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The Poincaré Inequality and
Reverse Doubling Weights

Ritva Hurri-Syrjänen

Abstract. We show that Poincaré inequalities with reverse doubling weights hold in a large class of

irregular domains whenever the weights satisfy certain conditions. Examples of these domains are

John domains.

1 Introduction

Let D be a domain in euclidean n-space R
n, n ≥ 2. Let 1 ≤ p ≤ q < ∞. We say that

D supports a (q, p)-Poincaré inequality with weights ν and µ, if there is a constant
c = c(q, p, ν, µ, D) < ∞ such that

(1.1) infa∈R

(

∫

D

|u(x) − a|qν(x) dx
)

1
q

≤ c
(

∫

D

|∇u(x)|pµ(x) dx
)

1
p

,

where u is a Lipschitz function on D. If the inequality (1.1) holds for all Lipschitz
functions u on D, then D is a (q, p)-Poincaré domain with weights ν and µ; we write
D ∈ P (q, p, ν, µ). The constant c in (1.1) is called a Poincaré constant.

It is well known that for ν = µ = 1 bounded John domains are (q, p)-Poincaré

domains for all q ≤ np/(n − p) when p < n, [1, Chapter 6]. Unbounded John
domains satisfy the

(

np/(n− p), p
)

-Poincaré inequality with ν = µ = 1, [2, Corol-
lary 4.6]. Examples of John domains are Lipschitz domains. But a John domain can
have a rough boundary: a classical example is the Koch snowflake.

We prove that a bounded John domain D belongs to P(q, p, ν, µ) with 1 < p ≤

q < ∞ whenever ν and µ− 1
p−1 are reverse doubling weights satisfying weak addi-

tional conditions; see Theorem 3.1. The result is extended to unbounded John do-
mains in Corollary 4.2. We also show that the extra conditions on reverse doubling
weights are not restrictive; see Section 4.
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2 Preliminaries

We assume that 1 < p ≤ q < ∞. The abbreviation Q stands for the open cube
Q(x, r) = {y ∈ R

n : |xi − yi | < r
2
, i = 1, . . . , n}, where x ∈ R

n and r > 0. By a
Whitney cube we mean a cube from a Whitney decomposition of a given domain, [8,

VI 1]. If t > 0, then tQ denotes the cube Q dilated by a factor t .

We let c(∗, . . . , ∗) denote a constant which depends only on the quantities appear-
ing in the parentheses.

2.1 Reverse Doubling Weights

A weight (function) is a non-negative locally integrable function on R
n.

A weight ν is a doubling weight, that is, ν satisfies a doubling condition, if there

exists a constant c < ∞ such that

∫

2Q

ν(x) dx ≤ c

∫

Q

ν(x) dx

for all cubes Q ⊂ R
n.

A weight ν is a reverse doubling weight or satisfies a reverse doubling condition, if

there exist constants δ ∈ (0, 1) and ε ∈ (0, 1) such that

∫

δQ

ν(x) dx ≤ ε

∫

Q

ν(x) dx

for all cubes Q ⊂ R
n. We say that ν is a reverse doubling weight with a pair (δ, ε).

Doubling weights satisfy a reverse doubling condition. There are reverse doubling
weights which are not doubling weights; see Example 5.2.

2.2 John Domains

We recall the definition of bounded John domains, [5]. A domain D is called an
(α, β)-John domain, 0 < α ≤ β < ∞, if there is x0 ∈ D such that each x ∈ D can be

joined to x0 by a curve ϑ : [0, l] → D parametrized by its arc length with total length
l ≤ β and

dist
(

ϑ(t), ∂D
)

≥
α

l
t, for all t ∈ [0, l].

The point x0 is called a John centre. When a John centre is fixed, then α and β are

fixed, and then by σD we mean the dilation of D by a factor σ > 0 with respect to
the fixed John centre. Lipschitz domains are John domains, and the bounded (ε, δ)-
domains of P. W. Jones are John domains, [3]. A classical example of an (ε, δ)-domain
is the Koch snowflake. An example of a John domain which is not an (ε, δ)-domain

is an (ε, δ)-domain from which an n-dimensional spire has been taken away; in the
plane it is enough to take a slit away: Q(0, 1) \ {(x1, 0) : 1/4 ≤ x1 < 1/2}.

The above definition implies that D is bounded. The concept ‘John domain’ has
been extended for unbounded domains, too, in [6] and [9]. We recall the definition.
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Let E be a closed arc with endpoints a and b. The subarc between x and y is denoted
by E[x, y]. For x ∈ E \ {a, b} write

q(x) = min{dia(E[a, x]), dia(E[x, b])}.

Let γ ≥ 1. A domain D in R
n is a γ-John domain, if each pair of distinct points a and

b in D can be joined by an arc E such that

cig E(a, b) =

⋃

{

B
(

x, q(x)/γ
)

| x ∈ E \ {a, b}
}

⊂ D.

The set cig E(a, b) is called a γ-cigar with core E joining a and b. Whenever D is
bounded this gives exactly an (α, β)-John domain for some α and β. An unbounded
John domain can be exhausted by bounded John domains according to the following

result of J. Väisälä.

Theorem 2.1 [10, Theorem 4.6] An η-John domain D ⊂ R
n can be written as the

union of domains D1, D2, . . . such that D̄i is compact in Di+1 and Di is an η1-John

domain with η1 = η1(η, n).

3 Main Result

We show that a bounded John domain is a Poincaré domain when the left hand side
weight in (1.1) and the right hand side weight in (1.1) to the power −1/(p − 1) are

reverse doubling weights and these weights satisfy certain conditions.

Theorem 3.1 Let 1 < p ≤ q < ∞. Let ν and µ− 1
p−1 be reverse doubling weights

with respect to the pairs (δi , εi), i = 1, 2, respectively, such that

(3.1) ε1 < δ
(n−1)q/p
1 and ε2 < δn−1

2 .

Then an (α, β)-John domain D belongs to P(q, p, ν, µ).

Proof We use the integral representation

|u(x) − uA| ≤ c(n)
( β

α

) 16n
∫

D

|x − y|1−n|∇u(y)| dy, x ∈ D,

where A = Bn
(

x0, c(n)α4n/β5n
)

⊂ D, from [4, Theorem 2.2 and Lemma 3.3], and
Hölder’s inequality with exponents p and p

p−1
, to obtain

∫

D

|u(x) − uA|
qν(x) dx(3.2)

≤ c(n, q)
( β

α

) 16nq
∫

D

(

∫

D

|x − y|1−n|∇u(y)|pµ(y) dy
)

q
p

×
(

∫

D

|x − y|1−nµ(x)−
1

p−1 dy
)

q(p−1)
p

ν(x) dx.
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Since D is a bounded John domain, there exist a cube Q and a constant c(α, β) > 0
such that D ⊂ Q and c(α, β)|D|

1
n = |Q|

1
n . Here, |∗| is the Lebesgue measure of the

sets in question. We fix x ∈ Q and use the abbreviation c(α, β)|Q|
1
n = r and we

exhaust Q(x, r) with cubes Qi = k−iQ(x, r), i = 0, 1, . . . , where k > 1 is a fixed
number. Hence, we obtain

∫

D

|x − y|1−nµ(y)−
1

p−1 dy ≤

∫

Q(x,r)

|x − y|1−nµ(y)−
1

p−1 dy

=

∞
∑

i=0

∫

Qi\Qi+1

|x − y|1−nµ(y)−
1

p−1 dy

≤
∞
∑

i=0

∫

Qi\Qi+1

k−(i+1)(1−n)|Q|
1−n

n µ(y)−
1

p−1 dy

≤
∞
∑

i=0

∫

Qi

k−(i+1)(1−n)|Q|
1−n

n µ(y)−
1

p−1 dy.

Whenever numbers δ2 ∈ (0, 1) and ε2 ∈ (0, 1) satisfy

ε
− log k

log δ2

2 kn−1 < 1, that is, ε2 < δn−1
2 ,

then the reverse doubling property of µ− 1
p−1 , with these δ2 ∈ (0, 1) and ε2 ∈ (0, 1)

yields,

∫

Q

|x − y|1−nµ(y)−
1

p−1 dy ≤ |Q|
1−n

n

∞
∑

i=0

ε
− log k

log δ2
i

2 k−(i+1)(1−n)

∫

Q(x,r)

µ(y)−
1

p−1 dy

≤ c(ε2, δ2)|Q|
1−n

n

∫

Q(x,r)

µ(y)−
1

p−1 dy

≤ c(ε2, δ2)|Q|
1−n

n

∫

3Q

µ(y)−
1

p−1 dy.

Inequality (3.2) and the generalized Minkowski’s inequality [8, p. 271] yield

∫

D

|u(x) − uA|
qν(x) dx(3.3)

≤ c(ε2, δ2, n, q)
( β

α

) 16nq(
∫

3Q

µ(y)−
1

p−1 dy
)

q(p−1)
p

×

∫

D

(

∫

D

|x − y|1−n|∇u(y)|pµ(y)ν(x)
p
q dy

)

q
p

dx
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≤ c(ε2, δ2, n, q)
( β

α

) 16nq(
∫

3Q

µ(y)−
1

p−1 dy
)

q(p−1)
p

×

(
∫

D

(

∫

D

(|x − y|1−n|∇u(y)|pµ(y)ν(x)
p
q )

q
p dx

)

p
q

dy

)

q
p

≤ c(ε2, δ2, n, q)
( β

α

) 16nq(
∫

3Q

µ(y)−
1

p−1 dy
)

q(p−1)
p

×

(
∫

D

(

∫

D

(|x − y|1−nν(x)
p
q )

q
p dx

)

p
q

|∇u(y)|pµ(y) dy

)

q
p

.

Since ν satisfies a reverse doubling condition, similar calculations as above imply

(3.4)

∫

Q

(|x − y|1−n)
q
p ν(x) dx ≤ c(ε1, δ1, q/p)|Q|

(1−n)q
pn

∫

3Q

ν(x) dx,

whenever ε1 < δ
(n−1)q/p
1 . Inequalities (3.3) and (3.4) yield

∫

D

|u(x) − uA|
qν(x) dx ≤ c|3Q|(

1
n
−1)q

(

∫

3Q

ν(x) dx
)(

∫

3Q

µ(x)−
1

p−1 dx
)

(p−1)q
p

×
(

∫

D

|∇u(x)|pµ(x) dx
)

q
p

,

where c = c(ε1, ε2, δ1, δ2, n, p, q)(β/α)16nq whenever ε1 < δ
(n−1)q/p
1 and ε2 < δn−1

2 .

Since ν and µ− 1
p−1 are locally integrable,

(3.5) |3Q|(
1
n
−1)q

(

∫

3Q

ν(x) dx
)(

∫

3Q

µ(x)−
1

p−1 dx
)

(p−1)q
p

≤ c(D, ν, µ, p, q) < ∞.

Thus the assertion follows.

Remark 3.2 Since a cube in R
n is a John domain, our main theorem is valid for

cubes also. Previously, for cubes the following result was proved by E. Sawyer and

R. Wheeden, [7, Theorem 5]. If ν is a reverse doubling weight and µ is a weight, then
a cube Q0 ⊂ R

n is a (q, p)-Poincaré domain with 1 < p < q < ∞, whenever there
exists a constant c < ∞ such that the inequality

(3.6) |Q|
1
n

+ 1
q
− 1

p

(

−

∫

Q

ν(x) dx
)

1
q
(

−

∫

Q

µ(x)−
1

p−1 dx
)

p−1
p

≤ c

holds for all cubes Q ⊂ 8Q0. Note that our theorem does not require that the condi-
tion (3.6) should be valid for all cubes, but only to 3Q where Q is a cube to which D

is included; see (3.5).
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4 The Poincaré Inequality with Reverse Doubling Weights in Un-
bounded Domains

If an unbounded domain can be exhausted by (q, p, ν, µ)-Poincaré domains with a
fixed Poincaré constant, then this unbounded domain is also Poincaré domain under
certain conditions.

Theorem 4.1 Let D in R
n be an unbounded domain such that D =

⋃∞
i=1 Di , where

Di ∈ P(q, p, ν, µ) with Poincaré constants c(Di) ≤ c0 for some constant c0 and Di ⊂
D̄i ⊂ Di+1, i = 1, 2, . . . , and

∫

D1
ν(x) dx > 0. Let there be cubes Qi such that Di ⊂ Qi

and

|3Qi |
( 1

n
−1)q

(

∫

3Qi

ν(x) dx
)(

∫

3Qi

µ(x)−
1

p−1 dx
)

(p−1)q
p

≤ c1.

Then also D ∈ P(q, p, ν, µ).

Proof We proceed as in [2, Theorem 4.1] where the case ν = µ = 1 is considered.

Let u be a Lipschitz function in D. We may assume that
∫

D
u(x)ν(x) dx < ∞. Set

ui =

1
∫

Di
ν(x) dx

∫

Di

u(x)ν(x) dx, i = 1, 2, . . . .

We show that there is a convergent subsequence (ui j
) of (ui) and a number b ∈ R

such that lim j→∞ ui j
= b and

(

∫

D

|u(x) − b|qν(x) dx
)

1
q

≤ c
(

∫

D

|∇u(x)|pµ(x) dx
)

1
p

.

We have to find an upper bound for (|ui |) which does not depend on i. Since

|ui | =

(

∫

D1

ν(x) dx
)−1

∫

D1

|ui |ν(x) dx

≤
(

∫

D1

ν(x)
)−1(

∫

D1

|ui − u(x)|ν(x) dx +

∫

D1

|u(x)|ν(x) dx
)

and
∫

D1
|u(x)|ν(x) dx < ∞, we have to prove that also

∫

D1

|ui − u(x)|ν(x) dx < ∞.
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Since D1 ⊂ Di ⊂ D and Di is a Poincaré domain,

∫

D1

|ui − u(x)|ν(x) dx ≤
(

∫

D1

ν(x) dx
) 1−1/q(

∫

D1

|ui − u(x)|qν(x) dx
) 1/q

≤
(

∫

D1

ν(x) dx
) 1−1/q(

∫

Di

|ui − u(x)|qν(x) dx
) 1/q

≤ c0

(

∫

D1

ν(x) dx
) 1−1/q(

∫

Di

|∇u(x)|pµ(x) dx
) 1/p

≤ c0

(

∫

D1

ν(x) dx
) 1−1/q(

∫

D

|∇u(x)|pµ(x) dx
) 1/p

< ∞.

Hence (ui) is a bounded sequence and there is a convergent subsequence (ui j
) of (ui)

and a number b ∈ R such that lim j→∞ ui j
= b. Since

∫

D
u(x)ν(x) dx < ∞, in fact

the number b = 0. We rewrite (u j) for the subsequence (ui j
). Since

lim
j→∞

χD j
(x)|u(x) − u j |

q
= χD(x)|u(x) − b|q,

Fatou’s lemma and the fact that D j is a Poincaré domain with a constant c0 imply

∫

D

|u(x) − b|qν(x) dx =

∫

D

lim
j→∞

χD j
(x)|u(x) − u j |

qν(x) dx

= lim inf
j→∞

(

c0

∫

D j

|∇u(x)|pµ(x) dx
) q/p

≤
(

c0

∫

D

|∇u(x)|pµ(x) dx
) q/p

.

Hence also D is a Poincaré domain.

Corollary 4.2 Let 1 < p ≤ q < ∞. Let ν and µ− 1
p−1 be reverse doubling weights

with a pair (δi , εi), i = 1, 2, respectively, such that (3.1) holds. Then an unbounded

John domain D is R
n is a (q, p, ν, µ)-Poincaré domain if for John domains D1, D2, . . .

in D’s exhaustion there are cubes Qi such that Di ⊂ Qi and

|3Qi |
( 1

n
−1)q

(

∫

3Qi

ν(x) dx
)(

∫

3Qi

µ(x)−
1

p−1 dx
)

(p−1)q
p

≤ c1.

Proof Theorems 2.1, 3.1, and 4.1.

5 Examples

We show that the conditions ε1 < δ
(n−1)q/p
1 and ε2 < δn−1

2 on reverse doubling weight
constants (εi , δi), i = 1, 2, in (3.1) are not restrictive.
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Example 5.1 Let v be a weight such that 0 < m ≤ v(x) ≤ M < ∞ for all x ∈ R
n.

We show that the conditions in (3.1) are not restrictive. Let δ ∈ (0, 1). We have

∫

δQ

v(x) dx ≤ M|δQ| = Mδn|Q| = Mm−1δnm|Q| ≤ Mm−1δn

∫

Q

v(x) dx

for any bounded cube Q ⊂ R
n. If we write ε = Mm−1δn, then ε < δn−1 when-

ever δ < mM−1. Further, if q < np/(n − 1), then ε < δ(n−1)q/p whenever δ <
( m

M
)p/np−q(n−1).

We show that there are nontrivial unbounded reverse doubling weights such that
the conditions hold. These weights are not doubling in the classical sense:

Example 5.2 We consider the case n = p = 2. Let

µ(x) = e−(x1+x2) and ν(x) = ex1+x2 .

Let δ ∈ (0, 1). Then ν and µ
1

p−1 satisfy a reverse doubling condition with δ and
ε = δ2 and this ε is the smallest possible ε ∈ (0, 1).

In the n-case, n ≥ 2, and p > 1, we define

µ(x) = e−(p−1)(x1+···+xn)

and set

ν(x) = ex1+···+xn

for all x ∈ R
n. For each δ ∈ (0, 1) we can choose ε = δn and the condition ε < δn−1

is valid as well as ε < δ(n−1)q/p whenever q < np/(n − 1).
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[2] R. Hurri-Syrjänen, Unbounded Poincaré domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 17(1992),
409–423.

[3] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math.
147(1981), 71–88.

[4] O. Martio, John domains, bilipschitz balls and Poincaré inequality. Rev. Roumaine Math. Pures Appl.
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