h
𝜕x)

2 𝜕𝛿k+1

𝜕x
̄H4 𝜕 ̄h
𝜕x

+4( 𝜕 ̄h
𝜕x)

3

( 3
4

̄H4 𝜕𝛿k
𝜕x − ̄H3𝛿k 𝜕 ̄h

𝜕x)) + as

rearranging and setting 𝜕 ̄h
𝜕x

= 𝜕 ̄h
𝜕x

= C𝛼 yields

𝜕 ̂𝛿
𝜕t − 1

2𝔄(𝜌g)3C3
𝛼 ̄H4 𝜕 ̂𝛿

𝜕x − 3
2𝔄(𝜌g)3C3

𝛼 ̄H4 𝜕𝛿k
𝜕x

= 6
5𝔄(𝜌g)3C2

𝛼 ̄H5 𝜕2𝛿k+1

𝜕x2 + as

which we will write on the form

𝜕 ̂𝛿
𝜕t − C1

𝜕 ̂𝛿k+1

𝜕x − C2
𝜕𝛿
𝜕x = C3

𝜕2𝛿k+1

𝜕x2 + as.

So the difference in the linearized equation is that the second derivative is
treated implicitly.

A.2.3. Fourier analysis
We get the same expression as without FSSA, only that the second derivative is
now treated implicitly

̃𝛿k+1 − ̃𝛿k
Δt − C1 ̃𝛿k+1 2isin(nΔx)

2Δx − C2 ̃𝛿k
2isin(nΔx)

2Δx = −C3
̃𝛿k
4 sin2(nΔx/2)

(Δx)2 .

Rearranging gives

̃𝛿k+1 (1 − ΔtC1
2isin(nΔx)

2Δx + ΔtC3
4 sin2(nΔx/2)

(Δx)2 )

= ̃𝛿k (1 + ΔtC2
2isin(nΔx)

2Δx ) .

The absolute value of the parenthesis to the left is negative, and the one on the
right-hand side has an absolute value smaller than one if Δt

Δx
C2 ≤ 1 ⇒ Δt ≤

Δx
3
2

𝔄(𝜌g)3C3𝛼 ̄H4
, i.e. we get a linear time-step constraint.
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