DIMENSION THEORY VIA REDUCED BISECTOR CHAINS

BY
LUDVIK JANOS

Abstract

Let (X, d) be a metric space and Y and Z subsets of X. We say that Z is a bisector in Y and write $Y \triangleright Z$ iff $Y \supset Z$ and there are two distinct points $y_{1}, y_{2} \in Y$ such that $Z=\left\{z: d\left(z, y_{1}\right)=d\left(z, y_{2}\right)\right.$ and $\left.z \in Y\right\}$. By a reduced bisector chain in (X, d) of length n we understand a chain $X=$ $X_{0} \triangleright X_{1} \triangleright \cdots \triangleright X_{n-1} \triangleright X_{n}$ such that $\operatorname{dim} X_{n} \leq 0$ and $\operatorname{dim} X_{n-1}>0$. By $r(X, d)$ we denote the maximum length of reduced bisector chains in (X, d). For a metrizable topological space X we introduce the topological invariant $r(X)$ as the minimum of $r(X, d)$ taken over the set of all metrizations d of X. We prove that the function $r(X)$ coincides with the dimension of X on the class of compact metric spaces.

1. Introduction and notation. If $x_{1}, x_{2} \in X$ are two distinct points in a metric space (X, d) we denote by $B\left(x_{1}, x_{2}\right)$ the bisector of x_{1}, x_{2}, i.e., the set $\left\{x: d\left(x, x_{1}\right)=d\left(x, x_{2}\right)\right\}$. If Y is a subset of (X, d) we say that Y is a bisector in (X, d) iff there are two distinct points x_{1}, x_{2} in X such that $Y=B\left(x_{1}, x_{2}\right)$. The relevancy of this concept to topological dimension, denoted in the sequel by $\operatorname{dim} X$, has been brought to light in our recent paper [3] where the following result is obtained.

Theorem 1.1. If in a compact metric space (X, d) every bisector has dimension $\leq n-1$ then $\operatorname{dim} X \leq n .(n=0,1, \ldots)$

This result depends heavily upon a theorem of J. Nagata (see [4] Theorem 11.2. page 18) and our observation that the family of open half-spaces of a compact metric space (X, d) forms a subbasis for the topology of X. (see [3] Lemma 2.1.)

The inductive character of Theorem 1.1. calls naturally for the consideration of consecutive formation of bisectors. If Y and Z are subsets of a metric space

Received by the editors July 6, 1977.
AMS 1970 subject classifications:
primary $\quad 54$ F 45
Secondary 55 C 10
54 E 35
Key words and phrases:
Bisector, bisector-chain, dimension, metrization, topological invariant, expressability of a topological property in a suitable language.
(X, d) we say that Z is a bisector of Y and write $Y \triangleright Z$ iff $Y \supset Z$ and Z is a bisector in (Y, d) where (Y, d) is the metric space induced by the metric d on the subset Y. Thus we have defined the binary relation \triangleright between subsets of X which permits us to introduce a bisector chain (bc) as a sequence $\left\{X_{i}\right\}_{o}^{n}$ of subsets of X satisfying $X_{i} \triangleright X_{i+1}$ for $i=0,1, \ldots, n-1$, and shall write it in the form:

$$
\begin{equation*}
X_{0} \triangleright X_{i} \triangleright \cdots \triangleright X_{n-1} \triangleright X_{n} \tag{*}
\end{equation*}
$$

In [3] we considered chains starting with X, i.e., $X=X_{0}$ and proceeding as far as possible, i.e., the terminal member X_{n} was either a singleton or bisectorempty which means $X_{n} \triangleright \Theta$, where Θ denotes the empty set. At that time we were not aware of certain results due to J. H. Roberts [5] indicating the importance of $b c$ with at most zero-dimensional terminals.

Definition 1.1. A bisector chain $\left(^{*}\right)$ in a metric space (X, d) is said to be a reduced bisector chain (rbc) iff $X=X_{0}, \operatorname{dim} X_{n} \leq 0$ and $\operatorname{dim} X_{n-1}>0$. The integer n is called the length of the rbc. The reduced bisector chain has length zero iff it is of the form $X=X_{0}$ where the metric space (X, d) has dimension zero.

The question arises as to whether a metric space (X, d) possesses a rbc. If $\operatorname{dim} X=0$, then, by the definition, the $b c X=X_{0}$ is the only $r b c$ in (X, d) and its length is zero. Assume now $\operatorname{dim} X>0$. This implies that X is an infinite set which in turn implies the existence of bisectors $B\left(x_{1}, x_{2}\right)$ in X. If for some $x_{1}, x_{2} \in X$ the bisector $B\left(x_{1}, x_{2}\right)$ is empty, i.e., $\operatorname{dim} B\left(x_{1}, x_{2}\right)=-1$, then the chain $X \triangleright \Theta$ is a rbc of length 1 . If $B\left(x_{1}, x_{2}\right) \neq \Theta$ the dimension of $B\left(x_{1}, x_{2}\right)$ is either 0 , in which case the chain $X \triangleright B\left(x_{1}, x_{2}\right)$ is again a $r b c$ of length 1 , or the dimension of $B\left(x_{1}, x_{2}\right)$ is >0 and the process continues applying the above reasoning to $B\left(x_{1}, x_{2}\right)$. This means that if $\operatorname{dim} X>0$ three cases may be considered:
(1) there exists in (X, d) an infinite chain $X=X_{0} \triangleright X_{1} \triangleright \cdots \triangleright X_{n} \triangleright \cdots$ with $\operatorname{dim} X_{n}>0$ for $n=0,1, \ldots$
(2) There exists in (X, d) a rbc of arbitrary large length.
(3) The length n of $r b c$'s in (X, d) is bounded.

We now assign to every nonempty metric space (X, d) a non-negative integer (or ∞) which we call the maximal length of rbc in (X, d) and denote it by $r(X, d)$ as follows:
(a) We set $r(X, d)=0$ iff $\operatorname{dim} X=0$.
(b) We set $r(X, d)=\max \{n$:there exists a $r b c$ in (X, d) of length $n\}$ iff $\operatorname{dim} X>0$ and case (3) takes place.
(c) We set $r(X, d)=\infty$ iff $\operatorname{dim} X>0$ and either case (1) or case (2) takes place.

For a metrizable topological space X we introduce the topological invariant
$r(X)$ as the minimum of $\{r(X, d): d \in M(X)\}$ where $M(X)$ denotes the set of all metrics on X inducing the topology of X, or expressed in equivalent terms: $r(X)$ is the minimum of $r(Y, d)$, where ($Y, d)$ ranges through the class of metric spaces homeomorphic to X.

The purpose of this paper is to prove the following two statements.
Theorem 1.2. The function $r(X)$ coincides with $\operatorname{dim} X$ on the class of compact metric spaces.

Theorem 1.3. For the n-dimensional Euclidean space E^{n} we have $r\left(E^{n}\right)=n$ for $n=1,2, \ldots$

2. Relation between bisectors and the geometric theory of J. H. Roberts.

Lemma 2.1. Let $Y_{0} \triangleright Y_{1} \triangleright \cdots \triangleright Y_{n}$ be a bc in a metric space (X, d). Then there exists a bc $X=X_{0} \triangleright X_{1} \triangleright \cdots \triangleright X_{n}$ in (X, d) such that $Y_{i}=X_{i} \cap Y_{0}$ for $i=0,1, \ldots n$.

Proof. For $i=1,2, \ldots n, Y_{i}$ is a bisector in Y_{i-1}, hence there are two distinct points y_{i-1}^{\prime} and $y_{i-1}^{\prime \prime}$ in Y_{i-1} such that $Y_{i}=B\left(y_{i-1}^{\prime}, y_{i-1}^{\prime \prime}\right) \cap Y_{i-1}$.

Defining recursively $X_{1}=B\left(y_{0}^{\prime}, y_{0}^{\prime \prime}\right)$
and

$$
\begin{aligned}
& X_{2}=B\left(y_{1}^{\prime}, y_{1}^{\prime \prime}\right) \cap X_{1} \\
& \vdots \\
& X_{n}=B\left(y_{n-1}^{\prime}, y_{n-1}^{\prime \prime}\right) \cap X_{n-1}
\end{aligned}
$$

we obtain the chain of required properties.
Corollary 2.2. The function $r(X)$ is monotonic, i.e., if Y is a nonempty subset of a metrizable topological space X then we have $r(Y) \leq r(X)$.

Proof. Let $d \in M(X)$ be a metric on X for which $r(X)=r(X, d)$. Assume now that the statement is false, i.e., $r(X)<r(Y)$. Since $r(Y) \leq r(Y, d)$ we obtain $r(X, d)<r(Y, d)$. The assumption $r(X)<r(Y)$ implies that $r(X)$ is finite, say $n \geq 0$. Thus, there exists in (Y, d) a $b c \quad Y=Y_{0} \triangleright Y_{1} \triangleright \cdots \triangleright Y_{n} \triangleright Y_{n+1}$ for which $\operatorname{dim} Y_{n}>0$. Lemma 2.1. implies the existence of a bc $X=$ $X_{0} \triangleright X_{1} \triangleright \cdots \triangleright X_{n} \triangleright X_{n+1}$ with $Y_{n}=X_{n} \cap Y_{0}$. Since $Y_{n} \subset X_{n}$ and the dimension function $\operatorname{dim} X$ is monotonic we have that $\operatorname{dim} X_{n}>0$ implying that $r(X, d)$ is at least $n+1$ contrary to our assumption.

In order to formulate the geometrical result of J. H. Roberts we need to make some trivial observations concerning the $b c$ in Euclidean spaces E_{n}.

Lemma 2.3. Every bisector Y in the n-dimensional Euclidean space (E^{n}, e) ($n=1,2, \ldots$) equipped with the Euclidean metric e is a hyperplane, i.e., an affine subspace of E^{n} of dimension $n-1$, and conversely every affine subspace of dimension $n-1$ is a bisector in $\left(E^{n}, e\right)$.

Proof. If $x_{1}, x_{2} \in E^{n}$ and $x_{1} \neq x_{2}$, the bisector $B\left(x_{1}, x_{2}\right)$ can be defined as a hyperplane passing through the point $1 / 2\left(x_{1}+x_{2}\right)$ and orthogonal to the vector $x_{2}-x_{1}$; it is clear that every hyperplane can be obtained this way.

Corollary 2.4. If $E^{n}=Y_{0} \triangleright Y_{1} \triangleright \cdots \triangleright Y_{k}$ is a bc in the Euclidean space $\left(E^{n}, e\right)(n=1,2, \ldots)$ then each member Y_{i} is an affine subspace of dimension $n-i, i=1,2, \ldots, k$, and conversely, if Y is an affine subset of E^{n} of dimension $m(0 \leq m \leq n)$ then there exists $a b c E^{n}=Y_{0} \triangleright Y_{1} \triangleright \cdots \triangleright Y_{k}=Y$ of length $k=$ $n-m$ connecting E^{n} and Y.

Proof. Straight-forward by induction on K.
Theorem 2.5. Let X be a nonempty subset of ($\left.E^{2 n+1}, e\right)$ such that $\operatorname{dim}(X \cap$ $Y) \leq 0$ for every affine subset Y of $E^{2 n+1}$ of dimension $n+1$. Then $r(X, e) \leq n$ where (X, e) is the metric space induced on X by the euclidean metric e.

Proof. Assume that $X=X_{0} \triangleright X_{1} \triangleright \cdots \triangleright X_{k}$ is an arbitrary $b c$ in (X, e) such that $\operatorname{dim} X_{k}>0$. Lemma 2.1. implies that there is a $b c$ in $\left(E^{2 n+1}, e\right) E^{2 n+1}=$ $Y_{0} \triangleright Y_{1} \triangleright \cdots>Y_{k}$ with $X_{k}=Y_{k} \cap X$. Since $\operatorname{dim} X_{k}>0$ and $\operatorname{dim}(Y \cap X) \leq 0$ for every affine subset of dimension $n+1$, this implies that $\operatorname{dim} Y_{k}>n+1$. On the other hand we know that the dimension of Y_{k} is precisely $2 n+1-k$, so that $k<n$ showing that no $r b c$ in (X, e) can be longer than n.

We now confront this result with the theorem of J. H. Roberts ([5] Theorem 12).

Theorem 2.6. If a separable metric space X has dimension n then there exists a topological embedding $f: X \rightarrow E^{2 n+1}$ such that $\operatorname{dim}(f(X) \cap Y) \leq 0$ for every affine subset Y of $E^{2 n+1}$ of dimension $n+1$.

Corollary 2.7. If X is a separable metrizable space then $r(X) \leq \operatorname{dim} X$.
Proof. If $\operatorname{dim} X=\infty$ there is nothing to prove, therefore assume $\operatorname{dim} X$ finite, say $n \geq 0$. Theorem 2.6. implies that a homeomorphic image of X, namely $f(X)$ satisfies the hypothesis of Theorem 2.5. furnishing $r(f(X), e) \leq n$ from which our assertion follows.
3. Proofs of Theorems 1.2. and 1.3. To prove Theorem 1.2. means to show that for every non-negative integer $k \geq 0$ we have

$$
\begin{equation*}
r(X)=k \quad \text { if and only if } \quad \operatorname{dim} X=k \tag{**}
\end{equation*}
$$

for every compact metrizable space X. We shall proceed by induction on k. For $k=0$ the statement $\left({ }^{* *}\right)$ is true by the very definition of $r(X)$. In order to carry out the induction step we need

Lemma 3.1. Let X be a metrizable topological space with $r(X)<\infty$, and assume that $Y \subset X$ is a bisector in (X, d) where $d \in M(X)$ is such that $r(X)=$ $r(X, d)$. Then $r(Y)<r(X)$.

Proof. The length of an $r b c$ in (Y, d) is not greater than $r(X)-1$. Thus $r(Y, d)<r(X)$ and therefore $r(Y)<r(X)$.

Now assume that the validity of the statement $\left({ }^{* *}\right)$ has been established for all values $k=0,1, \ldots, n$ and assume
(a) X compact and $r(X)=n+1$. Consider the metric space (X, d) where d is such that $r(X)=r(X, d)$. Lemma 3.1. implies that every bisector Y in (X, d) is such that $r(Y) \leq n$ which by the induction hypothesis yields that $\operatorname{dim} Y \leq n$ from which we conclude, using Theorem 1.1. that $\operatorname{dim} X \leq n+1$. Confronting this result with Corollary 2.7., we finally have $\operatorname{dim} X=n+1$, which proves one half of the statement. To prove the second half assume
(b) X compact and $\operatorname{dim} X=n+1$. From Corollary 2.7. we know $r(X) \leq$ $n+1$. But if $r(X)<n+1$ then the induction hypothesis would yield $r(X)=$ $\operatorname{dim} X<n+1$ contrary to the assumption. Thus we have $r(X)=n+1$ and the proof of Theorem 1.2. is complete.

We now prove Theorem 1.3. as an easy corollary of Theorem 1.2. and the monotonic property of the function $r(X)$.

From Corollary 2.4. follows that $r\left(E^{n}, e\right)=n(n=1,2, \ldots)$ implying that $r\left(E^{n}\right) \leq n(n=1,2, \ldots)$.

Denoting by I_{n} the unit cube in E_{n} we obtain from Theorem 1.2. that $r\left(I^{n}\right)=n(n=1,2, \ldots)$ and since $I^{n} \subset E^{n}$ Corollary 2.2. yields finally $r\left(E^{n}\right)=$ $n(n=1,2, \ldots)$ what had to be shown.
4. Some logical aspects of our results. In our paper [3] we introduced the function $b(X, d)$ as the maximum length of $b c s$ in a metric space (X, d) and the corresponding topological invariant $b(X)$ as the minimum of $\{b(X, d): d \in$ $\boldsymbol{M}(X)\}$.

Despite similarity between the definitions of $b(X, d)$ and $r(X, d)$ there is an essential difference between these notions from the point of view of formal logic and we need some definitions to bring this distinction to light.

Definition 4.1. For a nonempty metric space (X, d) we introduce the ternary relation $R \subset X \times X \times X$ on X setting $\left(x_{1}, x_{2}, x_{3}\right) \in R$ iff $x_{1} \neq x_{2}$ and $x_{3} \in B\left(x_{1}, x_{2}\right)$.

Remark 4.1. The relation R is defined naturally by the concept of bisector $B\left(x_{1}, x_{2}\right)$. In the sequel we shall also deal with two quaternary relations on $X, I \subset X \times X \times X \times X$ and $E \subset X \times X \times X \times X$ defined on a metric space (X, d) by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in I$ iff $d\left(x_{1}, x_{2}\right) \leq d\left(x_{3}, x_{4}\right)$ and $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in E$ iff $d\left(x_{1}, x_{2}\right)=$ $d\left(x_{3}, x_{4}\right)$ respectively. It is obvious that E can be expressed in terms of I and R in turn can be expressed in terms of E. We can say that the relations R, E and I introduce on X the bisector-, equational- and inequality-structure, respectively. The corresponding languages which can talk about these structures shall be denoted by L, L_{E} and L_{I} respectively.

Definition 4.2. Let L denote the first order language containing besides the logical connectives, $\neg, \mathrm{V}, \wedge, \rightarrow, \exists$ and \forall and variables x_{1}, x_{2}, \ldots only one ternary predicate symbol R^{*}. If P is a property of a metric space we say that P is expressible in the language L provided there is a sentence S (i.e., a formula without free variables) in L such that a metric space (X, d) has the property P if and only if (X, d) is a model of S, assuming that the predicate symbol R^{*} is interpreted by R in X. The fact that (X, d) is a model of S will be denoted by $(X, d) \vDash S$.

Remark 4.2. Analogously we understand the expressability of P in the language L_{E} or L_{I}. Since L can be conceived as a sublanguage of L_{E} and L_{E} as a sublanguage of L_{I} the expressability in L implies that in L_{E} and consequently in L_{I}.

Theorem 4.1. The property $b(X, d)=n$ for $n=0,1, \ldots$ is expressible in L.
Proof. The sentence $S_{0}=\forall x_{1} \forall x_{2} \forall x_{3} \neg R^{*}\left(x_{1} x_{2} x_{3}\right)$ says precisely that every bisector in (X, d) is empty. Applying this result to any bisector $B\left(x_{4}, x_{5}\right)$ of a metric space (X, d) we can express the fact that $b(X, d) \leq 1$ by the formula $S_{1}^{\prime}=\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4} \forall x_{5}\left[R^{*}\left(x_{4} x_{5} x_{1}\right) \wedge R^{*}\left(x_{4} x_{5} x_{2}\right) \wedge R^{*}\left(x_{4} x_{5} x_{3}\right) \rightarrow \neg R^{*}\left(x_{1} x_{2} x_{3}\right]\right.$. Proceeding inductively we can produce formulas S_{n}^{\prime} expressing the property $b(X, d) \vDash S_{n}(n=1,2, \ldots)$. Thus the statement $b(X, d)=0$ is equivalent to $(X, d) \vDash S_{0}$ and the statement $b(X, d)=n$ for $n=1,2, \ldots$ is equivalent to $(X, d) \vDash S_{n}$ where $S_{n}=S_{n}^{\prime} \wedge \neg S_{n-1}^{\prime}$ and where we set $S_{0}^{\prime}=S_{0}$.

It is clear that this statement is no longer true if we pass from the property $b(X, d)=n$ to the property $r(X, d)=n$ since the conditions $\operatorname{dim} X_{n} \leq 0$ and $\operatorname{dim} X_{n-1}>0$ involved in the definition of $r b c$ are not in any obvious way describable in terms of the relation R. This is the main reason why the results obtained in this paper cannot be considered as definite.

Definition 4.3. To each sentence S in the language L we assign the topological property P_{s} defined on the class of metrizable spaces as follows. We say that a space X has the topological property P_{s} iff there is a metric $d \in M(X)$ for which $(X, d) \vDash S$, and we express this by saying that $P_{s}(X)$ is true.

Definition 4.4. Let P be a topological property and C a subclass of the class of metrizable spaces. We say that P is expressible in the language L on the class C provided there are sentences $S_{1}, S_{2}, \ldots, S_{m}$ in L and a formula $F\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ of the sentential logic such that for $X \in C$ the truth value of $P(X)$ coincides with that of $F\left(P_{s_{1}}(X), P_{s_{1}}(X), \ldots P_{s_{m}}(X)\right]$.

Theorem 4.2. The topological property $b(X)=n$ for $n=0,1, \ldots$ is expressible in L on the class of metrizable spaces.

Proof. If $n=0$ the fact $b(X)=0$ means that there is $d \in M(X)$ with (X, d)) S_{0} showing that the property $b(X)=0$ is expressible. Assume now $n>1$. In this case the fact $b(X)=n$ means that there is $d \in M(X)$ for which $b(X, d)=n$ but it is not true that there is such $d^{\prime} \in M(X)$ for which $b\left(X, d^{\prime}\right)=n-1$. Thus the statement $\left\{\left[d \in M(X)(x, d) \vDash S_{n}\right]\right.$ and not $\left.\left[d^{\prime} \in M(x)\left(X, d^{\prime}\right) \vDash S_{n-1}\right]\right\}$ is the desired expression of the property $b(x)=n$.

Corollary 4.3. The property $\operatorname{dim} X=0$ is expressible in L on the class of compact metrizable spaces.

Proof. This follows readily from the above theorem and the basic result of our paper [3] where we proved that if X is compact then $\operatorname{dim} X=0$ iff $b(X)=0$.

Our main conjecture is that for arbitrary $n \geq 0$ the property $\operatorname{dim} X=n$ is expressible in L on the class of compact metrizable spaces.

Our belief in the truth of this conjecture is supported by a result of J . de Groot (see [1] or [4] page 154, Corollary to Theorem V.5). This result can easily be translated in the language L_{I} and it reads:

Theorem 4.4. (De Groot) The property $\operatorname{dim} X=n(n=0,1, \ldots)$ is expressible in the language L_{I} on the class of compact metrizable spaces.

Analogously, our result [2] on the metric rigidity if translated in the equational language L_{E} reads:

The property $\operatorname{dim} X=0$ is expressible in the language L_{E} on the class of separable metrizable spaces.

References

1. J. de Groot, On a metric that characterizes dimension, Can. J. Math. 9 (1957) 511-514.
2. L. Janos, A metric characterization of zero-dimensional spaces, Proc. Amer. Math. Soc., 31 (1972) 268-270.
3. L. Janos, Dimension theory via bisector chains, Canad. Math. Bull. 20 (1977), 313-317.
4. J. Nagata, Modern dimension theory, Interscience Publishers, New York, 1965.
5. J. H. Roberts, A theorem on dimension, Duke Math. J. 8 (1941), 565-574.

Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762

