The Poincaré Inequality and Reverse Doubling Weights

Ritva Hurri-Syrjänen

Abstract

We show that Poincaré inequalities with reverse doubling weights hold in a large class of irregular domains whenever the weights satisfy certain conditions. Examples of these domains are John domains.

1 Introduction

Let D be a domain in euclidean n-space $\mathbb{R}^{n}, n \geq 2$. Let $1 \leq p \leq q<\infty$. We say that D supports a (q, p)-Poincaré inequality with weights ν and μ, if there is a constant $c=c(q, p, \nu, \mu, D)<\infty$ such that

$$
\begin{equation*}
\inf _{a \in \mathbb{R}}\left(\int_{D}|u(x)-a|^{q} \nu(x) d x\right)^{\frac{1}{q}} \leq c\left(\int_{D}|\nabla u(x)|^{p} \mu(x) d x\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

where u is a Lipschitz function on D. If the inequality (1.1) holds for all Lipschitz functions u on D, then D is a (q, p)-Poincaré domain with weights ν and μ; we write $D \in \mathcal{P}(q, p, \nu, \mu)$. The constant c in (1.1) is called a Poincaré constant.

It is well known that for $\nu=\mu=1$ bounded John domains are (q, p)-Poincaré domains for all $q \leq n p /(n-p)$ when $p<n$, [1, Chapter 6]. Unbounded John domains satisfy the $(n p /(n-p), p)$-Poincaré inequality with $\nu=\mu=1$, [2, Corollary 4.6]. Examples of John domains are Lipschitz domains. But a John domain can have a rough boundary: a classical example is the Koch snowflake.

We prove that a bounded John domain D belongs to $\mathcal{P}(q, p, \nu, \mu)$ with $1<p \leq$ $q<\infty$ whenever ν and $\mu^{-\frac{1}{p-1}}$ are reverse doubling weights satisfying weak additional conditions; see Theorem 3.1. The result is extended to unbounded John domains in Corollary 4.2. We also show that the extra conditions on reverse doubling weights are not restrictive; see Section 4.

1.1 Acknowledgement

The author thanks Jouni Luukkainen for his interest in the paper.

[^0]
2 Preliminaries

We assume that $1<p \leq q<\infty$. The abbreviation Q stands for the open cube $Q(x, r)=\left\{y \in \mathbb{R}^{n}:\left|x_{i}-y_{i}\right|<\frac{r}{2}, i=1, \ldots, n\right\}$, where $x \in \mathbb{R}^{n}$ and $r>0$. By a Whitney cube we mean a cube from a Whitney decomposition of a given domain, [8, VI 1]. If $t>0$, then $t Q$ denotes the cube Q dilated by a factor t.

We let $c(*, \ldots, *)$ denote a constant which depends only on the quantities appearing in the parentheses.

2.1 Reverse Doubling Weights

A weight (function) is a non-negative locally integrable function on \mathbb{R}^{n}.
A weight ν is a doubling weight, that is, ν satisfies a doubling condition, if there exists a constant $c<\infty$ such that

$$
\int_{2 Q} \nu(x) d x \leq c \int_{Q} \nu(x) d x
$$

for all cubes $Q \subset \mathbb{R}^{n}$.
A weight ν is a reverse doubling weight or satisfies a reverse doubling condition, if there exist constants $\delta \in(0,1)$ and $\epsilon \in(0,1)$ such that

$$
\int_{\delta Q} \nu(x) d x \leq \epsilon \int_{Q} \nu(x) d x
$$

for all cubes $Q \subset \mathbb{R}^{n}$. We say that ν is a reverse doubling weight with a pair (δ, ϵ).
Doubling weights satisfy a reverse doubling condition. There are reverse doubling weights which are not doubling weights; see Example 5.2.

2.2 John Domains

We recall the definition of bounded John domains, [5]. A domain D is called an (α, β)-John domain, $0<\alpha \leq \beta<\infty$, if there is $x_{0} \in D$ such that each $x \in D$ can be joined to x_{0} by a curve $\vartheta:[0, l] \rightarrow D$ parametrized by its arc length with total length $l \leq \beta$ and

$$
\operatorname{dist}(\vartheta(t), \partial D) \geq \frac{\alpha}{l} t, \quad \text { for all } t \in[0, l]
$$

The point x_{0} is called a John centre. When a John centre is fixed, then α and β are fixed, and then by σD we mean the dilation of D by a factor $\sigma>0$ with respect to the fixed John centre. Lipschitz domains are John domains, and the bounded (ϵ, δ) domains of P. W. Jones are John domains, [3]. A classical example of an (ϵ, δ)-domain is the Koch snowflake. An example of a John domain which is not an (ϵ, δ)-domain is an (ϵ, δ)-domain from which an n-dimensional spire has been taken away; in the plane it is enough to take a slit away: $Q(0,1) \backslash\left\{\left(x_{1}, 0\right): 1 / 4 \leq x_{1}<1 / 2\right\}$.

The above definition implies that D is bounded. The concept 'John domain' has been extended for unbounded domains, too, in [6] and [9]. We recall the definition.

Let E be a closed arc with endpoints a and b. The subarc between x and y is denoted by $E[x, y]$. For $x \in E \backslash\{a, b\}$ write

$$
q(x)=\min \{\operatorname{dia}(E[a, x]), \operatorname{dia}(E[x, b])\}
$$

Let $\gamma \geq 1$. A domain D in \mathbb{R}^{n} is a γ-John domain, if each pair of distinct points a and b in D can be joined by an $\operatorname{arc} E$ such that

$$
\operatorname{cig} E(a, b)=\bigcup\{B(x, q(x) / \gamma) \mid x \in E \backslash\{a, b\}\} \subset D
$$

The set $\operatorname{cig} E(a, b)$ is called a γ-cigar with core E joining a and b. Whenever D is bounded this gives exactly an (α, β)-John domain for some α and β. An unbounded John domain can be exhausted by bounded John domains according to the following result of J. Väisälä.

Theorem $2.1\left[10\right.$, Theorem 4.6] An η-John domain $D \subset \mathbb{R}^{n}$ can be written as the union of domains D_{1}, D_{2}, \ldots such that \bar{D}_{i} is compact in D_{i+1} and D_{i} is an η_{1}-John domain with $\eta_{1}=\eta_{1}(\eta, n)$.

3 Main Result

We show that a bounded John domain is a Poincare domain when the left hand side weight in (1.1) and the right hand side weight in (1.1) to the power $-1 /(p-1)$ are reverse doubling weights and these weights satisfy certain conditions.

Theorem 3.1 Let $1<p \leq q<\infty$. Let ν and $\mu^{-\frac{1}{p-1}}$ be reverse doubling weights with respect to the pairs $\left(\delta_{i}, \epsilon_{i}\right), i=1,2$, respectively, such that

$$
\begin{equation*}
\epsilon_{1}<\delta_{1}^{(n-1) q / p} \quad \text { and } \quad \epsilon_{2}<\delta_{2}^{n-1} \tag{3.1}
\end{equation*}
$$

Then an (α, β)-John domain D belongs to $\mathcal{P}(q, p, \nu, \mu)$.
Proof We use the integral representation

$$
\left|u(x)-u_{A}\right| \leq c(n)\left(\frac{\beta}{\alpha}\right)^{16 n} \int_{D}|x-y|^{1-n}|\nabla u(y)| d y, \quad x \in D
$$

where $A=B^{n}\left(x_{0}, c(n) \alpha^{4 n} / \beta^{5 n}\right) \subset D$, from [4, Theorem 2.2 and Lemma 3.3], and Hölder's inequality with exponents p and $\frac{p}{p-1}$, to obtain

$$
\begin{align*}
\int_{D} \mid u(x) & -\left.u_{A}\right|^{q} \nu(x) d x \tag{3.2}\\
& \leq c(n, q)\left(\frac{\beta}{\alpha}\right)^{16 n q} \int_{D}\left(\int_{D}|x-y|^{1-n}|\nabla u(y)|^{p} \mu(y) d y\right)^{\frac{q}{p}} \\
& \times\left(\int_{D}|x-y|^{1-n} \mu(x)^{-\frac{1}{p-1}} d y\right)^{\frac{q(p-1)}{p}} \nu(x) d x .
\end{align*}
$$

Since D is a bounded John domain, there exist a cube Q and a constant $c(\alpha, \beta)>0$ such that $D \subset Q$ and $c(\alpha, \beta)|D|^{\frac{1}{n}}=|Q|^{\frac{1}{n}}$. Here, $|*|$ is the Lebesgue measure of the sets in question. We fix $x \in Q$ and use the abbreviation $c(\alpha, \beta)|Q|^{\frac{1}{n}}=r$ and we exhaust $Q(x, r)$ with cubes $Q_{i}=k^{-i} Q(x, r), i=0,1, \ldots$, where $k>1$ is a fixed number. Hence, we obtain

$$
\begin{aligned}
\int_{D}|x-y|^{1-n} \mu(y)^{-\frac{1}{p-1}} d y & \leq \int_{Q(x, r)}|x-y|^{1-n} \mu(y)^{-\frac{1}{p-1}} d y \\
& =\sum_{i=0}^{\infty} \int_{Q_{i} \backslash Q_{i+1}}|x-y|^{1-n} \mu(y)^{-\frac{1}{p-1}} d y \\
& \leq \sum_{i=0}^{\infty} \int_{Q_{i} \backslash Q_{i+1}} k^{-(i+1)(1-n)}|Q|^{\frac{1-n}{n}} \mu(y)^{-\frac{1}{p-1}} d y \\
& \leq \sum_{i=0}^{\infty} \int_{Q_{i}} k^{-(i+1)(1-n)}|Q|^{\frac{1-n}{n}} \mu(y)^{-\frac{1}{p-1}} d y
\end{aligned}
$$

Whenever numbers $\delta_{2} \in(0,1)$ and $\epsilon_{2} \in(0,1)$ satisfy

$$
\epsilon_{2}^{-\frac{\log k}{\log \delta_{2}}} k^{n-1}<1, \quad \text { that is, } \quad \epsilon_{2}<\delta_{2}^{n-1}
$$

then the reverse doubling property of $\mu^{-\frac{1}{p-1}}$, with these $\delta_{2} \in(0,1)$ and $\epsilon_{2} \in(0,1)$ yields,

$$
\begin{aligned}
\int_{Q}|x-y|^{1-n} \mu(y)^{-\frac{1}{p-1}} d y & \leq|Q|^{\frac{1-n}{n}} \sum_{i=0}^{\infty} \epsilon_{2}^{-\frac{\log k}{\log \delta_{2}} i} k^{-(i+1)(1-n)} \int_{Q(x, r)} \mu(y)^{-\frac{1}{p-1}} d y \\
& \leq c\left(\epsilon_{2}, \delta_{2}\right)|Q|^{\frac{1-n}{n}} \int_{Q(x, r)} \mu(y)^{-\frac{1}{p-1}} d y \\
& \leq c\left(\epsilon_{2}, \delta_{2}\right)|Q|^{\frac{1-n}{n}} \int_{3 Q} \mu(y)^{-\frac{1}{p-1}} d y
\end{aligned}
$$

Inequality (3.2) and the generalized Minkowski's inequality [8, p. 271] yield

$$
\begin{align*}
& \int_{D} \mid u(x)-\left.u_{A}\right|^{q} \nu(x) d x \tag{3.3}\\
& \leq c\left(\epsilon_{2}, \delta_{2}, n, q\right)\left(\frac{\beta}{\alpha}\right)^{16 n q}\left(\int_{3 Q} \mu(y)^{-\frac{1}{p-1}} d y\right)^{\frac{q(p-1)}{p}} \\
& \times \int_{D}\left(\int_{D}|x-y|^{1-n}|\nabla u(y)|^{p} \mu(y) \nu(x)^{\frac{p}{q}} d y\right)^{\frac{q}{p}} d x
\end{align*}
$$

$$
\begin{aligned}
& \leq c\left(\epsilon_{2}, \delta_{2}, n, q\right)\left(\frac{\beta}{\alpha}\right)^{16 n q}\left(\int_{3 Q} \mu(y)^{-\frac{1}{p-1}} d y\right)^{\frac{q(p-1)}{p}} \\
& \times\left(\int_{D}\left(\int_{D}\left(|x-y|^{1-n}|\nabla u(y)|^{p} \mu(y) \nu(x)^{\frac{p}{q}}\right)^{\frac{q}{p}} d x\right)^{\frac{p}{q}} d y\right)^{\frac{q}{p}} \\
& \leq c\left(\epsilon_{2}, \delta_{2}, n, q\right)\left(\frac{\beta}{\alpha}\right)^{16 n q}\left(\int_{3 Q} \mu(y)^{-\frac{1}{p-1}} d y\right)^{\frac{q(p-1)}{p}} \\
& \quad \times\left(\int_{D}\left(\int_{D}\left(|x-y|^{1-n} \nu(x)^{\frac{p}{q}}\right)^{\frac{q}{p}} d x\right)^{\frac{p}{q}}|\nabla u(y)|^{p} \mu(y) d y\right)^{\frac{q}{p}} .
\end{aligned}
$$

Since ν satisfies a reverse doubling condition, similar calculations as above imply

$$
\begin{equation*}
\int_{Q}\left(|x-y|^{1-n}\right)^{\frac{q}{p}} \nu(x) d x \leq c\left(\epsilon_{1}, \delta_{1}, q / p\right)|Q|^{\frac{(1-n) q}{p n}} \int_{3 Q} \nu(x) d x \tag{3.4}
\end{equation*}
$$

whenever $\epsilon_{1}<\delta_{1}^{(n-1) q / p}$. Inequalities (3.3) and (3.4) yield

$$
\begin{gathered}
\int_{D}\left|u(x)-u_{A}\right|^{q} \nu(x) d x \leq c|3 Q|^{\left(\frac{1}{n}-1\right) q}\left(\int_{3 Q} \nu(x) d x\right)\left(\int_{3 Q} \mu(x)^{-\frac{1}{p-1}} d x\right)^{\frac{(p-1) q}{p}} \\
\times\left(\int_{D}|\nabla u(x)|^{p} \mu(x) d x\right)^{\frac{q}{p}}
\end{gathered}
$$

where $c=c\left(\epsilon_{1}, \epsilon_{2}, \delta_{1}, \delta_{2}, n, p, q\right)(\beta / \alpha)^{16 n q}$ whenever $\epsilon_{1}<\delta_{1}^{(n-1) q / p}$ and $\epsilon_{2}<\delta_{2}^{n-1}$. Since ν and $\mu^{-\frac{1}{p-1}}$ are locally integrable,

$$
\begin{equation*}
|3 Q|^{\left(\frac{1}{n}-1\right) q}\left(\int_{3 Q} \nu(x) d x\right)\left(\int_{3 Q} \mu(x)^{-\frac{1}{p-1}} d x\right)^{\frac{(p-1) q}{p}} \leq c(D, \nu, \mu, p, q)<\infty \tag{3.5}
\end{equation*}
$$

Thus the assertion follows.

Remark 3.2 Since a cube in \mathbb{R}^{n} is a John domain, our main theorem is valid for cubes also. Previously, for cubes the following result was proved by E. Sawyer and R. Wheeden, [7, Theorem 5]. If ν is a reverse doubling weight and μ is a weight, then a cube $Q_{0} \subset \mathbb{R}^{n}$ is a (q, p)-Poincaré domain with $1<p<q<\infty$, whenever there exists a constant $c<\infty$ such that the inequality

$$
\begin{equation*}
|Q|^{\frac{1}{n}+\frac{1}{q}-\frac{1}{p}}\left(f_{Q} \nu(x) d x\right)^{\frac{1}{q}}\left(f_{Q} \mu(x)^{-\frac{1}{p-1}} d x\right)^{\frac{p-1}{p}} \leq c \tag{3.6}
\end{equation*}
$$

holds for all cubes $Q \subset 8 Q_{0}$. Note that our theorem does not require that the condition (3.6) should be valid for all cubes, but only to $3 Q$ where Q is a cube to which D is included; see (3.5).

4 The Poincaré Inequality with Reverse Doubling Weights in Unbounded Domains

If an unbounded domain can be exhausted by (q, p, ν, μ)-Poincaré domains with a fixed Poincaré constant, then this unbounded domain is also Poincaré domain under certain conditions.

Theorem 4.1 Let D in \mathbb{R}^{n} be an unbounded domain such that $D=\bigcup_{i=1}^{\infty} D_{i}$, where $D_{i} \in \mathcal{P}(q, p, \nu, \mu)$ with Poincaré constants $c\left(D_{i}\right) \leq c_{0}$ for some constant c_{0} and $D_{i} \subset$ $\bar{D}_{i} \subset D_{i+1}, i=1,2, \ldots$, and $\int_{D_{1}} \nu(x) d x>0$. Let there be cubes Q_{i} such that $D_{i} \subset Q_{i}$ and

$$
\left|3 Q_{i}\right|^{\left(\frac{1}{n}-1\right) q}\left(\int_{3 Q_{i}} \nu(x) d x\right)\left(\int_{3 Q_{i}} \mu(x)^{-\frac{1}{p-1}} d x\right)^{\frac{(p-1) q}{p}} \leq c_{1}
$$

Then also $D \in \mathcal{P}(q, p, \nu, \mu)$.

Proof We proceed as in [2, Theorem 4.1] where the case $\nu=\mu=1$ is considered. Let u be a Lipschitz function in D. We may assume that $\int_{D} u(x) \nu(x) d x<\infty$. Set

$$
u_{i}=\frac{1}{\int_{D_{i}} \nu(x) d x} \int_{D_{i}} u(x) \nu(x) d x, \quad i=1,2, \ldots
$$

We show that there is a convergent subsequence $\left(u_{i_{j}}\right)$ of $\left(u_{i}\right)$ and a number $b \in \mathbb{R}$ such that $\lim _{j \rightarrow \infty} u_{i_{j}}=b$ and

$$
\left(\int_{D}|u(x)-b|^{q} \nu(x) d x\right)^{\frac{1}{q}} \leq c\left(\int_{D}|\nabla u(x)|^{p} \mu(x) d x\right)^{\frac{1}{p}}
$$

We have to find an upper bound for $\left(\left|u_{i}\right|\right)$ which does not depend on i. Since

$$
\begin{aligned}
\left|u_{i}\right| & =\left(\int_{D_{1}} \nu(x) d x\right)^{-1} \int_{D_{1}}\left|u_{i}\right| \nu(x) d x \\
& \leq\left(\int_{D_{1}} \nu(x)\right)^{-1}\left(\int_{D_{1}}\left|u_{i}-u(x)\right| \nu(x) d x+\int_{D_{1}}|u(x)| \nu(x) d x\right)
\end{aligned}
$$

and $\int_{D_{1}}|u(x)| \nu(x) d x<\infty$, we have to prove that also

$$
\int_{D_{1}}\left|u_{i}-u(x)\right| \nu(x) d x<\infty
$$

Since $D_{1} \subset D_{i} \subset D$ and D_{i} is a Poincaré domain,

$$
\begin{aligned}
\int_{D_{1}}\left|u_{i}-u(x)\right| \nu(x) d x & \leq\left(\int_{D_{1}} \nu(x) d x\right)^{1-1 / q}\left(\int_{D_{1}}\left|u_{i}-u(x)\right|^{q} \nu(x) d x\right)^{1 / q} \\
& \leq\left(\int_{D_{1}} \nu(x) d x\right)^{1-1 / q}\left(\int_{D_{i}}\left|u_{i}-u(x)\right|^{q} \nu(x) d x\right)^{1 / q} \\
& \leq c_{0}\left(\int_{D_{1}} \nu(x) d x\right)^{1-1 / q}\left(\int_{D_{i}}|\nabla u(x)|^{p} \mu(x) d x\right)^{1 / p} \\
& \leq c_{0}\left(\int_{D_{1}} \nu(x) d x\right)^{1-1 / q}\left(\int_{D}|\nabla u(x)|^{p} \mu(x) d x\right)^{1 / p}<\infty
\end{aligned}
$$

Hence $\left(u_{i}\right)$ is a bounded sequence and there is a convergent subsequence $\left(u_{i_{j}}\right)$ of $\left(u_{i}\right)$ and a number $b \in \mathbb{R}$ such that $\lim _{j \rightarrow \infty} u_{i_{j}}=b$. Since $\int_{D} u(x) \nu(x) d x<\infty$, in fact the number $b=0$. We rewrite $\left(u_{j}\right)$ for the subsequence $\left(u_{i_{j}}\right)$. Since

$$
\lim _{j \rightarrow \infty} \chi_{D_{j}}(x)\left|u(x)-u_{j}\right|^{q}=\chi_{D}(x)|u(x)-b|^{q}
$$

Fatou's lemma and the fact that D_{j} is a Poincaré domain with a constant c_{0} imply

$$
\begin{aligned}
\int_{D}|u(x)-b|^{q} \nu(x) d x & =\int_{D} \lim _{j \rightarrow \infty} \chi_{D_{j}}(x)\left|u(x)-u_{j}\right|^{q^{q}} \nu(x) d x \\
& =\liminf _{j \rightarrow \infty}\left(c_{0} \int_{D_{j}}|\nabla u(x)|^{p} \mu(x) d x\right)^{q / p} \\
& \leq\left(c_{0} \int_{D}|\nabla u(x)|^{p} \mu(x) d x\right)^{q / p}
\end{aligned}
$$

Hence also D is a Poincaré domain.
Corollary 4.2 Let $1<p \leq q<\infty$. Let ν and $\mu^{-\frac{1}{p-1}}$ be reverse doubling weights with a pair $\left(\delta_{i}, \epsilon_{i}\right), i=1,2$, respectively, such that (3.1) holds. Then an unbounded John domain D is \mathbb{R}^{n} is a (q, p, ν, μ)-Poincaré domain iffor John domains D_{1}, D_{2}, \ldots in D's exhaustion there are cubes Q_{i} such that $D_{i} \subset Q_{i}$ and

$$
\left|3 Q_{i}\right|^{\left(\frac{1}{n}-1\right) q}\left(\int_{3 Q_{i}} \nu(x) d x\right)\left(\int_{3 Q_{i}} \mu(x)^{-\frac{1}{p-1}} d x\right)^{\frac{(p-1) q}{p}} \leq c_{1}
$$

Proof Theorems 2.1, 3.1, and 4.1.

5 Examples

We show that the conditions $\epsilon_{1}<\delta_{1}^{(n-1) q / p}$ and $\epsilon_{2}<\delta_{2}^{n-1}$ on reverse doubling weight constants $\left(\epsilon_{i}, \delta_{i}\right), i=1,2$, in (3.1) are not restrictive.

Example 5.1 Let v be a weight such that $0<m \leq v(x) \leq M<\infty$ for all $x \in \mathbb{R}^{n}$. We show that the conditions in (3.1) are not restrictive. Let $\delta \in(0,1)$. We have

$$
\int_{\delta Q} v(x) d x \leq M|\delta Q|=M \delta^{n}|Q|=M m^{-1} \delta^{n} m|Q| \leq M m^{-1} \delta^{n} \int_{Q} v(x) d x
$$

for any bounded cube $Q \subset \mathbb{R}^{n}$. If we write $\epsilon=M m^{-1} \delta^{n}$, then $\epsilon<\delta^{n-1}$ whenever $\delta<m M^{-1}$. Further, if $q<n p /(n-1)$, then $\epsilon<\delta^{(n-1) q / p}$ whenever $\delta<$ $\left(\frac{m}{M}\right)^{p / n p-q(n-1)}$ 。

We show that there are nontrivial unbounded reverse doubling weights such that the conditions hold. These weights are not doubling in the classical sense:

Example 5.2 We consider the case $n=p=2$. Let

$$
\mu(x)=e^{-\left(x_{1}+x_{2}\right)} \quad \text { and } \quad \nu(x)=e^{x_{1}+x_{2}} .
$$

Let $\delta \in(0,1)$. Then ν and $\mu^{\frac{1}{p-1}}$ satisfy a reverse doubling condition with δ and $\epsilon=\delta^{2}$ and this ϵ is the smallest possible $\epsilon \in(0,1)$.

In the n-case, $n \geq 2$, and $p>1$, we define

$$
\mu(x)=e^{-(p-1)\left(x_{1}+\cdots+x_{n}\right)}
$$

and set

$$
\nu(x)=e^{x_{1}+\cdots+x_{n}}
$$

for all $x \in \mathbb{R}^{n}$. For each $\delta \in(0,1)$ we can choose $\epsilon=\delta^{n}$ and the condition $\epsilon<\delta^{n-1}$ is valid as well as $\epsilon<\delta^{(n-1) q / p}$ whenever $q<n p /(n-1)$.

References

[1] B. Bojarski, Remarks on Sobolev imbedding inequalities. Complex Analysis, Joensuu 1987, Lecture Notes in Math. 1351, Springer, Berlin, 1988, 52-68.
[2] R. Hurri-Syrjänen, Unbounded Poincaré domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 17(1992), 409-423.
[3] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1981), 71-88.
[4] O. Martio, John domains, bilipschitz balls and Poincaré inequality. Rev. Roumaine Math. Pures Appl. 33(1988), 107-112.
[5] O. Martio and J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4(1978-1979), 383-401.
[6] R. Näkki and J. Väisälä, John disks. Exposition. Math. 9(1991), 3-43.
[7] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces. Amer. J. Math. 114(1992), 813-874.
[8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.
[9] J. Väisälä, Quasiconformal maps of cylindrical domains. Acta Math. 162(1989), 201-225.
$[10] \longrightarrow$ Exhaustions of John domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1994), 47-57.

Department of Mathematics
P.O. Box 4 (Yliopiston katu 5)

FIN-00014 University of Helsinki
Finland
e-mail: hurrisyr@cc.helsinki.fi

[^0]: Received by the editors July 14, 2002; revised January 27, 2003.
 The research has been supported by Väisälä Foundation and Finnish Cultural Foundation. AMS subject classification: 46E35.
 Keywords: reverse doubling weights, Poincaré inequality, John domains.
 (C)Canadian Mathematical Society 2004.

