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Characterizing slopes for the
(−2, 3, 7)-pretzel knot
Duncan McCoy

Abstract. In this note, we exhibit concrete examples of characterizing slopes for the knot 12n242,
also known as the (−2, 3, 7)-pretzel knot. Although it was shown by Lackenby that every knot admits
infinitely many characterizing slopes, the nonconstructive nature of the proof means that there are
very few hyperbolic knots for which explicit examples of characterizing slopes are known.

1 Introduction

Given a knot K ⊆ S3, we say that p/q ∈ Q is a characterizing slope for K if the oriented
homeomorphism type of the manifold obtained by p/q-surgery on K determines the
isotopy type of K uniquely. That is, p/q is a characterizing slope for K if there does not
exist any knot K′ ≠ K such that S3

p/q(K) ≅ S3
p/q(K′). It was shown by Lackenby that

every knot admits infinitely many characterizing slopes and for a hyperbolic knot any
slope p/q with q sufficiently large is characterizing [Lac19]. Although these results
show the existence of characterizing slopes, the proofs are nonconstructive and so
there are very few hyperbolic knots for which explicit examples of characterizing
slopes are known. Ozsváth and Szabó have shown that every slope is characterizing
for the figure-eight knot 41 [OS19], and recent work of Baldwin and Sivek implies that
every noninteger slope is characterizing for 52 [BS22]. The aim of this article is to
exhibit explicit examples of characterizing slopes for the knot 12n242, also known as
the (−2, 3, 7)-pretzel knot (see Figure 1). Since 12n242 is a hyperbolic L-space knot—
Fintushel and Stern showed that it admits two lens space surgeries [FS80]—it has only
finitely many noncharacterizing slopes that are not negative integers [McC19]. The
following theorem is a quantitative version of this fact. As far as the author is aware,
these are the first known explicit examples of characterizing slopes on a hyperbolic
knot with genus greater than one.

Theorem 1.1 Any slope p/q satisfying at least one of the following conditions is a
characterizing slope for 12n242:
(i) q ≥ 49;
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938 D. McCoy

Figure 1: The main protagonist: 12n242.

(ii) p ≥max{24q, 441}; or
(iii) q ≥ 2 and p ≤ −max{12 + 4q2 − 2q, 441}.

Note that Theorem 1.1 also yields information about the characterizing slopes of
the mirror of 12n242: a slope p/q is characterizing for a knot K if and only if −p/q
is characterizing for the mirror mK. The key input allowing us to prove Theorem 1.1
is the fact that 12n242 is one of the knots with smallest volume (up to reflection it
one of only three hyperbolic knots with volume smaller than 3.07) [GHM21]. A result
of Futer, Kalfagianni, and Purcell on the change in volume of a hyperbolic manifold
under Dehn filling [FKP08] can then be used to restrict potential noncharacterizing
slopes coming from surgeries on hyperbolic knots with large volume (and satellites
thereof). This leaves only the possibility of noncharacterizing slopes coming from
surgeries on the other knots of small volume, explicitly 41 , 52 , m52 and m12n242,
or satellites of these knots. Alongside tools from hyperbolic geometry, we use the
Casson–Walker invariant and the ν+ invariant from Heegaard Floer homology to rule
out such surgeries.

In principle, one could use a similar approach to derive information about the
characterizing slopes of the other small volume knots: 41 and 52. However, much
better results have already been obtained by other means for both of these knots [BS22,
OS19], so we restrict our analysis to 12n242.

We note that Theorem 1.1 says nothing about negative integer characterizing slope.
Although there are knots which possess infinitely many integer noncharacterizing
slopes [BM18], all known examples admit infinitely many noncharacterizing slopes
of both sign. This suggests that 12n242 (and L-space knots more generally) should
admit only finitely many integer noncharacterizing slopes. However, establishing such
a result remains an interesting and challenging problem.

1.1 Noncharacterizing slopes

Lackenby has shown for a hyperbolic knot K any slope p/q with q sufficiently
large is characterizing for K [Lac19]. For example, Theorem 1.1 shows that q ≥ 49
is sufficiently large for 12n242. However, the “sufficiently large” here is inherently
dependant on the specific knot in question. To illustrate this dependence, we exhibit
a family of hyperbolic two-bridge knots {Kq}q≥1 such that for each q, the slope 1

q is
noncharacterizing for Kq . This family is shown in Figure 2. The construction given is
essentially the same as the one used by Brakes to find examples of surgeries on distinct
satellite knots yielding the same manifold [Bra80].
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Figure 2: A link K′ ∪ C′, such that twisting along C′ yields the two-bridge link Kq . Proposi-
tion 4.1 implies that Kq has 1

q as a noncharacterizing slope.

1.2 Conventions

The following notational conventions will be in force throughout the paper:
• Knots are always considered up to isotopy.
• When considering a rational number p/q ∈ Q, we will always assume this to be

written with p and q coprime and q ≥ 1.
• When performing Dehn surgery on a knot K, we use p/q to denote the slope

pμ + qλ, where μ is the meridian and λ is the null-homologous longitude.
• Given two oriented 3-manifolds Y and Y ′, we will use Y ≅ Y ′ to denote the

existence of an orientation-preserving homeomorphism between them.
• For a knot K, we will denote its Alexander polynomial by ΔK(t). We will always

assume this is normalized so that ΔK(1) = 1 and ΔK(t) = ΔK(t−1).
• Given a knot K in S3, we will use mK to denote its mirror.
• An L-space knot is one which admits positive L-space surgeries.

2 Preliminaries

In this section, we gather together all the auxiliary results required for the proof of
Theorem 1.1.

2.1 Knots of small volume

First, we use the fact that Gabai, Haraway, Meyerhoff, Thurston, and Yarmola have
classified the hyperbolic 3-manifolds of small volume [GHM21].

Theorem 2.1 If K is a hyperbolic knot in S3 with vol(K) ≤ 3.07, then
K ∈ {41 , 52 , 12n242, m52 , m12n242}.
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940 D. McCoy

Proof Gabai, Haraway, Meyerhoff, Thurston, and Yarmola have shown that there
are exactly 14 one-cusped orientable hyperbolic 3-manifolds with hyperbolic volume
less than or equal to 3.07 and that these are m003, m004, m006, m007, m009, m010,
m011, m015, m016, m017, m019, m022, m023, and m026 [GHM21, Theorem 1.5].
Precisely, three of these arise as the complements of knots in S3: m004, m015, and m016
are (ignoring orientations) the complements of 41, 52, and 12n242, respectively. ∎

We will informally refer to the five knots in Theorem 2.1 as the “low volume knots”
and the remaining hyperbolic knots as the “large volume knots.” For our purposes, it
will be useful to note that the volume of 41 satisfies

vol(41) ≈ 2.0988 ≤ 2.1(2.1)

and the volume of 12n242 satisfies
2.82 ≤ vol(12n242) ≈ 2.821 ≤ 2.83.(2.2)

2.2 Slope lengths

Let K be a hyperbolic knot in S3, that is, S3 ∖ K admits a complete finite-volume
hyperbolic structure with one cusp. Given a slope σ on K and horoball neighborhood
N of the cusp, we can assign a length to σ by considering the minimal length of a
curve representing σ on ∂N (measured in the natural Euclidean metric on ∂N). Since
S3 ∖ K has a unique cusp, there is a unique maximal horoball neighborhood of this
cusp. We will use �K(σ) to denote the length of σ with respect this maximal horoball
neighborhood.

Lemma 2.2 Let K and K′ be hyperbolic knots in S3 with vol(K′) < vol(K). If r and
r′ are slopes such that S3

r (K) ≅ S3
r′(K′), then

�K(r) <
2π√

1 − ( vol(K′)
vol(K) )

2
3

.

Proof Since the bound on the right-hand side is always strictly greater then 2π, we
can assume without loss of generality that � = �K(r) > 2π. By Perelman’s resolution of
the geometrization conjecture [Per02, Per03a, Per03b] and the 2π-theorem [BH96],
this implies that S3

r (K) is a hyperbolic manifold. Furthermore, Futer, Kalfagianni, and
Purcell have shown that we have the following volume bound [FKP08, Theorem 1.1]:

vol(K)(1 − (2π
�
)

2
)

3
2

≤ vol(S3
r (K)).

Moreover, since Thurston showed that volume strictly decreases under hyperbolic
Dehn filling [Thu80, Theorem 6.5.6], we have that vol(S3

r (K)) = vol(S3
r′(K′)) <

vol(K′). Together these bounds give

vol(K)(1 − (2π
�
)

2
)

3
2

< vol(K′),

which can be easily rearranged to give the desired bound on �K(p/q). ∎
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Next, we need a mechanism for converting bounds on �K(p/q) into bounds on p
and q.

Lemma 2.3 Let K ⊆ S3 be a hyperbolic knot of genus g(K). Then:
(a) ∣q∣ ≤ 1.79�K(p/q) and
(b) ∣p∣ ≤ 1.79�K(p/q)(2g(K) − 1).

Proof Let N be a horocusp neighborhood in the complement S3 ∖ K of K. Let A be
the area of ∂N (equipped with its Euclidean metric). A simple geometric argument
(e.g., as used by Cooper and Lackenby [CL98, Lemma 2.1]) shows that for any two
slopes of K, we have

�K(α)�K(β) ≥ AΔ(α, β),

where Δ(α, β) denotes the distance between α and β (cf. [Ago00, Lemma 8.1]). Since
Cao and Meyerhoff have shown there always exists a horocusp neighborhood N with
Area(∂N) ≥ 3.35 [CM01], this establishes the bound

�K(α)�K(β) ≥ 3.35Δ(α, β),

for all slopes α and β. Since Δ(1/0, p/q) = ∣q∣ and �K(1/0) ≤ 6 by the 6-theorem of
Agol and Lackenby [Ago00, Lac03], this gives the bound (a). Since Δ(0/1, p/q) = ∣p∣
and �K(0/1) ≤ 6(2g − 1) by [Ago00, Theorem 5.1], this also gives the bound (b). ∎

2.3 Hyperbolic surgeries on satellite knots

We will use the following result to understand noncharacterizing slopes coming from
satellite knots.

Lemma 2.4 Let K be a satellite knot such that S3
p/q(K) is hyperbolic for some p/q ∈ Q.

Then there is a hyperbolic knot J with g(J) < g(K) and an integer w > 1 such that
S3

p/q(K) ≅ S3
p/(qw2)(J). Moreover, if q ≥ 2, then K is a cable of J with winding number w.

Proof Let T be an incompressible torus in S3 ∖ K. We can consider K as a knot
in the solid torus V bounded by T. Thus, we can consider K as a satellite with
companion given by the core J of V. By choosing T to be “innermost,” we can ensure
that S3 ∖ J contains no further incompressible tori. That is, we can assume that J is not
a satellite knot. By Thurston’s trichotomy for knots in S3, this implies that J is a torus
knot or a hyperbolic knot [Thu82]. Since S3

p/q(K) is hyperbolic, it is atoroidal and
irreducible. Consequently, after surgery the solid torus V must become another solid
torus. However, Gabai has classified knots in a solid torus with nontrivial solid torus
surgeries, showing that K is either a torus knot or a one-bridge braid in V [Gab89].
Moreover, since solid torus fillings on one-bridge braids only occur for integer surgery
slopes, K is a cable of J unless q = 1. In either event, we have that

S3
p/q(K) ≅ S3

p/q′(J),
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where the slope p/q′ is determined by the curve bounding a disk after surgering V.
Using a homological argument, one can show that q′ = qw2, where w > 1 is the
winding number of K in V [Gor83, Lemma 3.3]. Since S3

p/q(K) is a hyperbolic
manifold, J cannot be a torus knot. It follows that J must be a hyperbolic knot. The
only remaining statement is the inequality g(J) < g(K). This follows from Schubert’s
formula for the genus of a satellite knot [Sch53], which asserts that for a knot K = P(J)
with pattern P of winding number w ≥ 0, there is a constant g(P) ≥ 0 such that

g(K) = g(P) +wg(J).
We obtain the necessary inequality since w ≥ 2. ∎

2.4 The Casson–Walker invariant

It will also be convenient to use surgery obstructions derived from the Casson–
Walker invariant [Wal92]. For any rational homology sphere Y, this is a rational-
valued invariant λ(Y) ∈ Q. Boyer and Lines showed that this satisfies the following
surgery formula [BL90]:

λ(S3
p/q(K′)) = λ(S3

p/q(U)) +
q

2p
Δ′′K′(1),

where Δ′′K(1) denotes the second derivative of the Alexander polynomial ΔK(t)
evaluated at t = 1. This formula immediately yields the following observation.

Lemma 2.5 Let K and K′ be knots. If there is a nonzero p/q ∈ Q such that S3
p/q(K) ≅

S3
p/q(K′), then Δ′′K(1) = Δ′′K′(1).

Lemma 2.5 can be used to obstruct noncharacterizing slopes coming from cables.

Lemma 2.6 Let K and K′ be knots. If there is K′′ a nontrivial cable of K′ and a nonzero
slope p/q ∈ Q such that S3

p/q(K) ≅ S3
p/q(K′′), then there are coprime integers r, s, with

s ≥ 2 such that

Δ′′K(1) =
(r2 − 1)(s2 − 1)

12
+ s2Δ′′K′(1).

Proof Suppose that K′′ is the (r, s)-cable of K′, where s ≥ 2 is the winding number.
By the usual formula for the Alexander polynomial of a satellite knot [Lic97, Theorem
6.15], we have that

ΔK′′(t) = ΔK′(ts)ΔTr ,s(t),
where Tr ,s denotes the (r, s)-torus knot. Taking second derivatives, we obtain1

Δ′′K′′(1) = Δ′′Tr ,s
(1) + s2Δ′′K′(1).(2.3)

1The reader should note that since ΔK(t) = ΔK(t−1), we have that Δ′K(1) = 0.
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Since the torus knot Tr ,s has symmetrized Alexander polynomial

ΔTr ,s(t) = t−
(r−1)(s−1)

2
(trs − 1)(t − 1)
(tr − 1)(ts − 1) ,

one can calculate that2

Δ′′Tr ,s
(1) = (r

2 − 1)(s2 − 1)
12

.(2.4)

Combining (2.3) and (2.4) with Lemma 2.5 gives the desired statement. ∎

We will be applying these obstructions to the knots 52 and 12n242. These have
symmetrized Alexander polynomials:

Δ52(t) = 2t−1 − 3 + 2t,
Δ12n242(t) = t−5 − t−4 + t−2 − t−1 + 1 − t + t2 − t4 + t5 .

Hence, one finds that

Δ′′52
(1) = 4 and Δ′′12n242(1) = 24.(2.5)

2.5 An obstruction from ν+

Here, we take some input from knot Floer homology. Recall that for a knot K in S3, Ni
and Wu derived a nonincreasing sequence of nonnegative integers V0(K), V1(K), . . .
from the knot Floer chain complex which can be used to calculate the d-invariants of
surgeries on K. For p/q > 0 and an appropriate identification of Spinc(S3

p/q(K)) and
Spinc(S3

p/q(U)) with {0, 1, . . . , p − 1}, we have [NW15, Proposition 1.6]

d(S3
p/q(K), i) = d(S3

p/q(U), i) − 2 max{V⌊ i
q ⌋
(K), V⌈ p−i

q ⌉
(K)} .(2.6)

Hom and Wu defined the invariant ν+(K) to be the smallest index i for which Vi = 0
[HW16]. In particular, we have ν+(K) = 0 if and only if V0 = 0.

Lemma 2.7 Let K be a knot such that ν+(K) > 0 and ν+(mK) = 0. Then there is no
nonzero slope p/q ∈ Q such that S3

p/q(K) ≅ S3
p/q(mK).

Proof Since −S3
p/q(K) ≅ S3

−p/q(mK), we can assume that p/q > 0. Summing the
formula (2.6) over all spinc-structures on S3

p/q(mK) and S3
p/q(K), we see that

p−1

∑
i=0

d(S3
p/q(mK), i) −

p−1

∑
i=0

d(S3
p/q(K), i) = 2

p−1

∑
i=0

max{V⌊ i
q ⌋
(K), V⌈ p−i

q ⌉
(K)}

≥ 2V0 > 0,

which implies that S3
p/q(mK) and S3

p/q(mK) cannot be homeomorphic. ∎

2Since the direct calculation is somewhat involved, we include a derivation for completeness, but
relegate it to the Appendix.
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Remark 2.8 We note that Lemma 2.7 applies to any nontrivial L-space knot (and in
particular 12n242). For a nontrivial L-space knot, one has ν+(K) = g(K) > 0 [HW16]
and ν+(mK) = 0 [Gai17, Lemma 16].

3 Proof of Theorem 1.1

Throughout this section, we take K = 12n242. Suppose that p/q ≠ 0 is a noncharac-
terizing slope for K satisfying

�K(p/q) ≥ 14.17 > 2π√
1 − ( vol(41)

vol(12n242))
2
3

.(3.1)

Let K′ ≠ K be a knot in S3 such that S3
p/q(K) ≅ S3

p/q(K′).
The length bound (3.1) implies that the manifold S3

p/q(K) is hyperbolic and, using
Lemma 2.2, that S3

p/q(K) cannot be obtained by any surgery on the figure-eight
knot 41. By Thurston’s trichotomy for knots in S3, the knot K′ is either a torus knot, a
hyperbolic knot or a satellite knot. Since torus knots never yield a hyperbolic manifold
by surgery [Mos71], we may ignore the first possibility and restrict our attention to the
latter two options.

Claim 1 If K′ is a hyperbolic knot, then

q < 49 and ∣p∣ < 49(2g(K′) − 1).

Proof Suppose that K′ is a hyperbolic knot. Condition (3.1) eliminates the possi-
bility that K′ is 41. By consideration of the Casson–Walker invariant as in Lemma 2.5,
we see that K′ is not 52 or m52. Using the ν+ invariant as in Lemma 2.7, we see that
K′ is not m12n242. Thus, having exhausted all the low volume knots in Theorem 2.1,
we may conclude that vol(K′) > 3.07. Thus, by Lemma 2.2, we have the bound

�K′(p/q) <
2π√

1 − ( vol(12n242)
3.07 )

2
3

< 27.34.

Using Lemma 2.3, this yields the required bound. ∎

Claim 2 If K′ is a satellite knot and q ≥ 2, then

q < 49 and ∣p∣ < 49(2g(K′) − 1).

Proof Suppose that K′ is a satellite knot and that q ≥ 2. By (3.1), the manifold
S3

p/q(K) is hyperbolic and Lemma 2.4 applies to show that K′ is a cable of a
hyperbolic knot J such that g(J) < g(K′) and S3

p/q′(J) ≅ S3
p/q(K) for some q′ > q. By

the assumption (3.1), we see that J is not 41. Furthermore, applying the Casson–Walker
invariant as in Lemma 2.6, we see that J cannot be 52, m52, 12n242 or m12n242. This
is because there are no nontrivial integer solutions with s ≥ 2 to the equations:
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24 = (r
2 − 1)(s2 − 1)

12
+ 4s2

and

24 = (r
2 − 1)(s2 − 1)

12
+ 24s2 .

Thus, having ruled out all the knots of small volume in Theorem 2.1, the only
remaining possibility is that J must be a knot with vol(J) > 3.07. Thus, by Lemma 2.2,
we have the bound

�J(p/q′) <
2π√

1 − ( vol(12n242)
3.07 )

2
3

< 27.34.

Applying Lemma 2.3 along with the inequalities q < q′ and g(J) < g(K′) give the
required bounds. ∎

Claim 3 If K′ is a satellite knot and p/q ≥ 9, then

∣p∣ < 49(2g(K′) − 1).

Proof Suppose that K′ is a satellite knot and p/q ≥ 2g(K) − 1 = 9. Since K is an L-
space knot, this implies that S3

p/q(K) is a hyperbolic L-space. By Lemma 2.4, there is
a hyperbolic knot J such that g(J) < g(K′) and S3

p/q′(J) ≅ S3
p/q(K) for some q′ > q.

Since Δ′′K(1) ≠ 0, [BL90, Proposition 5.1] shows that J is not 12n242. Furthermore,
since S3

p/q′(J) is an L-space and none of 41 , 52 , m52 or m12n242 are L-space knots,
Theorem 2.1 allows us to conclude that vol(J) > 3.07. Thus, as before, we arrive at the
bounds

�J(p/q′) <
2π√

1 − ( vol(12n242)
3.07 )

2
3

< 27.34.

Applying Lemma 2.3(b) and g(J) < g(K′) gives the required bounds. ∎

We now convert these statements into results on characterizing slopes. The bound
q ≥ 49 is straight forward.

Claim 4 The slope p/q is a characterizing slope for K whenever q ≥ 49.

Proof Together Claims 1 and 2 show that p/q is a characterizing slope for K
whenever �K(p/q) ≥ 14.17 and q ≥ 49. However, Lemma 2.3(a) shows that �K(p/q) ≥
14.17 is automatically satisfied whenever q ≥ 49. ∎

In order to obtain the other conditions on characterizing slopes, we need to invoke
results linking the genera of K and K′.

Claim 5 The slope p/q is a characterizing slope for K whenever p ≥max{24q, 441}.
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946 D. McCoy

Proof Since S3
18(K) is a lens space, it bounds a sharp 4-manifold [OS03].3 Thus,

[McC21, Theorem 1.2] applies to show that S3
p/q(K) bounds a sharp 4-manifold for

all p/q ≥ 18. In particular, we may apply [McC21, Theorem 1.1] to show that if p/q ≥
4g(K) + 4 = 24, then g(K′) = g(K) = 5. Thus, Claims 1 and 3 imply that p/q is a
characterizing slope for K whenever the conditions p ≥ 24q, p ≥ 49(2g(K) − 1) = 441
and �K(p/q) ≥ 14.17 are all satisfied. Lemma 2.3(b) shows that the bound �K(p/q) ≥
14.17 is redundant, being implied by p ≥ 441. Thus, we have a characterizing slope for
K if p ≥ 24q and p ≥ 441. ∎

Claim 6 The slope p/q is a characterizing slope for K whenever

q ≥ 2 and p ≤ −max{12 + 4q2 − 2q, 441}.

Proof By [McC20, Theorem 1.8(ii)], we see that if q ≥ 2 and p ≤min{2q − 12 −
4q2 ,−10q}, then g(K′) = g(K) = 5. Thus, Claims 1 and 2 imply that p/q is a character-
izing slope for K if the conditions q ≥ 2, p ≤ −max{12 + 4q2 − 2q, 10q}, p ≤ −441, and
�K(p/q) ≥ 14.17 are all satisfied. Since 12 + 4q2 − 2q > 10q for all q and the condition
p ≤ −441 implies �K(p/q) ≥ 14.17, we see that the conditions p ≤ −12 + 4q2 − 2q,
q ≥ 2, and p ≤ −441 are sufficient to imply that p/q is a characterizing slope for K. ∎

This completes the proof of all bounds in Theorem 1.1.

4 Constructing some noncharacterizing slopes

In this section, we construct some examples of hyperbolic knots with noncharacter-
izing slopes with arbitrarily large denominator. Brakes used an essentially identical
construction to exhibit examples noncharacterizing slopes on satellite knots [Bra80].
Let L = C′ ∪ K′ be a link with two unknotted components and linking number
link(C′ , K′) = ω. Let Y be the manifold obtained by performing 1/n-surgery on both
components on L for some nonzero integer n ∈ Z. Since C′ and K′ are both unknotted,
performing 1/n surgery on one or other of them individually again results in S3.
Performing such a surgery shows that Y arises by (nω2 + 1

n )-surgery on the knots
K and C, where K is the image of K′ in the copy of S3 obtained by surgering C′ and
C is the image of C′ after surgering K′. If one chose L wisely, then the knots K and C
will be distinct and thus the slope nω2 + 1

n will be noncharacterizing for K and C.
Using this idea, we can prove the following.

Proposition 4.1 Let K be a knot with g(K) ≥ 2 which can be unknotted by adding q
positive full twists along two oppositely oriented strands. Then 1

q is a noncharacterizing
slope for K.

3Although the precise definition of sharpness plays no role in this article, we record it here for
context. Intuitively a 4-manifold is sharp if it determines the Heegaard Floer homology d-invariants of
its boundary. More precisely, a compact, smooth, oriented 4-manifold X with boundary Y is sharp, if its
intersection is negative definite and for all spinc -structures t ∈ Spinc(Y), there exists t ∈ Spinc(X) such
that d(Y , t) = 1

4 (c1(s)2 + b2(X)).
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Figure 3: The link K′ ∪ C′ isotoped so that K′ appears as a round unknot. A knot Cq such that
S3

1
q
(Cq) ≅ S3

1
q
(Kq) is, thus, obtained by adding q negative full twists along C′.

Proof The hypothesis on unknotting implies that we can take a link L = C′ ∪ K′
with unknotted components such that (a) K can be obtained from K′ by performing
1/q-surgery on C′ and (b) C′ bounds a disk D that intersects K′ in two oppositely
oriented points. If we take the disk D and add a tube that follows an arc of K′, we
obtain an embedded genus one surface Σ with boundary C′ which is disjoint from
K′. Since Σ is disjoint from K′, it is preserved under surgery on K′ and hence shows
that the knot C obtained by performing 1/q surgery on K′ has genus at most one. Since
K is assumed to have genus at least two, this implies that C is not isotopic to K and
hence that 1/q is a noncharacterizing slope for K. ∎

Example 4.2 Using the preceding proposition, we can show that for every q ≥ 1,
there is a hyperbolic two-bridge knot Kq for which 1

q is a noncharacterizing slope.
Figure 2 depicts a two-bridge knot Kq of genus two that can be unknotted by
adding q positive full twists along two oppositely oriented strands. The genus of
Kq can be easily verified, since Seifert’s algorithm always yields a minimal genus
Seifert surface when applied to an alternating diagram [Cro59, Mur58]. Thus,
Proposition 4.1 applies to Kq . Figure 3 shows how one can obtain a knot Cq such
that S3

1
q
(Cq) ≅ S3

1
q
(Kq).

We also note that sufficiently complicated knots with unknotting number one must
always have an noncharacterizing slope. Since every slope is characterizing for the
trefoil and the figure-eight knot [OS19], we see that the condition on the genus cannot
be relaxed.

Corollary 4.3 Let K be a knot with g(K) ≥ 2 and u(K) = 1.
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• If K can be unknotted by changing a positive crossing, then +1 is noncharacterizing
for K.

• If K can be unknotted by changing a negative crossing, then −1 is noncharacterizing
for K.

A Calculating Δ′′Tr ,s
(1)

We conclude with a derivation of (2.4). It will be convenient to define, for any positive
integer k, the function

Qk(t) = t
1−k

2 ( tk − 1
t − 1

) = t
1−k

2 (
k−1
∑
i=0

t i) .

Using these, we can write the Alexander polynomial of a torus knot in the form:

ΔTr ,s(t) =
Qrs(t)

Qr(t)Qs(t)
.

Since Qk(t) = Qk(t−1), we have that

Q′k(1) = 0.

Furthermore, we calculate that

Qk(1) = k

and

Q′′k (1) =
k−1
∑
i=0
(i − k − 1

2
)(i − k + 1

2
) =

k−1
∑
i=0
(i2 − ki + (k − 1)(k + 1)

4
)

= k(k − 1)(2k − 1)
6

− k2(k − 1)
2

+ k(k − 1)(k + 1)
4

= k(k2 − 1)
12

.

These identities allow us to calculate Δ′′Tr ,s
(1) implicitly. Differentiating the identity

Qr(t)Qs(t)ΔTr ,s(t) = Qrs(t)

twice and evaluating at t = 1, we obtain

Q′′rs(1) =
rs(r2s2 − 1)

12
= (Qr(1)Qs(1))′′ ΔTr ,s(1) + 2 (Qr(1)Qs(1))′ Δ′Tr ,s

(1) + Qr(1)Qs(1)Δ′′Tr ,s
(1)

= Q′′r (1)Qs(1) + 2Q′r(1)Q′s(1) + Qr(1)Q′′s (1) + rsΔ′′Tr ,s
(1)

= rs(r2 − 1)
12

+ rs(s2 − 1)
12

+ rsΔ′′Tr ,s
(1).
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From this, one rearranges to obtain the desired formula:

Δ′′Tr ,s
(1) = (r

2 − 1)(s2 − 1)
12

.
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