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The present work investigates the mechanical behaviour of finite-size, elastic and inertial
fibres freely moving in a homogeneous and isotropic turbulent flow at moderate Reynolds
number. Four-way coupled, direct numerical simulations, based on a finite difference
discretisation and the immersed boundary method, are performed to mutually couple the
dynamics of fibres and fluid turbulence, allowing us to account for the backreaction of
the dispersed phase to the carrier flow. An extensive parametric study is carried out in
zero-gravity condition over the characteristic properties of the suspension, i.e. fibre’s
linear density (from iso-dense to denser-than-the-fluid fibres), length (from short fibres
comparable with the dissipative scale to long fibres comparable with the integral scale) and
bending stiffness (from highly flexible to almost rigid fibres), as well as the concentration
(from dilute to non-dilute suspensions). Results reveal the existence of a robust turbulence
modulation mechanism that is primarily controlled by the mass fraction of the suspension
(with only a minor influence of the fibre’s bending stiffness), which is characterised in
detail by means of a scale-by-scale analysis in Fourier space. Despite such alteration with
respect to the single-phase case due to the non-negligible backreaction, fibres experience
only two possible flapping states (previously identified in the very dilute condition) while
being transported and deformed by the flow. In addition, we show that the maximum
curvature obeys different scaling laws that can be derived from the fibre dynamical
equation. Finally, we explore the clustering and preferential alignment of fibres within
the flow, highlighting the peculiar role of inertia and elasticity.
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1. Introduction

Suspensions of fibre-like objects dispersed in turbulent flows are encountered in a variety
of natural and engineering problems, e.g. microplastics or non-motile microorganisms
dispersal in aquatic environments, pulp production in papermaking, and other ecological
or industrial processes (Lundell, Söderberg & Alfredsson 2011; Guasto, Rusconi & Stocker
2012; du Roure et al. 2019). Several topics appear of particular relevance nowadays, such
as the quantitative understanding of the fragmentation process of marine litter in the
oceans (Cózar et al. 2014; Filella 2015; Brouzet et al. 2021). Other examples concern the
locomotion of bacteria or planktonic organisms (Son, Guasto & Stocker 2013; Ardekani
et al. 2017b; Michalec et al. 2017), the formation of algae aggregates (Verhille et al. 2017),
and the manufacturing of paper and composite materials (Parsheh, Brown & Aidun 2005;
Mortensen et al. 2008; Marchioli, Fantoni & Soldati 2010).

From a fundamental perspective, understanding the most salient features in this specific
kind of multiphase flow represents a topic of active research. Compared to spherical
particles, additional complexity is given by the anisotropic character of the dispersed
objects, reflecting into peculiar phenomena such as the preferential alignment of the
fibre’s orientation with characteristic quantities of the flow, i.e. vorticity or strain rate
principal directions (Parsa et al. 2012; Voth & Soldati 2017). Focusing on rigid fibres
(i.e. rods), numerous efforts have been devoted to describe in detail how such alignment,
and consequently the fibre’s rotation rate, are qualitatively and quantitatively conditioned
by the fibre’s length (compared to the characteristic lengthscales of the turbulent flow,
ranging from sub-Kolmogorov to inertial subrange) (Ni, Ouellette & Voth 2014; Ni et al.
2015; Pujara, Voth & Variano 2019; Oehmke et al. 2021; Pujara et al. 2021) and inertia
(expressed by means of a representative Stokes number) (Bounoua, Bouchet & Verhille
2018; Kuperman, Sabban & van Hout 2019).

In many applications, however, fibres are not rigid but flexible, and may experience
large deformations under the action of the flow, resulting in non-trivial dynamics already
when immersed in simple laminar flows (du Roure et al. 2019; Żuk et al. 2021). While
a relatively extensive research has focused on suspensions of rigid fibres, fewer studies
are available on the case of flexible fibres in turbulence. Besides the relevance in the
framework of particle-laden and multiphase flows, the latter represents an intriguing
problem in the context of fluid-structure interaction (FSI), started to be investigated only
quite recently (Brouzet, Verhille & Le Gal 2014; Rosti et al. 2018). From the theoretical and
numerical viewpoint, fibres are typically assumed to be inextensible, so that the attention
is primarily devoted to the bending deformation (Allende, Henry & Bec 2020), although
some contributions focused on extensible objects as well, mostly related to suspensions
of polymers (Picardo et al. 2018, 2020; Vincenzi et al. 2021). The mechanical behaviour
of flexible fibres in turbulence has been characterised with specific interest towards the
buckling of short fibres, i.e. having sub-Kolmogorov length (Allende, Henry & Bec 2018),
and the spatial conformation and deformation of finite-size fibres, i.e. with length within
the inertial subrange or comparable to the integral length scale (Brouzet et al. 2014;
Gay, Favier & Verhille 2018; Dotto & Marchioli 2019; Sulaiman et al. 2019; Dotto,
Soldati & Marchioli 2020; Picardo et al. 2020); further recent developments include the
aforementioned modelling of fragmentation processes (Allende et al. 2020; Brouzet et al.
2021; Vincenzi et al. 2021).

From a relatively complementary perspective, recent studies focused on the possibility
of exploiting fibre-like objects to measure the properties of the turbulent carrier flow, both
in the case of flexible (Rosti et al. 2018, 2020a) and rigid fibres (Brizzolara et al. 2021). For
flexible fibres, Rosti et al. (2018, 2020a) unravelled the existence of different dynamical
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states that can be predicted by comparing the characteristic timescales involved in the
problem. In particular, it was shown that in certain regimes the fibres behave as a proxy of
turbulent eddies of comparable size, therefore enabling the measurement of two-point flow
statistics based on the longitudinal velocity differences by simply tracking the motion of
the fibre (or, more practically, only the two fibre’s ends). More recently, Olivieri, Mazzino
& Rosti (2021) extended such findings to the case of a non-dilute suspension where the
flow is substantially altered by the presence of the dispersed phase, showing that the same
qualitative scenario is retained (although in the latter situation fibres do not measure the
unperturbed flow anymore, but the fibre modulated one). In the case of rigid fibres, similar
outcomes can be obtained when considering negligible inertia (i.e. vanishing Stokes
number) and focusing on the transverse (instead of longitudinal) velocity differences:
such findings have been recently corroborated in the laboratory framework by Brizzolara
et al. (2021), leading to the development of a novel experimental technique, named
‘Fibre Tracking Velocimetry’, able to measure the properties of turbulence at a fixed
length scale (i.e. the length of the fibre). Remarkably, exploiting this concept intrinsically
overcomes the well-known issue of relative dispersion experienced with more traditional
approaches based on tracer particles. Moreover, it was demonstrated that for sufficiently
short fibres the proposed technique leads to the accurate measurement of the turbulent
energy dissipation rate.

The majority of studies focusing on the dynamics of dispersed particles in turbulence are
typically based on assuming that the suspension is dilute enough, so that the backreaction
of the dispersed phase to the carrier flow can be safely ignored, and therefore dramatically
simplifying the modelling of the problem by exploiting a one-way coupling approach
(i.e. the fluid flow is not affected by the presence of the dispersed objects). However,
one needs to consider the two-way coupled problem for relatively high concentrations,
i.e. not only the fibres are transported and deformed by the flow, but the flow in turns gets
altered by their backreaction due to the no-slip condition at the surface of the immersed
objects (Balachandar & Eaton 2010; Maxey 2017; Brandt & Coletti 2021). Modelling such
dynamical feedback by means of suitable techniques, e.g. immersed boundary methods,
poses significant demands which are becoming more affordable with the availability of
more powerful computational resources. Besides, along with ensuring the mutual coupling
between the two phases, such fully-resolved approaches are expected to give more accurate
results compared with traditional models used for describing the dynamics of the dispersed
phase, whose foundation rely on one-way coupling and often linear flow assumptions
(Jeffery 1922). This is especially the case when adopting the latter beyond its limit of
applicability for anisotropic particles of finite-size, i.e. larger than the Kolmogorov length
scale.

The modulation of turbulence in non-dilute conditions has been the subject of
studies regarding several classes of particulate and multiphase flows, e.g. spherical and
isotropic particles (Lucci, Ferrante & Elghobashi 2010; Gualtieri et al. 2013; Capecelatro,
Desjardins & Fox 2018; Ardekani & Brandt 2019; Ardekani, Rosti & Brandt 2019; Sozza
et al. 2020), anisotropic particles and fibres (Andersson, Zhao & Barri 2012; Ardekani
et al. 2017a; Olivieri et al. 2020b, 2021), as well as droplets or bubbles (Dodd & Ferrante
2016; Freund & Ferrante 2019; Rosti et al. 2019; Cannon et al. 2021). Overall, when
the concentration is large enough, this modulation effect typically causes a substantial
departure from the classical phenomenology observed for a purely Newtonian fluid
(e.g. the presence of a clear energy cascade for sufficiently large Reynolds number).
Specifically, some common features are generally observed looking at the turbulent energy
spectra despite the remarkable differences between these multiphase flows (Gualtieri et al.
2013; Dodd & Ferrante 2016; Rosti et al. 2019; Olivieri et al. 2021): with respect to the
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Figure 1. Snapshot from a direct numerical simulation of homogeneous isotropic turbulence where finite-size,
flexible fibres (in red) are dispersed. In particular, we show a high-concentration case with very flexible
denser-than-the-fluid fibres of intermediate length comparable to the inertial range of scales (i.e. �ρ̃ = 1,
c = 0.5, γ = 10−8 and N = 103). The domain backplanes are coloured by the fluid velocity magnitude.

reference single-phase case, it is typically found (i) a decrease of the energy content at the
lowest wavenumbers (i.e. the largest, energy-containing scales), along with (ii) a relative
enhancement of energy at higher wavenumbers (i.e. smaller scales). Nevertheless, both the
qualitative and quantitative comprehension on the mechanisms underlying such complex
energy redistribution process is far from being exhaustive. Furthermore, these effects are
not only directly associated with the resulting flow dynamics, but are in turn potentially
influential on the behaviour of the dispersed objects.

In this work, we investigate numerically the behaviour of a suspension of finite-size,
inertial fibres, either rigid or flexible, dispersed in a homogeneous and isotropic turbulent
flow in both dilute and non-dilute conditions. An illustrative example of the system under
consideration is shown in figure 1. A vast parametric study is conducted over the main
mechanical and geometrical properties of the fibres, i.e. linear density, length and bending
stiffness, as well as their number, while neglecting the presence of gravity. In order to
accurately describe the dynamics of fibres, whose length is well beyond the Kolmogorov
length scale, and to take into account the backreaction of the dispersed phase to the
carrier flow, a four-way coupled, direct numerical simulation (DNS) approach is employed,
based on the combination of the finite difference and immersed boundary methods, and
complemented by a fibre-to-fibre interaction model. The goal of the work is twofold: (i)
to properly characterise the backreaction effect exerted by fibres to the turbulent flow,
highlighting the role of the mass fraction as the representative control parameter and
providing a scale-by-scale description of the energy transfer across the scales of the
fluid motion; (ii) to describe various aspects of the dynamics of the dispersed fibres
in the turbulent flow, including the existing flapping states, as well as the preferential
concentration (i.e. tendency to clustering) and orientation (i.e. alignment with specific
quantities of the flow). Note that this investigation partially recovers the results presented
by Olivieri et al. (2021), with the goal of substantially advancing such findings and offer a
systematic and fully exhaustive analysis.
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The rest of the paper is structured as follows: in § 2, we introduce the computational
methodology used in our investigation along with providing information on the performed
parametric study; in § 3, we present and discuss the results to address the two main
objectives; finally, concluding remarks are given in § 4.

2. Methods

This section describes the methodology adopted for the present study, which is essentially
the same adopted by Olivieri et al. (2021). First, in § 2.1, we introduce the governing
equations and main parameters of the problem. Then, in § 2.2, we describe how the former
are solved numerically. Finally, in § 2.3, we provide details on the performed parametric
DNS study.

2.1. Problem formulation
We consider an ensemble of N fibres moving freely in homogeneous and isotropic
turbulence (figure 1). The fibre’s length c is varied with respect to the characteristic
length scales of the turbulent flow, ranging from being of the order of the dissipative (or
Kolmogorov) scale to that of the integral scale. Fibres are modelled as one-dimensional
slender objects, i.e. their length is assumed much larger than the diameter d, or equivalently
we consider an aspect ratio c/d � 1. Moreover, we assume that the fibres are inextensible
and focus solely on the elastic contribution due to the bending stiffness γ (which for a
homogeneous fibre is given by the product of the elastic modulus and the second moment
of the area). Finally, �ρ̃ = ρ̃s − ρ̃f is the difference in the linear density (linear and
volumetric densities are denoted with and without the tilde, respectively) of the fibre and
the fluid, i.e. the parameter controlling the inertia of the dispersed objects. In particular, in
the limit �ρ̃ → 0 we recover the iso-dense case. Here, we assume zero-gravity conditions
in order to decrease the number of independent parameters. In particular, we note that the
choice is justified when focusing on the limit of arbitrarily large Froude number.

The dynamics of each fibre evolves according to the Euler–Bernoulli beam equation for
an elastic filament coupled with the inextensibility constraint, which read

�ρ̃ Ẍ = ∂s (T∂sX ) − γ ∂4
s X − F fs + F col, (2.1)

∂sX · ∂sX = 1, (2.2)

where X (s, t) is the position of a generic material point belonging to the fibre, T(s, t) is
the tension enforcing the inextensibility constraint in the filament equation, F fs(s, t) is the
fluid–solid interaction forcing and F col(s, t) is a fibre-to-fibre collision forcing term (both
forcings will be discussed in the following); all quantities are a function of the curvilinear
coordinate s and time t. Freely moving boundary conditions are imposed at both fibre’s
ends: ∂ssX |s=0,c = 0, ∂sssX |s=0,c = 0 and T|s=0,c = 0. From a normal mode analysis in
the case of such configuration (i.e. free–free or unsupported beam) we can readily obtain
the natural frequency fnat = α

√
γ /(�ρ̃c4), where α ≈ 22.4/π. Dealing with finite-size

objects, we neglect the Brownian contribution to the fibre dynamics, which is considered
to be small compared with the hydrodynamic forcing.

Fibres are released within a cubic domain of size L = 2π having periodic boundary
conditions in all directions and where a homogeneous and isotropic turbulent flow is
generated using the stochastic spectral forcing by Eswaran & Pope (1988), randomly
injecting energy at the largest scales, i.e. within a low-wavenumber shell with 1 � k � 2
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(with k denoting the wavenumber). The carrier flow is governed by the incompressible
Navier–Stokes equations for a Newtonian fluid, which read

∂tu + u · ∂u = −∂p/ρf + ν∂2u + f tur + f fs, (2.3)

∂ · u = 0, (2.4)

where u(x, t) and p(x, t) are the velocity and pressure fields, respectively, ρf is the
volumetric fluid density and ν is the kinematic viscosity; f tur(x, t) is the external forcing
used to sustain the turbulent flow (Eswaran & Pope 1988) and f fs(x, t) is an additional
forcing mimicking the presence of the solid phase (as described in the following); lastly, x
denotes the position vector in the Eulerian framework.

The flow and fibre dynamics are coupled by the no-slip condition Ẋ = u(X (s, t), t).

2.2. Numerical technique
To solve numerically the fully coupled FSI problem, we employ the IBM procedure
originally proposed by Huang, Shin & Sung (2007) and subsequently modified by Banaei,
Rosti & Brandt (2020) and Olivieri et al. (2020a,b, 2021). In particular, the mutual
interaction between the fluid and solid phase is enforced indirectly by means of the
singular force distributions F fs and f fs acting on the fibre and flow, respectively (Peskin
2002; Huang et al. 2007). The fluid velocity at the position of the fibre Lagrangian point,
U = u(X (s, t), t), is obtained by interpolating the fluid velocity at the Eulerian nodes
surrounding the Lagrangian point:

U (X (s, t) , t) =
∫

u (x, t) δ (x − X (s, t)) d3x, (2.5)

where δ is the Dirac delta function. The interpolated velocity U is used to compute the
fluid–solid interaction forcing needed to enforce the no-slip condition

F fs(s, t) = β (U − Ẋ ), (2.6)

where β is a large negative constant (Huang et al. 2007). Finally, F is spread to the
surrounding fluid flow as

f fs (x, t) = 1
ρf

∫
s

F fs (s, t) δ (x − X (s, t)) ds. (2.7)

Both the interpolation and spreading operations feature the Dirac operator. Numerically,
this is transposed into the use of the regularised δ function proposed by Roma, Peskin
& Berger (1999). Consequently, in the numerical framework the fibre’s diameter is also
approximated to a finite value comparable to the grid spacing (note that the present method
is not able to properly resolve the boundary layer around the individual fibre diameter); in
the following we assume d = 2 �x as the effective diameter.

Each fibre is evenly discretised using NL Lagrangian points such that the spatial
resolution �s = c/(NL − 1) is approximately equal to the Eulerian grid spacing �x;
consequently, the discretised curvilinear coordinate can be evaluated as sl = l �s, with
l = 1, . . . , NL. The numerical solution of (2.1) and (2.2) follows the scheme detailed
in Huang et al. (2007) with the difference that the bending term is treated implicitly
to allow for a larger timestep (Banaei et al. 2020; Olivieri et al. 2021). Furthermore,
a fibre-to-fibre collision model is implemented to prevent that the distance d between
Lagrangian points belonging to different fibres goes below the grid spacing �x and that
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fibres eventually cross each other. Specifically, we employ the minimal collision model
proposed by Snook, Guazzelli & Butler (2012), where a constant forcing F col = F0 d̂ is
applied when |d| � Δcol. Here, F0 is a free parameter and Δcol = O(�x) is the critical
distance below which the forcing is imposed. After several tests on the sensitivity of the
results with respect to these parameters (both in simple laminar flow conditions with few
fibres and in the turbulent case with a non-dilute suspension), we chose F0 = 1.0 and
Δcol = 3�x. As a result, the influence of collisions turns out to be very limited, as shown
in Appendix A: fibre-to-fibre interactions are extremely rare in the majority of the analyzed
configurations and are always found to have a negligible effect on the numerical results,
especially on the turbulence modulation and fluid–solid coupling mechanisms which are
the main focus of this work.

Concerning the fluid flow, (2.3) and (2.4) are solved using the fractional step
method on a staggered grid (Kim & Peskin 2007). The Poisson equation enforcing the
incompressibility constraint is solved using a fast and efficient approach based on the fast
Fourier transform (FFT). The numerical solution is based on the (second-order) central
finite-difference method for the spatial discretisation and the (third-order) Runge–Kutta
scheme for the temporal discretisation.

The described computational procedure is implemented in the in-house solver Fujin
(https://groups.oist.jp/cffu/code). The code is parallelised using the MPI protocol and
the 2decomp library for domain decomposition (http://www.2decomp.org). It has been
extensively tested and employed in a variety of fluid dynamical problems (Rosti et al.
2019; Rosti & Brandt 2020; Rosti et al. 2020b, 2021), including in particular suspensions
of fibres in both laminar and turbulent flows (Rosti et al. 2018, 2020a; Cavaiola, Olivieri
& Mazzino 2020; Olivieri et al. 2020a,b, 2021; Brizzolara et al. 2021). To further enrich
the existing framework, in Appendix B we show a comparison of our results on the
self-sustained flapping oscillation of a two-dimensional, hinged filament in a laminar flow
with those originally reported by Huang et al. (2007).

2.3. Parametric study
The objective of this work is to perform an extensive parametric study over the
characteristic properties of the fibre suspension. Therefore, we have performed DNS
varying the fibre’s linear density difference �ρ̃, length c and bending stiffness γ , along
with the number of fibres N. Overall, this also leads to consider different concentrations
of the suspension, i.e. from very dilute to non-dilute suspensions. Specifically, in a first
baseline investigation we considered two different linear densities �ρ̃, corresponding to
essentially iso-dense and denser-than-the-fluid fibres, three different values of the fibre’s
length c, which are comparable to the dissipative, inertial and integral characteristic
lengthscales of the turbulent flow, three different bending stiffnesses γ so that we range
from highly flexible to essentially rigid fibres. Finally, we varied the numbers of fibres
N to adjust the concentration of the suspension. Tables 1 to 3 in Appendix C report the
parametric combinations along with the consequent relevant metrics for the concentration,
e.g. number density or mass fraction, and the corresponding symbol used in the rest of the
paper to refer to each case.

A reference configuration is chosen in the single-phase case (i.e. for N = 0), where the
turbulent flow is characterised by a micro-scale Reynolds number Reλ ≡ urmsλ/ν ≈ 120,
where urms is the root-mean-square velocity and λ is the Taylor micro-scale. To simulate
such configuration, the fluid domain is discretised into a uniform Eulerian grid using
2563 cells, having verified that the ratio between the Kolmogorov dissipative length scale
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and the grid spacing is η/�x = O(1). Moreover, we verified the convergence of the
numerical results by doubling the spatial resolution in one representative case (not shown),
observing negligible differences with respect to the adopted grid setting. After reaching
the statistically stationary state in the single-phase configuration, the obtained flowfield is
used as the initial condition for the multiphase flow simulations, i.e. fibres are added to
the fully-developed turbulent carrier flow. The simulation is then evolved to reach the new
stationary regime, the achievement of the latter being qualitatively assessed from the time
histories of main statistical quantities for both phases (e.g. average kinetic energy). Hence,
we disregard the transient and accumulate the statistics over a minimum of five integral
timescales for all cases. The statistical convergence of our data concerning both the flow
and fibre dynamics was verified by widely varying the number of samples and checking
their sensitivity on the results, ensuring that all the reported differences are substantially
larger than the statistical uncertainty.

3. Results

This section presents the results of our study. First, in § 3.1, we focus on the
characterisation of the modulation of the turbulent flow due to the dispersed phase. Then,
in § 3.2, we analyse in more detail several features of the fibre motion and transport.

3.1. Flow dynamics

3.1.1. Macroscopic behaviour
We begin our analysis by looking at the bulk properties of the turbulent flow when varying
the parameters of the suspension. To start, figure 2(a–c) shows the dependence of the
micro-scale Reynolds number Reλ as a function of several quantities that can be used as an
indicator to characterise the concentration of the suspension: (i) the (non-dimensionalised)
number density n c3, (ii) the volume fraction φV and (iii) the mass fraction M. These three
quantities are chosen because they are often used in the framework of fibre suspensions,
or more generally particle-laden flows, to estimate (a priori) the importance of the
backreaction of the dispersed phase on the carrier flow (Butler & Snook 2018; Brandt
& Coletti 2021). From figure 2, it can be noted that for several cases the Reynolds number
turns out to decrease with respect to the single-phase case (the value of the latter indicated
by the horizontal dashed line in the figure); this appears as a robust effect that will be
characterised in detail in the rest of the section. However, the ways in which the data
appear when plotted as a function of the three different parameters are radically different.

The (dimensional) number density, defined as n = N/Vf (where Vf = L3 is the volume
of the domain), is a quantity widely used to investigate fibre suspensions, especially in
the framework of rheological studies in low-Reynolds-number flows. Such quantity is
typically made non-dimensional with the fibre length c, so that nc3 represents a measure
of the relative spacing between fibres and consequently of the degree of their mutual
interaction. More specifically, the suspension is typically considered to be in the dilute
regime if nc3 � 1, whereas it is classified as semi-dilute for 1/c3 � n � 1/(d c2). If
n � 1/(d c2), i.e. the spacing between the fibres is below their diameter, we finally have
the concentrated regime, where the fibre-to-fibre interactions are expected to be dominant
in controlling the dynamics of the dispersed objects (Butler & Snook 2018). We note that
all the configurations considered in the present study fall either in the dilute or in the
semi-dilute regime. As shown in figure 2(a), however, the number density does not appear
to be a good indicator for describing the entity of the backreaction on the turbulent flow,
without any systematic trend observed when plotting the numerical results with respect to
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Figure 2. Micro-scale Reynolds number as a function of the (a) (non-dimensional) number density, (b) volume
fraction and (c) mass fraction (each of these indicator quantities are defined in the text; the dashed line in
each plot indicates the reference value obtained in the single-phase case) and (d) turbulent kinetic energy
E (normalised with the value of the single-phase case E0) as a function of the mass fraction. Colours and
symbols are used consistently with the indication of tables 1 and 2: empty and filled markers denote the cases
for iso-dense (�ρ̃ = 10−3) and denser-than-the-fluid (�ρ̃ = 100) fibres, respectively. The colour denotes the
fibre’s length (green, c = 0.1, i.e. short; red, c = 0.5, i.e. intermediate; blue, c = 2.0, i.e. long). The symbol
indicates the bending stiffness (squares, γ = 10−8; triangles, γ = 10−4; rotated squares, γ = 100). Finally, the
brightness decreases with the number of fibres (light, N = 101; medium, N = 102; dark, N = 103).

such parameter. As will become clearer in the following, the reason for this is the incorrect
scaling with the fibre length.

Let us now consider the same data but as a function of the volume fraction φV , as
reported in figure 2(b). Here, φV = Vs/Vf is defined as the ratio between the volume of the
dispersed phase Vs = N c πd2/4 and that of the fluid domain Vf = L3. Using this quantity,
the results are outlined with a much more defined trend (compared with those for the
number density), with Reλ decreasing as φV is increased. However, it can be noted that
such indicator misses to take into account the inertia of the fibres, here quantified by the
linear density difference �ρ̃. Indeed, the latter clearly appears as an additional key (and
free) parameter, with a dramatic difference between the results for the iso-dense (empty
symbols) and the denser-than-the-fluid (filled symbols) fibre cases.

In light of the evidence, it is therefore natural to consider, as another way to parametrise
the backreaction effect, the mass fraction M = ms/(ms + mf ), where ms = ρsVs is the
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(total) mass of the solid dispersed phase and mf = ρf Vf is the (total) mass of fluid in the
domain. As a result, from figure 2(c) it can be now appreciated how the mass fraction
turns out to be the most representative parameter for describing the variation of the
backreaction and consequent turbulence modulation at a macroscopic level. We highlight
that, although this fact is well known for the case of point-like inertial particles (Brandt &
Coletti 2021), similar evidence is not reported for suspensions of finite-size fibres, such as
those investigated in the present work. Focusing on figure 2(c), it can be observed that the
Reynolds number starts to vary appreciably from the single phase value when the mass
fraction becomes larger than around 10 %, thus systematically decreasing with M and
eventually reaching, for the highest mass fraction that was tested (M ≈ 89 %), a value
that is roughly half of that obtained in the single-phase case (Reλ ≈ 60).

For a more complete characterisation of the turbulence modulation, in figure 2(d) we
also show how the turbulent kinetic energy E decreases with the mass fraction, following
a trend that is qualitatively similar to what observed for the micro-scale Reynolds number.

From figure 2, a further comment can be made on a secondary yet systematic effect
associated with the variation of the fibre’s bending stiffness, which is especially evident
for the longest fibres at the highest concentration (dark blue symbols). Remarkably, the
Reynolds number is systematically found to decrease when the bending stiffness γ is
increased (the fibre is more rigid). This feature is particularly evident for the cases with the
longest fibres and can be intuitively associated with the degree of compliance manifested
by the elastic objects under the action of the flow, which reflects in a stronger friction
exerted on the flow. Nevertheless, it can be also pointed out the huge variation (up to eight
orders of magnitude) in the bending stiffness that was considered for the reported cases, in
light of which we conclude that the effect associated with such parameter is overall largely
subleading when compared with that caused by the inertia of the dispersed phase.

3.1.2. Energy spectra
To better understand the multiscale features of the backreaction of the dispersed phase on
the carrier flow, in figure 3 we show the energy spectra computed from our simulations
for the two linear densities �ρ̃, i.e. iso-dense (a,c,e) versus denser-than-the-fluid fibres
(b,d, f ), and the three fibre lengths c (corresponding to each row and increasing from
top to bottom) investigated. In each plot, we vary the number of fibres N (increasing
from light to dark colour). Moreover, for the sake of comparison, the results from the
single-phase case are also reported (black curve). Here, we retain the same intermediate
value for the bending stiffness γ because its influence on the turbulence modulation was
previously shown to be subleading when compared with the combined variation of the
other parameters determining the mass fraction of the suspension.

Figure 3 shows that, as the concentration is increased, the energy spectrum is modified
with the same qualitative behaviour in all the cases. The latter can be essentially
described as the combination of an energy content depletion at the largest scales (i.e. low
wavenumbers), along with a (relative) enhancement at the smallest scales (i.e. high
wavenumbers), with respect to the single-phase configuration. Moreover, the energy
distribution in the intermediate range of scales is also appreciably modified, giving rise
to a rather different phenomenology compared with that of classical turbulence. Clearly,
the effect is more pronounced when increasing the fibre density and/or length, consistently
with the increase in the mass fraction as outlined from the macroscopic characterisation
of the bulk flow properties.

To highlight that qualitatively similar flow conditions can be obtained using significantly
different combinations of the suspension parameters, we can compare, e.g. the case
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Figure 3. Energy spectra of the modulated turbulent flow for different fibre suspension: (a,c,e) iso-dense
fibres; (b,d, f ) denser-than-the-fluid fibres; (a,b) short fibres; (c,d) intermediate fibres; (e, f ) long fibres. The
number of fibres, and therefore the mass fraction, increases from light to dark. Colours and symbols are used
consistently with tables 1 and 2. All cases are relative to the intermediate value of the bending stiffness. The
black lines (without symbols) refer to the single-phase case.

of short, denser-than-the-fluid fibres in figure 3(b) with that of long, iso-dense fibres
in figure 3(e) (considering for both cases the highest number of fibres). Although
some quantitative differences are present (with the former showing a slightly stronger
modulation), when compared with the single-phase case the resemblance between the two
configurations is evident. Another observation can be inferred by looking at the enhanced
energy content at the smallest cases, a robust feature manifesting already at relatively low
mass fraction, and which can have potential relevance for mixing processes. On the other
hand, it should be noted that the overall kinetic energy of the flow monotonically decreases
with the mass fraction, consistently with the large-scale energy depletion previously
discussed.

Lastly, we explore the effect of the bending stiffness on the energy spectrum for one
representative configuration (i.e., denser-than-the-fluid fibres of intermediate length and
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k
Figure 4. Effect of fibre’s bending stiffness on the turbulent energy spectrum. Results are obtained for a
suspension of N = 103 denser-than-the-fluid fibres of intermediate length, varying the fibre’s bending stiffness
over eight orders of magnitude. The black curve refers to the single-phase case. Symbols are used accordingly
to table 3.

maximum concentration), shown in figure 4. On one hand, it can be noted that the energy
content at the large scales, i.e. low wavenumbers, is systematically decreasing as the
bending stiffness is increasing, in agreement with what observed in terms of the overall
energy depletion (cf. figure 2). On the other hand, in the high-wavenumber region the
various curves are almost superimposed. From the physical viewpoint, we can argue that
increasing the flexibility (i.e. decreasing γ ) leads to a more relaxed flow–structure coupling
(i.e. fibres are more compliant to the action of the flow), reflected in a less-pronounced
backreaction if compared with the rigid case. Note that the saturation observed in figure 4
when increasing γ corresponds indeed to the convergence towards the rigid configuration.
In this regard, a more quantitative indication on the expected role of elasticity can be
obtained in terms of the ratio between the structural and fluid characteristic timescales
(later introduced in § 3.2), from which it can be deduced the extensive (non-dimensional)
range that has been considered (cf. figure 7). Nonetheless, it has also to be pointed out
that the variation with γ appears overall very limited, confirming the secondary effect of
flexibility in altering the carrier flow.

3.1.3. Scale-by-scale energy transfer
In order to characterise the mechanisms underlying the outlined phenomenology, we can
analyse the scale-by-scale energy transfer that for the present multiphase flow problem can
be written as

P(k) + Π(k) + Πfs(k) + D(k) = ε, (3.1)

where the various terms appearing on the left-hand side are the production rate P (here
associated with the external forcing used to sustain the flow and acting only at the largest
scales, i.e. low wavenumbers), the energy flux Π associated with the nonlinear term, the
energy flux Πfs associated with the fluid–solid coupling, and the viscous dissipation D.
Note that the latter is defined such that the turbulent energy dissipation rate ε appears
on the right-hand side and the overall balance can be visualised more conveniently. For a
derivation of (3.1), see Appendix D. In the single-phase case Πfs ≡ 0, and the dominant
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terms in the balance are the nonlinear term Π and the viscous dissipation D when
approaching the lowest and highest wavenumbers, respectively (Pope 2000).

In this analysis, we focus on the cases with N = 103. However, the generality of the
results is not restricted because the mass fraction, and consequently the entity of the
backreaction, still varies considerably, thus ranging from configurations with negligible
backreaction (i.e. essentially resembling the case without fibres) to configurations where
the backreaction is strong and leads to a dramatic departure from the more classical
scenario obtained for purely Newtonian fluid turbulence. Similarly, for the bending
stiffness we select at first the same (intermediate) value as for the energy spectra reported
in figure 3, focusing on the effect of the mass fraction.

Let us therefore start from considering the spectral power balance for the cases of
iso-dense fibres (with different fibre lengths), shown in figure 5(a,c,e). Here, the mass
fraction is always relatively small; in agreement with the previously discussed effects on
the Reynolds number and energy spectrum, we therefore expect an overall negligible, or at
most quite limited, alteration in the balance with respect to the single-phase configuration.
Indeed, starting from the short fibres (figure 5a) it can be clearly observed that the results
resemble those of the single-phase configuration (indicated by the black lines without
symbols), with a predominance at low wavenumbers of the nonlinear term Π and a
negligible energy transfer associated with the fluid-structure coupling Πfs. This situation is
accompanied by the predominance at high wavenumbers of the dissipation term D which
eventually saturates to ε for increasing k. The same applies also to fibres of intermediate
length (figure 5c), with only a very modest increase of Πfs. On the other hand, when
considering the case of long fibres (figure 5e) the situation starts to be different: at low
wavenumbers, the nonlinear term is weakened and does not entirely control anymore the
energy transfer, with a non-negligible contribution of the fluid–solid coupling which is
maximised at an intermediate length scale; as k increases, the dissipation progressively
becomes dominant, although the saturation is less evident due to the enhanced small-scale
energy transfer. Remarkably, the mass fraction M in this case is only around 1 %, therefore
indicating that a substantially different and complex dynamics of the turbulent flow may
arise already in relatively dilute conditions.

The alteration gets substantially more dramatic when considering the same three
cases but for denser-than-the-fluid fibres, reported in figure 5(b,d, f ). Already for short
fibres (figure 5b) a similar behaviour can be noted, with a non-negligible fraction of
the energy transfer that is associated to the fluid-solid coupling term. In fact, this
case presented similarities already in terms of the energy spectrum with that with
iso-dense long fibres, as mentioned previously. When increasing the mass fraction and
considering the intermediate fibre length (figure 5d), the contribution of the nonlinear
and fluid–solid coupling terms become comparable in magnitude. However, the former
is dominant at lower wavenumbers, indicating that the energy from the largest scales is
at first mainly transferred to the smaller scales by means of the classical hydrodynamic
mechanism, although in a restricted subrange of scales compared with the single-phase
case. Then, at sufficiently higher wavenumbers, such energy transfer is progressively
replaced by another mechanism driven by the direct interaction between the carrier flow
and the dispersed phase. We stress the fact that, as the mass fraction is increased, the
nonlinear term decreases while the fluid–solid coupling is increased, whereas the viscous
dissipation always eventually prevails at sufficiently large wavenumbers, i.e. small scales.
Eventually, for the case of long denser-than-the-fluid fibres having the largest mass fraction
(figure 5f ), the nonlinear term is essentially suppressed with the fluid–solid coupling
largely controlling the overall energy transfer, up to the dissipative scales.
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Figure 5. Spectral power balance according to (3.1), showing the energy fluxes due to the nonlinear term (solid
lines), fluid–solid coupling (dashed) and viscous dissipation (dotted), all normalised with the turbulent energy
dissipation rate, for the cases with N = 103 and intermediate bending stiffness: (a,c,e) iso-dense fibres; (b,d, f )
denser-than-the-fluid fibres; (a,b) short fibres; (c,d) intermediate fibres; (e, f ) long fibres. In addition, in (a) the
nonlinear and dissipation terms of the single-phase case are also reported for comparison. Colours and symbols
are used consistently with the indication of tables 1 and 2.

As an overall observation, for all cases the energy transfer is eventually compensated
by the viscous term, since both the nonlinear and fluid–solid coupling term vanish
when computed over the full range of wavenumbers. This aspect concerns a remarkable
difference between the case of elastic fibres, as those considered in the present work, and
that of polymer suspensions and viscoelastic turbulence, where the polymer stresses both
transfer and dissipate energy (De Angelis et al. 2005; Valente, Da Silva & Pinho 2014). In
our model, no internal dissipation mechanism is considered for the dispersed phase and
therefore the fluid–solid coupling purely transfers energy from larger to smaller scales, in
a strict analogy with the nonlinear term, with the total energy flux given by the sum of the
two contributions.
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Figure 6. Energy fluxes associated with the nonlinear term (a,c,e) and fluid-solid coupling term (b,d, f ) for
N = 103 fibres with minimum versus maximum bending stiffness, along with different linear density and
length. Colours and symbols are used consistently with the indication of tables 1 and 2: empty and filled
markers refer to iso-dense and denser-than-the-fluid fibres, respectively. The symbol indicates the bending
stiffness (squares, minimum; diamonds, maximum). The colour denotes the fibre’s length (green, short; red,
intermediate; blue, long).

To conclude the analysis, there remains to discuss in more detail the influence of
the fibre’s flexibility, quantified by the bending stiffness γ , on the backreaction and
turbulence modulation. Figure 6 reports the energy flux from the nonlinear (a,c,e) and
fluid–solid coupling (b,d, f ) contributions for the cases with maximum and minimum
bending stiffness (along with different density and length) in order to highlight the overall
range of variation associated with this parameter. The plots confirm once more that the
variation is always quite modest, if compared with that given by the other parameters
(i.e. more universally expressed in terms of the mass fraction). Nevertheless, a systematic
trend in all cases can be detected: as the bending stiffness is increased, the magnitude
of the nonlinear term is found to decrease whereas the fluid–solid coupling contribution
becomes more relevant. This effect, which could be intuitively expected, can be associated
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with the fact that rigid fibres are less compliant and do not easily adapt to the stresses
applied by the turbulent flow in the same way as very flexible and more compliant fibres
do. Remarkably, this mechanism is intrinsically different from the one governed by the
inertia of the dispersed phase, and its potential relevance could be better outlined in very
dense suspensions of iso-dense fibres.

3.2. Fibre dynamics

3.2.1. Flapping frequency
We now turn our attention into the dynamical behaviour of the fibres when freely dispersed
in the turbulent flow, focusing at first on the main features of their individual motion
and deformation. This topic has been investigated by Rosti et al. (2018, 2020a) in the
context of very dilute suspensions, and more recently by Olivieri et al. (2021) with
the aim of extending the analysis to non-dilute configurations. These previous studies
highlighted the potential of using finite-size flexible fibres to measure relevant two-point
statistics of turbulence, i.e. longitudinal velocity differences and structure functions,
under a proper choice of the fibre’s mechanical properties. More specifically, based
on the comparison between the characteristic timescales that can be identified in the
problem, they showed the existence of two main dynamical regimes, i.e. underdamped
or overdamped, differing by the fact that the structural elasticity may manifest or not
in the resulting dynamics. Furthermore, the classification could further be divided into
different dynamical subregimes. However, only two qualitatively different flapping states
were found to ultimately take place (Rosti et al. 2020a; Olivieri et al. 2021): (i) for
sufficiently flexible and/or iso-dense fibres (i.e. fnat/ftur � 1) the dynamics is fully
controlled by the flow, and therefore the fibres act effectively as a proxy of the turbulent
eddies of comparable size; (ii) for sufficiently rigid and inertial fibres (i.e. fnat/ftur � 1)
the characteristic response time is related to the natural frequency, and the fibre is not
dynamically controlled by the turbulent forcing.

In this work, we complement our recent results that generalise such scenario in the case
of non-negligible backreaction (Olivieri et al. 2021). As a starting point, figure 7 shows
the behaviour of the flapping frequency fflap (identified as the dominant peak frequency
from the time history of the fibre’s end-to-end distance, as detailed in Rosti et al. 2020a)
while varying the ratio between the natural and turbulent eddy frequency. As anticipated,
for the denser-than-the-fluid fibres (corresponding to the underdamped regime) the
latter indeed provides a very good indication to distinguish between the two flapping
states, which differ from each other for the scaling law of the flapping frequency: for
fnat/ftur � 1, the flapping frequency is controlled by, and therefore scales with, the
turbulent eddy frequency (i.e. fflap = ftur), whereas for fnat/ftur � 1 the flapping frequency
is given by the natural one (i.e. fflap = fnat). On the other hand, when the fibres are
iso-dense (and thus correspond to the overdamped regime) they are always controlled by
turbulence (i.e. fflap = ftur). We remark that the present results concern both dilute and
non-dilute cases, with the entity of the backreaction depending on the corresponding mass
fraction, as discussed in § 3.1. The effective qualitative and quantitative characteristics of
the modulated flow can thus be appreciably different from the single-phase configuration.
To account for this crucial effect, the turbulent eddy frequency is here evaluated as ftur =
α′ √S2/c, where S2 = 〈(δu‖)2〉 is the second-order structure function of the longitudinal
velocity difference δu‖ evaluated at the fibre’s length scale and α′ = 3.0 is an overall
constant O(1). As shown in figure 7, this choice leads to results in overall good agreement
with the theoretical prediction even in the non-dilute configurations. Note however, that
similar results are found when computing S2 by means of Lagrangian fibre tracking
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Figure 7. Fibre’s dominant flapping frequency as a function of the (free-response) natural frequency, both
normalised with the effective eddy turnover frequency (evaluated at the fibre length scale). Dotted and dashed
lines denote the expected scalings in the two flapping states. The inset reports the average elastic energy of the
fibres for N = 103 denser-than-the-fluid fibres of intermediate length and different bending stiffness. Colours
and symbols are used consistently with the indication of tables 1 to 3.

(instead of using directly the fluid flow measured on the Eulerian grid), or if using the
average end-to-end distance in place of the fibre length c (with minimal variations that
do not appreciably affect the observed scalings). If, on the other hand, one estimated the
hydrodynamic frequency using the dimensional arguments based on Kolmogorov scaling
in the inertial subrange, a more substantial departure from the reported findings would be
obtained for the non-dilute cases where the backreaction is non-negligible (Olivieri et al.
2021). On the other hand, it can be pointed out that the alteration of ftur does not have a
primary role in the resulting scaling laws (which remain the same already found for the
dilute case).

A final comment can be made in this regard when considering the (average) elastic
energy stored by the fibres during their deformation, shown in the inset of figure 7.
Rosti et al. (2018) showed that (for a single fibre and in the absence of any appreciable
backreaction) this quantity exhibits a maximum when the natural frequency is equal
to the turbulence frequency, because of a resonance condition between these two
timescales. To extend this finding, we choose a representative non-dilute configuration
and vary only the bending stiffness in order to substantially retain the same backreaction
to the flow (cf. table 3). From the inset of the figure, it clearly appears that, also
in the presence of strong turbulence modulation, the average elastic energy 〈Eel〉 =
(1/N)

∑N
i=1

∫ c
0

1
2γ κ2

i (s) ds, where κi is the local bending curvature of the ith fibre,
peaks when fnat/ftur ≈ 1. Remarkably, the emergence of such peak confirms the idea
of a resonance condition in the structural response occurring also in the non-dilute
configuration, hence generalising the theoretical framework previously proposed in the
case of negligible backreaction.

3.2.2. Maximum curvature
The maximum curvature experienced by the fibres under the action of the flow is another
relevant observable when characterising the fibre’s deformation, and we report it in
figure 8. Remarkably, this quantity is of paramount importance in fragmentation processes
involving, e.g. fibrous microplastics in oceanic turbulence (Allende et al. 2018; Brouzet
et al. 2021). Therefore, we focus on understanding how κmax behaves as a function of
the relevant mechanical parameters. We compute the maximum fibre’s curvature κmax
as follows: we first evaluate the maximum of κi(s) for each fibre (at each time instant),
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Figure 8. Maximum fibre curvature (normalised with the fibre length) as a function of the normalised bending
stiffness, for (a) iso-dense and (b) denser-than-the-fluid fibres. The dashed and dotted lines indicate the scaling
laws obtained when balancing the forcing term with the inextensibility bending contribution or the linear
bending term, respectively. Colours and symbols are used consistently with the indication of tables 1–3.

and then average this quantity over the different fibres (and over different time instants).
While the curvature is expected to be inversely proportional to the fibre’s bending stiffness
γ , less trivial is the prediction and corroboration of scaling laws (if any) to qualitatively
describe the dependence from the bending stiffness as well as other parameters.

To proceed, we adopt an approach similar to that proposed by Gay et al. (2018) in
the limit case of iso-dense fibres and dilute suspension, based on balancing different
terms in the fibre’s dynamical equation (2.1) estimated by means of dimensional analysis.
However, differently from Gay et al. (2018), here we directly compare these terms without
introducing an effective elastic length nor focusing on an energy balance, and consequently
obtain different scaling laws for the maximum curvature. For the sake of simplicity, the
same assumptions, i.e. one-way coupling and inertial subrange scaling, are retained (and
will be commented on later). For the forcing term we can write F ∼ μ (εc)1/3, where μ

is the dynamic viscosity, while the (linear) bending term can be dimensionally expressed
as γ ∂4

s X ∼ γ κmax/c2. Moreover, as shown by Marheineke & Wegener (2006) and Gay
et al. (2018), from the tension term ∂s(T∂sX ) one can isolate the contribution ∂s(γ κ2∂sX )

ensuring the inextensibility constraint under bending deformations, which can be further
split in two terms, one parallel to the fibre’s axis and one parallel to the curvature vector;
focusing solely on the latter (cubic) contribution, we have ∂s(T∂sX ) ∼ γ κ3

max. Remarkably,
the cubic term is subleading with respect to the linear one for κmaxc � 1, whereas the
opposite occurs for κmaxc � 1. Therefore, we can predict the following two regimes: (i)
for sufficiently rigid fibres, the maximum curvature is given by the balance between the
forcing and the linear bending term, thus obtaining that κmaxc ∼ [γ /(με1/3c10/3)]−1; (ii)
for sufficiently flexible fibres, the balance instead is between the forcing and the cubic
bending contribution to the tension term, yielding κmaxc ∼ [γ /(με1/3c10/3)]−1/3.

Figure 8 shows the results from our numerical simulations along with the expected
scaling laws, both for the iso-dense (a) and denser-than-the-fluid fibre cases (b). Overall,
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we observe a good agreement of the numerical results with respect to both proposed
scalings, with only a limited deviation for the denser-than-the-fluid fibres approximately
in the transition region between the two regimes. Nevertheless, some remarks on the
underlying assumptions are needed to properly outline the limitations of the proposed
model. First, using the inertial subrange scaling for the turbulence forcing is strictly
justified only for sufficiently dilute suspensions and fibres of intermediate length. Second,
although we note from the numerical results a systematic increase of κmax with the fibre’s
inertia (i.e. linear density difference), the influence of the latter is not accounted for in the
derivation of the scaling laws. Consequently, it was not possible to obtain a unique master
curve collecting all the data together. We note the difference with the scalings that were
obtained for the flapping frequency, where the inertial term was indeed considered and had
a crucial role to distinguish between the overdamped and underdamped cases. Here instead
the same qualitative behaviour is obtained for both the iso-dense and denser-than-the-fluid
fibres. Nevertheless, our predictions for the remaining set of parameters are corroborated
not only for iso-dense, but also for the denser-than-the-fluid inertial fibres, thus being
general for the widest parametric range.

3.2.3. Clustering
After the characterisation of the individual motion of the dispersed fibres, we consider
some relevant aspects concerning their collective dynamics. We look in particular at the
local concentration of the suspension to inspect the presence of clustering phenomena, a
key feature in the analysis of turbulent particle-laden flows (Eaton & Fessler 1994; Bec
et al. 2007) and with a specific relevance in the context of fibres aggregation (Lundell
et al. 2011; Verhille et al. 2017). Different metrics have been proposed to quantify the
tendency of particles to preferentially accumulate along with sampling specific regions
of the flow (Brandt & Coletti 2021), among which is the radial distribution (or pair
correlation) function (RDF) (Salazar et al. 2008; Saw et al. 2008; Olivieri et al. 2014).
Such a quantity indicates the probability of having a pair of particles at a given mutual
distance, thus highlighting the presence of accumulation at particular lengthscales, while
assuming a constant unit value when the particle distribution is locally uniform. Here,
we compute the RDF using its classical definition for point-like particles and specifically
considering the Lagrangian midpoints, being concerned with the mutual distance between
the different anisotropic particles. Furthermore, we restrict the analysis to the cases with
the largest number of fibres N = 103 to ensure well-converged statistics.

Figure 9 shows the RDF obtained from the DNS results, from which several
observations can be made. The left panels (figure 9a,c,e) refer to the iso-dense fibres
of different length and bending stiffness, for which the clustering effect is always
essentially negligible. Indeed, such evidence is consistent with the crucial role of
inertia in the formation of clustering (Eaton & Fessler 1994). On the other hand,
the cases for denser-than-the-fluid fibres in the right panels (figure 9b,d, f ) reveal a
richer phenomenology. First, for all the investigated fibre lengths, it turns out that the
accumulation increases when decreasing the bending stiffness. This systematic trend can
be explained by the fact that, when the fibres are more flexible, they can adapt more easily
to the local flow structure and thus sample more frequently the zones of lower vorticity
similarly to what observed for point-like particles. Conversely, the fibres are prevented
from doing so when increasing γ , because of the rigidity constraint, and consequently a
weaker effect is found. As another prominent effect, we observe that the highest peak in
the RDF is found for the long fibres (figure 9f ), whereas less-remarkable variations are
observed for the short and intermediate fibres (figure 9b,d). Such finding can be explained
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Figure 9. Radial distribution function for cases with N = 103 iso-dense (a,c,e) or denser-than-the-fluid (b,d, f )
fibres of different length (a,b short; c,d intermediate; e, f long). Colours and symbols are used consistently with
the indication of tables 1 and 2.

indeed in terms of the combined role of inertia (i.e. Stokes number) and flexibility
(i.e. effective compliance), such that for the longest fibres clustering is more favoured.

Figure 10 provides a qualitative insight by collecting some instantaneous visualisations
for the iso-dense cases of intermediate stiffness (a,d,g), and for both the most flexible
(b,e,h) and most rigid (c, f,i) denser-than-the-fluid fibres. For iso-dense fibres clustering
is indeed always negligible, without any peculiar role observed for the fibre’s flexibility.
Conversely, for denser-than-the-fluid fibres the influence of the latter becomes stronger as
the length is increased. As a result, for long fibres a remarkable difference can be noted
between the flexible and rigid case (figure 10h,i), with much more intense clusters that can
detected for the former.

As a final comment, we highlight that clustering does not appear to have a clear role
in the turbulence modulation: as shown in § 3.1, it is the mass fraction the most relevant
(and arguably unique) control parameter, without a specific effect found, e.g. for the fibre’s
length, in the backreaction mechanism.

3.2.4. Preferential alignment
As the final step of our investigation, we focus on a peculiar issue of anisotropic particles in
turbulence (Voth & Soldati 2017): the statistical characterisation of the alignment between
the fibre orientation and some specific quantities of the turbulent flow (i.e. vorticity and
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(e)

(b)(a) (c)

(d )

(g) (h) (i)

( f )

Figure 10. Two-dimensional snapshots of fibres of different length (a–c short; d–f intermediate; g–i
long) and for three different configurations (a,d,g iso-dense with intermediate bending stiffness; b,e,h
denser-than-the-fluid with lowest bending stiffness; c, f,i denser-than-the-fluid with highest bending stiffness).

principal directions of the strain rate). The topic has been extensively investigated in the
framework of fibres with infinitesimal length, and more recently for finite-size fibres
(Pumir & Wilkinson 2011; Ni et al. 2015; Pujara et al. 2019, 2021), pointing out the
preferential alignment of sufficiently short fibres with the fluid vorticity and that of longer
fibres with the most extensional eigenvector of the strain rate. We note, however, that such
theoretical and computational studies still often rely on a one-way coupling assumption
and are typically based on the classical Jeffery’s model (the latter strictly holding only for
fibres shorter than the dissipative length scale). Moreover, fibres are usually assumed to be
iso-dense and rigid. Here, we tackle the problem using a four-way coupled simulation
approach and span the wide parametric range in terms of fibre’s inertia, length and
flexibility.

We compare the fibre’s local orientation (i.e. considering each segment connecting two
adjacent Lagrangian points, and then averaging the results over different segments and
fibres) with the local fluid flow to identify the existence of preferential alignment, and to
explore how the latter varies with the main properties of the suspension. As in our four-way
coupled model the fluid flow is locally perturbed by the presence of the fibre, when
computing the vorticity and strain rate we employ a coarse-graining procedure to overcome
such effect in the proximity of the Lagrangian points. Specifically, a stencil of 73 Eulerian
cells surrounding the Lagrangian point is used. To assess the validity of this choice, at
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Figure 11. P.d.f.s of the alignment between the fluid vorticity and eigenvectors of the strain rate computed
in the fully Eulerian framework for the single-phase case (black lines without symbols) and via a Lagrangian
coarse-grained approach (brown lines with symbols) for two representative cases (at intermediate length):
(a) iso-dense fibres (with lowest bending stiffness); (b) denser-than-the-fluid fibres (with intermediate bending
stiffness).

first we employ this procedure to compute the alignment between the vorticity and strain
rate, a well-known feature of homogeneous turbulent flows (Ashurst et al. 1987; Tsinober,
Kit & Dracos 1992). Results obtained in a representative configuration with iso-dense
fibres (for which the backreaction is overall negligible) are shown in figure 11(a), along
with those evaluated using the fully Eulerian framework in the single-phase case: the same
qualitative outcome is observed between the Lagrangian coarse-grained and fully Eulerian
approaches, with the vorticity resulting mostly aligned with the intermediate eigenvector
and orthogonal to the direction of maximum compression, i.e. the third eigenvector
(Tsinober et al. 1992). On the other hand, only a minimal departure may be noted for
the alignment with the first eigenvector (corresponding to the direction of maximum
extension). Nevertheless, in light of the overall agreement the coarse-grained approach
can be safely exploited for the following analysis. Furthermore, the same quantities are
shown in figure 11(b) for a case with denser-than-the-fluid fibres which cause a significant
modulation of the turbulent flow. In this case, the alteration in terms of vorticity-strain
alignment appears not dramatic yet not completely negligible. Specifically, the main
difference that can be observed is the mild attenuation of the alignment of vorticity
with the intermediate eigenvector. Note that, this effect can play indirectly a role when
observing the alignment of inertial fibres with the flow.

Let us therefore consider the alignment between the fibre’s orientation and the strain rate
principal directions, starting from the iso-dense cases reported in figure 12. In particular,
we first consider the results for short fibres (figure 12a–c) for which, regardless of the
variation in the bending stiffness, a strong alignment with both the first and second
eigenvectors is found, along with anti-alignment with the third one. Remarkably, this
finding is in very good agreement with the experimental results reported by Ni et al. (2015)
(see figure 8 therein), specifically for what it concerns the predominant alignment with the
first (rather than the second) eigenvector (conversely, as noted by Ni et al. (2015) such
qualitative agreement was not found when using the one-way coupling approach). We
note the resemblance in the parameters (i.e. fibre length and density, micro-scale Reynolds
number) between these cases and the experimental study by Ni et al. (2015); in particular,
here the fibre is longer, yet still comparable, than the Kolmogorov length scale. If, on
the other hand, we increase the fibre length to the intermediate value (figure 12d–f ),
we observe that the same phenomenology is retained only for the most flexible case,
whereas the alignment with the most extensional direction is progressively lost when
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Figure 12. P.d.f.s of the alignment between the (local) fibre’s orientation and the eigenvectors of the strain rate,
for iso-dense fibres of different length (a–c short; d–f intermediate; g–i long) and bending stiffness (increasing
from left to right panels). The solid, dashed and dotted lines indicate the alignment with the first, second and
third eigenvector of the strain rate, respectively. Colours and symbols are used consistently with the indication
of tables 1 and 2.

increasing the bending stiffness. As a result, for essentially rigid fibres of intermediate
length (i.e. belonging to the inertial subrange), the dominant alignment is found with
the intermediate eigenvector. Finally, when the length is further increased so that the
fibres are comparable with the integral length scale (figure 12g–i), several qualitative
modifications are observed: the strongest alignment is always found with the intermediate
eigenvector (further increasing with the rigidity of the fibres), whereas the p.d.f. relative
to the third eigenvector gets more flattened (both compared with the shorter lengths and
when increasing the bending stiffness). Furthermore, for flexible fibres the p.d.f. relative
to the first eigenvector shows now a peak at an intermediate value. Such non-monotonic
behaviour, which is not observed for other configurations, appears to be conditioned by
having a relatively low bending stiffness, and a possible transition can be argued towards
a more anti-aligned situation when further increasing the bending stiffness.

Figure 13 shows the results concerning the same configurations but for denser-than-the-
fluid fibres. The resulting scenario is now dramatically different compared with the
iso-dense cases, with two main effects that can be noted. First, with respect to the
iso-dense cases, the preferential alignment (or anti-alignment) of fibres with the strain
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Figure 13. P.d.f.s of the alignment between the (local) fibre’s orientation and the eigenvectors of the strain
rate, for denser-than-the-fluid fibres of different length (a–c short; d–f intermediate; g–i long) and bending
stiffness (increasing from left to right panels). The solid, dashed and dotted lines indicate the alignment with
the first, second and third eigenvector of the strain rate, respectively. Colours and symbols are used consistently
with the indication of tables 1 and 2.

rate turns out to be substantially weaker. This is especially evident when considering
short fibres (figure 13a–c) or more flexible fibres (figure 13d,g), where all curves are
much more horizontal, with an approximately constant value around 1, thus indicating
a tendency towards the situation of random alignment. On one hand, this result could
be intuitively expected because the dynamics for highly inertial particles is significantly
delayed with respect to the forcing acted by the turbulent flow. As a result, at a given
instant the local fibre’s orientation and surrounding flow topology are substantially less
correlated with a departure from the preferential alignment. However, when increasing the
rigidity (i.e. bending stiffness) the situation systematically changes: for all the considered
fibre lengths, we observe a stronger alignment with the intermediate eigenvector, along
with a more pronounced anti-alignment with the third eigenvector. A difference can be
noted instead in terms of the alignment with the first eigenvector between short fibres,
which show a weak alignment, and intermediate or long fibres, for which a moderate
anti-alignment is noted. Overall, it can be underlined that the inertia of the fibres and
the rigidity constraint play an apparently opposite role, i.e. depleting versus promoting the
preferential alignment of the dispersed particles with the flow.
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4. Conclusions and outlook

In this work, we have investigated the mutually coupled dynamics of dispersed fibres in
homogeneous isotropic turbulence by means of four-way coupled DNS. The interaction
between finite-size fibres and the turbulent flow has been tackled in the framework of an
immersed boundary method to properly model the coupling between the two phases, thus
going beyond the typical assumptions of infinitesimal length and one-way coupling. Fixing
a reference single-phase condition, such methodology has been employed to perform an
extensive numerical study (in zero-gravity condition) over the main parameters that control
the dynamics of both the dispersed and carrier phase, i.e. the fibre’s linear density, length
and bending stiffness, as well as the number of fibres, in order to simulate and compare
a variety of configurations (i.e. iso-dense versus denser-than-the-fluid, short versus long,
flexible versus rigid and dilute versus non-dilute). Several outcomes can be outlined from
our numerical results, concerning both the modulation of the turbulent flow and some
relevant features of the suspension, such as the fibre’s flapping states and deformation, as
well as the possibility of clustering and preferential orientation.

To start, we have systematically described how the backreaction of the dispersed
phase affects the macroscopic behaviour of the carrier flow, with an overall depletion
of the turbulent kinetic energy that is reflected by the remarkable variation of the
(decreasing) micro-scale Reynolds number. In agreement with reported evidence for other
particle-laden flows, such macroscopic effect is controlled by the mass fraction of the
suspension, and not by other reference quantities such as the number density or volume
fraction. Indeed, we remark that the backreaction effect can be non-negligible already at
number densities that correspond to the so-called dilute regime (Butler & Snook 2018).
The mass fraction appears to be the main control parameter also when analysing the
modification of the energy spectra and the corresponding scale-by-scale energy transfer.
When increasing the mass fraction, two robust features are observed from the energy
spectra, i.e. an overall large-scale energy depletion along with a relative increase of the
small-scale energy content. Such evidence can be better explained by looking at the energy
fluxes in Fourier space, where a general tendency is observed as the mass fraction is
increased, with the suppression of the nonlinear term along with the increasing relevance
of the energy transfer directly associated with the fluid–solid coupling. Finally, we point
out that the fibre’s bending stiffness appears to have a minor yet systematic influence, with
a weaker backreaction for more flexible fibres, as it could be intuitively argued.

Regarding the fibre dynamics, we have first characterised the fibre’s deformation in
terms of the dominant flapping frequency and possible flapping states, revisiting the
phenomenological model of Rosti et al. (2018, 2020a) for the case of non-negligible
turbulence modulation. As a result, the same qualitative scenario is observed, with only
two possible dynamical regimes: (i) for relatively flexible fibres (such that their natural
frequency is lower than the hydrodynamic frequency of turbulence eddies of comparable
size) or overdamped (such as iso-dense) fibres, the dynamics is fully controlled by the
turbulence structures at the fibre’s length scale, i.e. the flapping frequency is locked
to that of turbulence, with potential application in exploiting the fibre to measure the
two-point statistics of the flow; (ii) for relatively rigid (and inertial) fibres, the fibre’s
flapping frequency is conversely decoupled from the flow and manifesting the natural
structural response to the fluid forcing. From a similar perspective, we have characterised
the maximum curvature that fibres can experience while being transported and deformed
by the carrier flow, outlining the existence of two different scaling laws whose physical
explanation is in partial agreement with that proposed by a previous study dealing with
iso-dense fibres (Gay et al. 2018). Next, we have looked at the local concentration of the
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dispersed fibres in order to detect the occurrence of clustering phenomena. Following an
approach similar to that usually employed for particle-laden flows, based on evaluating
the radial distribution function over pairs of fibres, we observed a systematic increase
of clustering when increasing the fibre’s flexibility (i.e. decreasing the bending stiffness)
and, as expected, for inertial fibres. In particular, we found the strongest clustering for
the longest and most flexible, denser-than-the-fluid fibres. Finally, we have assessed the
preferential alignment between the fibre’s (local) orientation and the strain rate principal
directions, comparing our findings with those reported by previous studies in similar
conditions, as well as presenting novel results for the flexible or inertial cases. Overall,
we observe that both the alignment with the first or second principal direction (i.e. of
maximum extension or intermediate extension/compression) and the anti-alignment with
the third principal direction (i.e. of maximum compression) typically increase when the
fibres become more rigid, whereas remarkably decrease when moving from iso-dense to
denser-than-the-fluid fibres.

In conclusion, we outline possible developments of the present study that could provide
the motivation for future work. On one hand, exploring the behaviour of finite-size fibre
suspensions at substantially higher Reynolds numbers, in particular to assess whether the
same or more complex turbulence modulation mechanisms are occurring. On the other
hand, further efforts are deserved to better understand the specific features of this kind
of suspensions in terms of clustering and, even more importantly, preferential alignment.
For inertial fibres, another remarkable point is exploring how the dynamics is altered in
finite Froude number conditions (i.e. when the gravitational forces are not negligible).
Lastly, another framework deserving further research efforts is surely represented by
wall-bounded turbulent flows, which are beyond the scope of the present investigation.
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Appendix A. Evaluation of collision events

To account for the effective relevance of the collision model in the performed simulations,
we have monitored over time the number of collision events (occurring when two
Lagrangian points belonging to different fibres are found below the critical distance Δcol).
To properly estimate the relative importance of the fibre-to-fibre interactions, we normalise
such number with the total number of Lagrangian point. In figure 14, such quantity is
shown for cases with different fibre length, density and bending stiffness. Overall, it can
be noted that the occurrence of collisions is always very limited, including cases with the
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Figure 14. Normalised number of collision over time for several representative cases. Colours and symbols
are used consistently with the indication of tables 1 and 2.
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Figure 15. Benchmark results for the case of a flapping filament in uniform flow, showing the time history of
the filament’s trailing point position by Huang et al. (2007) (red circles) and that obtained with the code used
for the present study (black line).

highest concentration, such events typically involving less than 1 % of the ensemble of
fibre material points.

Appendix B. Benchmark for the numerical technique

The numerical code used in the present analysis has been extensively validated in the
past. For the sake of completeness, in this appendix we present the result of an additional
test case. In particular, we consider a passively flapping filament in a uniform flow. For
a description of the case set-up the reader is referred to Huang et al. (2007) and, in
particular, figure 13 therein. Figure 15 shows the comparison between our results and
those by the original paper, where one can note the good agreement both in the amplitude
and frequency of the flapping oscillation. Such evidence, therefore, further confirms the
validity of our numerical findings.

Appendix C. List of configurations investigated in the parametric study

This appendix provides additional information on the set-up chosen for our investigation
and, in particular, the combinations of parameters that have been considered, which are
listed in tables 1 to 3. Note that, the parameters �ρ̃, c and γ are given in code units
because in the case of finite-size fibres it is not straightforward to choose a representative
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non-dimensional form. The information is therefore complemented by that regarding the
carrier flow: the kinematic viscosity is set to ν = 1.59 × 10−3 and the fluid density is set
to 1, whereas the parameters of the external forcing are such that the resulting turbulence
is characterised in the single-phase case by a root mean square of the velocity fluctuations
urms ≈ 5.14 × 10−1 and average dissipation rate ε ≈ 4.5 × 10−2, and consequently in
the Kolmogorov dissipative length scale η = (ν3/ε)1/4 ≈ 1.7 × 10−2 and the micro-scale
Reynolds number Reλ ≈ 120.

Table 1 reports the cases with almost iso-dense fibres (indicated with empty symbols)
and table 2 the cases with iso-dense fibres (denoted instead with filled symbols); for the
former, the resulting solid-to-fluid density ratio (which can only be estimated because
the fibre’s diameter is not explicitly controlled) is around 1 whereas for the latter it
is approximately 500. In addition, for a particular configuration, i.e. iso-dense fibres
with intermediate length and density, a refined study was performed over the bending
stiffness, as detailed in table 3. To give a further overall indication, we can compare the
three considered fibre lengths with the dissipative length scale and the domain length
(used as a rough estimate for the integral lengthscale), yielding c/η = {6, 30, 116} and
c/L = {1.6 × 10−2, 8.0 × 10−2, 0.3}, respectively.

Appendix D. Derivation of the scale-by-scale energy transfer

In this appendix, we briefly show how to derive the scale-by-scale energy transfer
discussed in § 3.1.3, along with identifying the various terms appearing in such balance.
For a more detailed explanation, the reader is referred to classical textbooks on turbulence
theory (e.g. Pope 2000).

As the starting point, we perform the Fourier transform of (2.3) and (2.4),

∂tû + Ĝ = −ikp̂/ρf − νk2û + f̂ tur + f̂ fs, (D1)

k · û = 0, (D2)

where (̂·)(k, t) = F{(·)(x, t)} denotes the Fourier transform from physical to spectral
space, k is the wavenumber vector and k its magnitude, i is the imaginary unit and G
represents the nonlinear term appearing in the momentum equation. In addition, the same
equations can be written for the complex conjugate û∗.

We now multiply (D1) by û∗, so that the pressure term drops due to the incompressibility
constraint. The same applies in the momentum equation for û∗ when multiplying by û.
Then, we sum the two equations for û and û∗, thus obtaining an equation for the spectral
kinetic energy Ê(k, t) ≡ 〈û∗ · û〉/2 which reads

∂tÊ = T̂ + V̂ + F̂tur + F̂fs. (D3)

Four different contributions can be identified in the equation above:

(i) T̂ = −1
2 (Ĝ · û∗ + Ĝ∗ · û) is the energy transfer associated with the nonlinear term;

(ii) V̂ = −2νk2Ê is the energy dissipation associated with the viscous term;
(iii) F̂tur = 1

2 ( f̂ tur · û∗ + f̂ ∗
tur · û) is the energy input associated with the turbulence

forcing;
(iv) F̂fs = 1

2 ( f̂ fs · û∗ + f̂ ∗
fs · û) is the energy transfer associated with the fluid–structure

coupling.
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Marker ρ̃ c γ N n c3 φV M
10−3 0.1 10−8 101 1.6 × 10−4 3.0 × 10−5 1.2 × 10−5

10−3 0.1 10−8 102 1.6 × 10−3 3.0 × 10−4 1.2 × 10−4

10−3 0.1 10−8 103 1.6 × 10−2 3.0 × 10−3 1.2 × 10−3

10−3 0.1 10−4 101 1.6 × 10−4 3.0 × 10−5 1.2 × 10−5

10−3 0.1 10−4 102 1.6 × 10−3 3.0 × 10−4 1.2 × 10−4

10−3 0.1 10−4 103 1.6 × 10−2 3.0 × 10−3 1.2 × 10−3

10−3 0.1 100 101 1.6 × 10−4 3.0 × 10−5 1.2 × 10−5

10−3 0.1 100 102 1.6 × 10−3 3.0 × 10−4 1.2 × 10−4

10−3 0.1 100 103 1.6 × 10−2 3.0 × 10−3 1.2 × 10−3

10−3 0.5 10−8 101 2.0 × 10−2 1.5 × 10−4 5.8 × 10−5

10−3 0.5 10−8 102 2.0 × 10−1 1.5 × 10−3 5.8 × 10−4

10−3 0.5 10−8 103 2.0 × 100 1.5 × 10−2 5.8 × 10−3

10−3 0.5 10−4 101 2.0 × 10−2 1.5 × 10−4 5.8 × 10−5

10−3 0.5 10−4 102 2.0 × 10−1 1.5 × 10−3 5.8 × 10−4

10−3 0.5 10−4 103 2.0 × 100 1.5 × 10−2 5.8 × 10−3

10−3 2.0 100 101 2.0 × 10−2 1.5 × 10−4 5.8 × 10−5

10−3 2.0 100 102 2.0 × 10−1 1.5 × 10−3 5.8 × 10−4

10−3 2.0 100 103 2.0 × 100 1.5 × 10−2 5.8 × 10−3

10−3 2.0 10−8 101 1.3 × 100 6.1 × 10−4 2.3 × 10−4

10−3 2.0 10−8 102 1.3 × 101 6.1 × 10−3 2.3 × 10−3

10−3 2.0 10−8 103 1.3 × 102 6.1 × 10−2 2.3 × 10−2

10−3 2.0 10−4 101 1.3 × 100 6.1 × 10−4 2.3 × 10−4

10−3 2.0 10−4 102 1.3 × 101 6.1 × 10−3 2.3 × 10−3

10−3 2.0 10−4 103 1.3 × 102 6.1 × 10−2 2.3 × 10−2

10−3 2.0 100 101 1.3 × 100 6.1 × 10−4 2.3 × 10−4

10−3 2.0 100 102 1.3 × 101 6.1 × 10−3 2.3 × 10−3

10−3 2.0 100 103 1.3 × 102 6.1 × 10−2 2.3 × 10−2

Table 1. List of parametric combinations considered in the present work (where �ρ̃ is the linear density
difference between the fibre and the fluid, c is the fibre’s length, γ is the fibre’s bending stiffness, N is the
number of fibres dispersed in the triperiodic domain box; all values are given in code units). The corresponding
number density n c3, volume fraction φV and mass fraction M are also reported. Each case is denoted by the
marker used in the figures throughout the paper. The present table lists the cases for iso-dense fibres, whereas
iso-dense fibres are reported in table 2.

Next, by isotropically averaging (D3) over the generic sphere of radius k, we obtain a
similar equation for the energy spectrum E(k, t),

∂tE = T + V + Ftur + Ffs. (D4)

Assuming a statistically stationary state, the left-hand side vanishes. To obtain the
scale-by-scale energy transfer, we first integrate (D3) from k to infinity, yielding

0 = Π + D′ + P + Πfs, (D5)

where the various contributions appearing in the balance are

Π(k) =
∫ ∞

k
T(k) dk, (D6)

D′(k) =
∫ ∞

k
V(k) dk, (D7)
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Marker ρ̃ c γ N n c3 φV M
100 0.1 10−8 101 1.6 × 10−4 3.0 × 10−5 4.0 × 10−3

100 0.1 10−8 102 1.6 × 10−3 3.0 × 10−4 3.8 × 10−2

100 0.1 10−8 103 1.6 × 10−2 3.0 × 10−3 2.9 × 10−1

100 0.1 10−4 101 1.6 × 10−4 3.0 × 10−5 4.0 × 10−3

100 0.1 10−4 102 1.6 × 10−3 3.0 × 10−4 3.8 × 10−2

100 0.1 10−4 103 1.6 × 10−2 3.0 × 10−3 2.9 × 10−1

100 0.1 100 101 1.6 × 10−4 3.0 × 10−5 4.0 × 10−3

100 0.1 100 102 1.6 × 10−3 3.0 × 10−4 3.8 × 10−2

100 0.1 100 103 1.6 × 10−2 3.0 × 10−3 2.9 × 10−1

100 0.5 10−8 101 2.0 × 10−2 1.5 × 10−4 2.0 × 10−2

100 0.5 10−8 102 2.0 × 10−1 1.5 × 10−3 1.7 × 10−1

100 0.5 10−8 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 0.5 10−4 101 2.0 × 10−2 1.5 × 10−4 2.0 × 10−2

100 0.5 10−4 102 2.0 × 10−1 1.5 × 10−3 1.7 × 10−1

100 0.5 10−4 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 2.0 100 101 2.0 × 10−2 1.5 × 10−4 2.0 × 10−2

100 2.0 100 102 2.0 × 10−1 1.5 × 10−3 1.7 × 10−1

100 2.0 100 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 2.0 10−8 101 1.3 × 100 6.1 × 10−4 7.5 × 10−2

100 2.0 10−8 102 1.3 × 101 6.1 × 10−3 4.5 × 10−1

100 2.0 10−8 103 1.3 × 102 6.1 × 10−2 8.9 × 10−1

100 2.0 10−4 101 1.3 × 100 6.1 × 10−4 7.5 × 10−2

100 2.0 10−4 102 1.3 × 101 6.1 × 10−3 4.5 × 10−1

100 2.0 10−4 103 1.3 × 102 6.1 × 10−2 8.9 × 10−1

100 2.0 100 101 1.3 × 100 6.1 × 10−4 7.5 × 10−2

100 2.0 100 102 1.3 × 101 6.1 × 10−3 4.5 × 10−1

100 2.0 100 103 1.3 × 102 6.1 × 10−2 8.9 × 10−1

Table 2. Same as table 1, but referring to the cases with iso-dense fibres.

Marker ρ̃ c γ N n c3 φV M
100 0.5 10−8 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 0.5 10−6 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 0.5 10−4 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 0.5 10−2 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

100 0.5 100 103 2.0 × 100 1.5 × 10−2 6.7 × 10−1

Table 3. Refined study over γ for iso-dense fibres.

P(k) =
∫ ∞

k
Ftur(k) dk, (D8)

Πfs(k) =
∫ ∞

k
Ffs(k) dk. (D9)

Again, these quantities are associated with the nonlinear, dissipative, external forcing and
fluid–solid coupling terms, respectively. Remarkably, not only the nonlinear transfer Π(k),
but also the transfer associated with the fluid–solid coupling Πfs(k) are energy fluxes,
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without any net energy input/output, i.e. Π(0) = Πfs(0) = 0, with the overall balance
governed only by the external forcing and viscous dissipation, i.e.∫ ∞

0
Ftur(k) dk = −

∫ ∞

0
V(k) dk = ε. (D10)

Indeed, exploiting this result we recast the definition of the dissipation using D(k) =
− ∫ k

0 V(k) dk = ε + D′(k) in place of D′(k), and we finally obtain (3.1). Note that, this
choice is meant only for better describing the scale-by-scale energy transfer when plotting
the various terms.
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