Bull. Austral. Math. Soc.
Vol. 43 (1991) [141-146]

VALUES OF POLYNOMIALS OVER FINITE FIELDS

Joachim von zur Gathen

Let q be a prime power, \mathbf{F}_{q} a field with q elements, $f \in \mathbf{F}_{\boldsymbol{q}}[\boldsymbol{x}]$ a polynomial of degree $n \geqslant 1, V(f)=\# f\left(F_{q}\right)$ the number of different values $f(a)$ of f, with $a \in F_{q}$, and $p=q-V(f)$. It is shown that either $\rho=0$ or $4 n^{4}>q$ or $2 p n>q$. Hence, if q is "large" and f is not a permutation polynomial, then either n or ρ is "large".

Possible cryptographic applications have recently rekindled interest in permutation polynomials, for which $\rho=0$ in the notation of the abstract (see Lidl and Mullen [10]). There is a probabilistic test for permutation polynomials using an essentially linear (in the input size $n \log q$) number of operations in \mathbf{F}_{q} (von zur Gathen [5]). There are rather few permutation polynomials: a random polynomial in $\mathbf{F}_{\boldsymbol{q}}[x]$ of degree less than q is a permutation polynomial with probability $q!/ q^{q}$, or about e^{-q}. For cryptographic applications, we think of q as being exponential, about 2^{N}, in some input size parameter N; then this probability is doubly exponentially small: $e^{-2^{N}}$.

In the hope of enlarging the pool of suitable polynomials, one can relax the notion of "permutation polynomial" by allowing a few, say polynomially many in N, values of \mathbf{F}_{q} not to be images of $f: \rho=N^{O(1)}$. There is a probabilistic test for this property, whose expected number of operations is essentially linear in $n \rho \log q$ (von zur Gathen [5]). The purpose of this note is to show that this relaxation does not include new examples with q large and n, ρ small: if $\rho \neq 0$, then either $+4 n^{4}>q$ or $2 \rho n>q$ (Corollary 2 (ii)).

The theorem below provides quantitative versions of results of Williams [15], Wan [14], and others, which we now first state. As an application, we will show that a naive probabilistic polynomial-time test for permutation polynomials has a good chance of success; this could not be concluded from the previous less quantitative versions.

If $p=\operatorname{char} \mathbf{F}_{q}$, then $a \mapsto a^{p}$ is a bijection of \mathbf{F}_{q}. If $f=g\left(x^{p}\right)$ for some $g \in \mathbf{F}_{q}[x]$, then $V(f)=V(g)$, and, in particular, f is a permutation polynomial if and only if g

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.
is. Replacing f by g (and repeating this process if necessary) we may therefore assume that f is not a p th power, that is, that $f^{\prime} \neq 0$. Then f is called separable. We consider the difference polynomial

$$
f^{*}=\frac{f(x)-f(y)}{x-y} \in \mathbf{F}_{q}[x, y]
$$

and the number σ of absolutely irreducible (that is, irreducible over an algebraic closure of \mathbf{F}_{q}) factors in a complete factorisation of f^{*} into irreducible factors in $\mathbf{F}_{\mathbf{q}}[\boldsymbol{x}, \boldsymbol{y}]$. We call f exceptional if $\sigma=0$. Any linear f is exceptional.

FACTS. Let $f \in \mathbf{F}_{q}[x]$ be separable of degree n.
(i) (MacCluer [12], Williams [16], Gwehenberger [7], Cohen [3]). If f is exceptional, then f is a permutation polynomial.
(ii) (Davenport and Lewis [4], Bombieri and Davenport [2], Tietäväinen [13], Hayes [8], Wan [14]). There exist c_{1}, c_{2}, \ldots such that for any separable $f \in \mathbf{F}_{q}[x]$ of degree n we have: If $q \geqslant c_{n}$ and f is a permutation polynomial, then f is exceptional.
(iii) (Williams [15]) If q is a fixed prime, large compared with n, say $q \geqslant$ $q_{0}(n)$, and $\rho=O(1)$ (that is, ρ depends only on n, but not on q), then f is exceptional (hence, by (i), a permutation polynomial).
(iv) (von zur Gathen and Kaltofen [6], and Kaltofen [9]) There is a probabilistic test whether f is exceptional using a number of operations in \mathbf{F}_{q} that is polynomial in $n \log q$.

We will establish quantitative versions of Facts (ii) and (iii). The proof follows the lines of Williams' argument; a central ingredient is, as in Williams' and Wan's work, Weil's theorem on the number of rational points of an algebraic curve over a finite field.

Theorem 1. Let $n \geqslant 1, f \in \mathbf{F}_{q}[x]$ separable of degree $n, V(f)$ the number of values of $f, \rho=q-V(f)$, and $0<\varepsilon \leqslant 8$.
(i) If $q \geqslant n^{4}$ and f is a permutation polynomial, then f is exceptional.
(ii) If $q \geqslant \varepsilon^{-2} n^{4}$ and σ is the number of absolutely irreducible factors of f^{*} in $\mathbf{F}_{\mathrm{q}}[x, y]$, then $\rho>(\sigma-\varepsilon) q / n$.

Proof: Since any linear polynomial is a permutation polynomial and exceptional (that is, $\sigma=0$), we may assume that $n \geqslant 2$. For $1 \leqslant i \leqslant n$, let

$$
R_{i}=\left\{a \in \mathbf{F}_{q}: \#\left(f^{-1}(\{a\})\right)=i\right\}
$$

be the set of points with exactly i preimages under f, and $r_{i}=\# R_{i}$. Then $\bigcup_{1 \leqslant i \leqslant n} R_{i}=$
$f\left(\mathbf{F}_{q}\right)$ is a partition, and

$$
\begin{align*}
& \sum_{1 \leqslant i \leqslant n} r_{i}=q-\rho \tag{1}\\
& \sum_{1 \leqslant i \leqslant n} i r_{i}=q \tag{2}
\end{align*}
$$

Subtracting (1) from (2), we find

$$
\begin{equation*}
\sum_{2 \leqslant i \leqslant n}(i-1) r_{i}=\rho \tag{3}
\end{equation*}
$$

Let

$$
S=\left\{(a, b) \in \mathbf{F}_{q}^{2}: a \neq b, f(a)=f(b)\right\}
$$

and $s=\# S$. We map every $(a, b) \in S$ to $c=f(a) \in \bigcup_{2 \leqslant i \leqslant n} R_{i}$; every $c \in R_{i}$ with $i \geqslant 2$ has exactly $i(i-1)$ preimages under this map. Together with (3), this shows that

$$
\begin{equation*}
n \rho \geqslant \sum_{2 \leqslant i \leqslant n} i(i-1) r_{i}=s \tag{4}
\end{equation*}
$$

We may assume that f is not exceptional, and it is sufficient to prove $\rho>0$ if $q \geqslant n^{4}$ for (i), and $\rho n>(\sigma-\varepsilon) q$ if $q \geqslant \varepsilon^{-2} n^{4}$ for (ii). We write $f^{*}=h_{1} \cdots h_{\sigma} h_{\sigma+1} \cdots h_{r}$, with $h_{1}, \ldots, h_{T} \in \mathrm{~F}_{q}[x, y]$ irreducible, and h_{i} absolutely irreducible if and only if $i \leqslant \sigma$. We have $\sigma \geqslant 1$.

Let K be an algebraic closure of \mathbf{F}_{q}, and for $1 \leqslant i \leqslant \tau$ let

$$
\bar{X}_{i}=\left\{(a, b) \in K^{2}: h_{i}(a, b)=0\right\}
$$

be the curve defined by $h_{i}, X_{i}=\bar{X}_{i} \cap F_{q}^{2}$ its rational points, $n_{i}=\operatorname{deg} h_{i}$, and $X=$ $\bigcup_{1 \leqslant i \leqslant r} X_{i}$. We observe that $f(x)-f(y)$ is squarefree, since for a factor h^{2} one finds, by differentiating, that h divides $\operatorname{gcd}\left(f^{\prime}(x), f^{\prime}(y)\right)=1$. In particular, $x-y$ does not divide f^{*}, and if $\Delta \subseteq K^{2}$ is the diagonal, then $\bar{X}_{i} \neq \Delta$ for all i. Then

$$
\begin{equation*}
n-1=\operatorname{deg} f^{*} \cdot \operatorname{deg} \Delta \geqslant \#(\bar{X} \cap \Delta) \geqslant \#(X \cap \Delta) \tag{5}
\end{equation*}
$$

by Bezout's theorem. Similarly,

$$
n_{i} n_{j} \geqslant \#\left(\bar{X}_{i} \cap \bar{X}_{j}\right) \geqslant \#\left(X_{i} \cap X_{j}\right)
$$

for $1 \leqslant i<j \leqslant \tau$. Furthermore, by Weil's Theorem (see Lidl and Niederreiter [11, p.331]) we have

$$
\# X_{i} \geqslant q+1-\left(\left(n_{i}-1\right)\left(n_{i}-2\right) q^{1 / 2}+n_{i}^{2}\right)
$$

for $1 \leqslant i \leqslant \sigma$. Together, we obtain

$$
\begin{align*}
\# X & \geqslant \# \bigcup_{1 \leqslant i \leqslant \sigma} X_{i} \geqslant \sum_{1 \leqslant i \leqslant \sigma} \# X_{i}-\sum_{1 \leqslant i<j \leqslant \sigma} \#\left(X_{i} \cap X_{j}\right) \tag{6}\\
& >\sigma q-\sum_{1 \leqslant i \leqslant \sigma}\left(\left(n_{i}-1\right)\left(n_{i}-2\right) q^{1 / 2}+n_{i}^{2}\right)-\sum_{1 \leqslant i<j \leqslant \sigma} n_{i} n_{j} .
\end{align*}
$$

The maximum value of $\sum_{1 \leqslant i \leqslant \sigma}\left(n_{i}-1\right)\left(n_{i}-2\right)$ with $\sum_{1 \leqslant i \leqslant \sigma} n_{i} \leqslant n-1$ and $1 \leqslant$ $n_{1}, \ldots, n_{\sigma}$ is achieved at $\left(n_{1}, \ldots, n_{\sigma}\right)=(n-\sigma, 1, \ldots, 1)$, where it equals $(n-\sigma-1)(n-\sigma-2) \leqslant(n-2)(n-3)$. Adding the terms n_{i}^{2} into the last sum, we find again that $\sum_{1 \leqslant i \leqslant j \leqslant \sigma} n_{i} n_{j}$ reaches, under the given conditions, its maximum at the same $\left(n_{1}, \ldots, n_{\sigma}\right)$. Its value there is $(n-\sigma)^{2}+(\sigma-1)(n-\sigma)+(\sigma-1) \sigma / 2$. This function achieves its maximum $(n-1)^{2}$ at $\sigma=1$.

Since $X \backslash(X \cap \Delta) \subseteq S$, we have from these estimates and (4), (5), and (6)

$$
\begin{align*}
n \rho & \geqslant s \geqslant \# X-(n-1) \tag{7}\\
& >\sigma q-(n-2)(n-3) q^{1 / 2}-(n-1)^{2}-(n-1)
\end{align*}
$$

To prove (i), it is sufficient to have the right hand side of (7) nonnegative. This is clearly the case for $n \leqslant q^{1 / 4}$, since $\sigma \geqslant 1$. To prove (ii), we note that

$$
0 \geqslant u\left(-5 \sqrt{\varepsilon} u^{2}+(6+\varepsilon) u-\sqrt{\varepsilon}\right) \text { for } u \geqslant \delta=\frac{6+\varepsilon+\sqrt{36-8 \varepsilon+\varepsilon^{2}}}{10 \sqrt{\varepsilon}}
$$

Using this for $u=q^{1 / 4}$, assuming $q \geqslant \varepsilon^{-2} n^{4}$ (which implies $u \geqslant 2 \varepsilon^{-1 / 2} \geqslant \delta$), and using (7), we have

$$
\begin{aligned}
n \rho & >\sigma q-\left((n-2)(n-3) q^{1 / 2}+n(n-1)\right) \\
& \geqslant \sigma q-\left(\varepsilon q+\left(-5 \sqrt{\varepsilon} q^{3 / 4}+6 q^{1 / 2}+\varepsilon q^{1 / 2}-\sqrt{\varepsilon} q^{1 / 4}\right)\right) \\
& \geqslant(\sigma-\varepsilon) q .
\end{aligned}
$$

Corollary 2. Let $n \geqslant 1, f \in F_{q}[x]$ separable of degree $n, V(f)$ the number of values of $f, \rho=q-V(f)$, and assume that $q \geqslant 4 n^{4}$.
(i) If σ is the number of absolutely irreducible factors of f^{*} in $\mathbf{F}_{q}[x, y]$, then $\rho>(\sigma-1 / 2) q / n$.
(ii) If $\rho \leqslant q / 2 n$, then f is a permutation polynomial.

Proof: (i) Set $\varepsilon=1 / 2$ in (ii) of the Theorem. (ii) If f is not a permutation polynomial, then it is not exceptional (Fact (i)); hence $\sigma \geqslant 1$ and $\rho>q / 2 n$ by (i). \square

In various statements (the numbering of which is indicated below) of Lidl and Niederreiter [11], we can replace "there exist c_{1}, c_{2}, \ldots such that for all $q \geqslant c_{n}$ " by "for all $q \geqslant n^{4}$; we refer to their text for a complete bibliography.

Corollary 3. Let $n \in N, n \geqslant 1, F_{q}$ a finite field with q elements, and assume $q \geqslant n^{4}$.
(i) (Corollary 7.30) Suppose that $f \in \mathbf{F}_{q}[x]$ is separable of degree n. Then f is a permutation polynomial if and only if f is exceptional.
(ii) (Theorem 7.31) Suppose that $\operatorname{gcd}(n, q)=1$ and F_{q} contains an nth root of unity, different from 1. Then there is no permutation polynomial of \mathbf{F}_{q} with degree \boldsymbol{n}.
(iii) (Corollary 7.32) Suppose that n is positive and even, and $\operatorname{gcd}(n, q)=1$. Then there is no permutation polynomial of F_{q} with degree n.
(iv) (Corollary 7.33) Suppose that $\operatorname{gcd}(n, q)=1$. Then there exists a permutation polynomial of F_{q} with degree n if and only if $\operatorname{gcd}(n, q-1)=1$.
We obtain a probabilistic polynomial-time algorithm to test whether a given polynomial $f \in \mathbf{F}_{q}[x]$ of degree n is a permutation polynomial, as follows. We first note that any $u \in \mathbf{F}_{q}$ has exactly one preimage under f (that is, $\# f^{-1}(\{u\})=1$) if and only if $\operatorname{gcd}\left(x^{q}-x, f-u\right)$ is linear. Calculating $x^{q}-x \bmod f-u$ by repeated squaring takes $O^{\sim}(n \log q)$ operations, and the gcd calculation then $O^{\sim}(n)$ operations in \mathbf{F}_{q} (Aho, Hopcroft and Ullman [1, Section 8.9]). (The "soft $O^{\prime \prime}$ notation $O^{\sim}(m)$ means $O\left(m \log ^{k} m\right)$ for some fixed k, thus ignoring factors $\log m$.) If $q<4 n^{4}$, we test for each $u \in \mathbf{F}_{\boldsymbol{q}}$ whether it has one (or at least one) preimage under f. This costs $O^{\sim}(n q)$ or $O^{\sim}\left(n^{5}\right)$ operations in \mathbf{F}_{q}.

If $q \geqslant 4 n^{4}$, we have the following probabilistic algorithm, with a confidence parameter $\varepsilon>0$ as further input. We choose $k=\left\lceil 2 n \log _{e} \varepsilon^{-1}\right\rceil$ elements $u \in \mathbf{F}_{q}$ independently at random, and test whether u has exactly one preimage under f. If this is not the case for some u, then f is not a permutation polynomial. If it is true for all u tested, then we declare f to be a permutation polynomial. It may of course happen that f is not a permutation polynomial and this test answers incorrectly; the probability of this event is at most

$$
\left(\frac{q-\rho}{q}\right)^{k}<\left(\frac{q-\frac{q}{2 n}}{q}\right)^{2 n \cdot k / 2 n}<\left(e^{-1}\right)^{k / 2 n} \leqslant \varepsilon
$$

by Corollary 2 (ii). The cost is k gcd's or $O^{\sim}\left(n \log \varepsilon^{-1} \cdot n \log q\right)$ operations in F_{q}.
This test is conceptually much simpler than the one in von zur Gathen [5]; however, that test is more efficient, using only $O^{\sim}\left(n \log \varepsilon^{-1}\right)$ operations (if $\left.\varepsilon \leqslant q^{-1}\right)$.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Uliman, The design and analysis of computer algorithms (Addison-Wesley, Reading, MA, 1974).
[2] E. Bombieri and H. Davenport, 'On two problems of Mordell', Amer. J. Math. 88 (1966), 61-70.
[3] S.D. Cohen, 'The distribution of polynomials over finite fields', Acta Arith. 17 (1970), 255-271.
[4] H. Davenport and D.J. Lewis, 'Notes on congruences (I)', Quart. J. Math. Oxford 14 (1963), 51-60.
[5] J. von zur Gathen, 'Tests for permutation polynomials', SIAM J. Comput. (to appear).
[6] J. von zur Gathen and E. Kaltofen, 'Factorization of multivariate polynomials over finite fields', Math. Comp. 45 (1985), 251-261.
[7] G. Gwehenberger, Über die Darstellung von Permutationen durch Polynome und rationale Funktionen, PhD thesis (TH Wien, 1970).
[8] D.R. Hayes, 'A geometric approach to permutation polynomials over a finite field', Duke Math. J. 34 (1967), 293-305.
[9] E. Kaltofen, 'Fast parallel absolute irreducibility testing', J Symbolic Comput. 1 (1985), 57-67.
[10] R. Lidl and G.L. Mullen, 'When does a polynomial over a finite field permute the elements of the field', Amer. Math. Monthly 95 (1988), 243-246.
[11] R. Lidl and H. Niederreiter, Finite fields: Encyclopedia of Mathematics and its Applications 20 (Addison-Wesley, Reading MA, 1983).
[12] C.R. MacCluer, 'On a conjecture of Davenport and Lewis concerning exceptional polynomials', Acta Arith. 12 (1967), 289-299.
[13] A. Tietäväinen, 'On non-residues of a polynomial', Ann. Univ. Turku Ser. A 94 (1966).
[14] D. Wan, 'On a conjecture of Carlitz', J. Austral. Math. Soc. (Series A) 43 (1987), 375-384.
[15] K.S. Williams, 'On extremal polynomials', Canad. Math. Bull. 10 (1967), 585-594.
[16] K.S. Williams, 'On exceptional polynomials', Canad. Math. Bull. 11 (1968), 279-282.

[^0]: Received 16 March 1990
 This work was partly supported by Natural Sciences and Engineering Research Council of Canada, grant A-2514.

