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VALUES OF POLYNOMIALS
OVER FINITE FIELDS

JOACHIM VON ZUR GATHEN

Let q be a prime power, F, a field with q elements, / € F4[z] a polynomial of
degree n ^ 1, V(/) = #/(F,) the number of different values /(a) of / , with
a € F , , and p = q — V(/). It is shown that either p = 0 or 4n4 > q or 2pn > q.
Hence, if q is "large" and / is not a permutation polynomial, then either n or p
is "large".

Possible cryptographic applications have recently rekindled interest in permutation
polynomials, for which p = 0 in the notation of the abstract (see Lidl and Mullen [10]).
There is a probabilistic test for permutation polynomials using an essentially linear (in
the input size nlogg) number of operations in F? (von zur Gathen [5]). There are
rather few permutation polynomials: a random polynomial in F,[z] of degree less than
q is a permutation polynomial with probability q\/qq, or about e~q . For cryptographic
applications, we think of q as being exponential, about 2^ , in some input size parameter
N; then this probability is doubly exponentially small: e~2 .

In the hope of enlarging the pool of suitable polynomials, one can relax the notion
of "permutation polynomial" by allowing a few, say polynomially many in N, values
of F , not to be images of / : p = N°^. There is a probabilistic test for this property,
whose expected number of operations is essentially linear in nplogq (von zur Gathen
[5]). The purpose of this note is to show that this relaxation does not include new
examples with q large and n, p small: if p ^ 0, then either + 4n4 > q or 2pn > q
(Corollary 2 (ii)).

The theorem below provides quantitative versions of results of Williams [15], Wan
[14], and others, which we now first state. As an application, we will show that a naive
probabilistic polynomial-time test for permutation polynomials has a good chance of
success; this could not be concluded from the previous less quantitative versions.

If p = charF,, then a »-> ap is a bijection of F , . If / — g(xp) for some g £ F,[z],
then V(f) = V(^), and, in particular, / is a permutation polynomial if and only if g
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is. Replacing f by g (and repeating this process if necessary) we may therefore assume
that / is not a p th power, that is, that / ' / 0. Then / is called separable. We consider
the difference polynomial

and the number a of absolutely irreducible (that is, irreducible over an algebraic closure
of F , ) factors in a complete factorisation of /* into irreducible factors in F,[x, y]. We
call / exceptional if a = 0. Any linear / is exceptional.

FACTS . Let / £ F,[z] be separabJe of degree n.

(i) (MacCluer [12], Williams [16], Gwehenberger [7], Cohen [3]). If f is
exceptional, then f is a permutation polynomial.

(ii) (Davenport and Lewis [4], Bombieri and Davenport [2],
Tietavainen [13], Hayes [8], Wan [14]). There exist ci, c2, . . . such that

for any separable f € F,[z] of degree n we have: If q ^ cn and f is a
permutation polynomial, then f is exceptional.

(iii) (Williams [15]) If q is a fixed prime, large compared with n, say q ^
9o(n), and p = 0(1) (that is, p depends only on n, but not on q), then
f is exceptional (hence, by (i), a permutation polynomial).

(iv) (von zur Gathen and Kaltofen [6], and Kaltofen [9]) There is a proba-

bilistic test whether f is exceptional using a number of operations in F ,
that is polynomial in nlogq.

We will establish quantitative versions of Facts (ii) and (iii). The proof follows the
lines of Williams' argument; a central ingredient is, as in Williams' and Wan's work,
Weil's theorem on the number of rational points of an algebraic curve over a finite field.

THEOREM 1 . Let n > 1, / e Fq[x] separable of degree n, V(f) the number of
values of f, p - q - V(f), and 0 < e < 8.

(i) If q ^ n4 and / is a permutation polynomial, then f is exceptional.
(ii) If q ^ e~2ni and a is the number of absolutely irreducible factors of f*

in F,[x, y], then p> (a — e)q/n.

PROOF: Since any linear polynomial is a permutation polynomial and exceptional
(that is, a = 0), we may assume that n ^ 2. For 1 ^ i < n , let

be the set of points with exactly i preimages under / , and r< = #Ri. Then (J
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/ ( F ? ) is a partition, and

(1) £ ri=q-p,

(2)

Subtracting (1) from (2), we find

(3)

Let

5 = {(a, b) e F* : a £ b, /(a) = /(&)},

and s = # S . We map every (a, 6) 6 S to c = /(a) £ [J i^; every c 6 Ri with
2<»<n

t ^ 2 has exactly i(i — 1) preimages under this map. Together with (3), this shows
that

(4) np

We may assume that / is not exceptional, and it is sufficient to prove p > 0 if q > n4

for ( i ) , a n d p n > ( a — e)q i f q ^ £ ~ 2 n 4 f o r ( i i ) . W e w r i t e /* — h \ • • • h a h a + i • • • h T ,
with hi, ..., hr G F,[z, y] irreducible, and hi absolutely irreducible if and only if
i < a. We have a ^ 1.

Let K be an algebraic closure of F , , and for 1 < i ^ r let

Xt = {(a, 6) e K2 : h^a, b) = 0}

be the curve defined by hi, Xi = Xi D Fj its rational points, n; = deghi, and X —
U Xi. We observe that f(x) — /(y) is squarefree, since for a factor h2 one finds,

by differentiating, that h divides gcd(/'(x), /'(y)) = 1. In particular, x — y does not
divide /*, and if A C K2 is the diagonal, then X< ^ A for all t. Then

(5) n - l

by Bezout's theorem. Similarly,

ninj > #(Xi n let) > #{Xi n jr,-
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for 1 ^ i < j' ^ T . Furthermore, by Weil's Theorem (see Lidl and Niederreiter [11,
p.331]) we have

for 1 < i ^ a. Together, we obtain

Xi> ^2 *x*-

>aq- J2 (

The maximum value of J^ (n; — l)(nj — 2) with 53 n» ^ H — 1 and 1 ^

ni,...,na is achieved at ( n i , . . . , n v ) = (n — <r, 1, . . . , 1), where it equals
(n — a — l ) (n — <r — 2) ^ (n — 2)(n — 3). Adding the terms n? into the last sum, we
find again that ^ n i ^ i reaches, under the given conditions, its maximum at the

same (T»I, . . . , n^). Its value there is (n — a) + (a — l ) (n — a) + (<r — 1)<T/2. This
function achieves its maximum (n — 1) at a = 1.

Since X \ (JC D A) C 5 , we have from these estimates and (4), (5), and (6)

(7) np>s

><rq-(n- 2)(n - 3)q^2 - (n - I)2 - (n - 1).

To prove (i), it is sufficient to have the right hand side of (7) nonnegative. This is
clearly the case for n ^ q1'*, since a ^ 1. To prove (ii), we note that

Using this for u — q1^, assuming q ^ e~2n4 (which implies u ^ 2e- 1 /2 ^ 6), and

using (7), we have

npxrq- ((n - 2)(n - 3)?1'2 + n{n - 1))

eq1'2 - ))

>{* e)«-

COROLLARY 2 . Let n ^ 1, / 6 F,[z] separable of degree n, V(f) the number

of values of f, p — q — V(f), and assume that q ̂  4n* .

(i) If <r is the number of absolutely irreducible factors of f* in Fq[x, y], then

p>(<r-l/2)q/n.

(ii) If p ^ q/2n, then f is a permutation polynomial.

https://doi.org/10.1017/S0004972700028860 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028860


[5] Value of polynomials 145

PROOF: (i) Set e = 1/2 in (ii) of the Theorem, (ii) If / is not a permutation
polynomial, then it is not exceptional (Fact (i)); hence a ^ 1 and p > q/2n by (i). D

In various statements (the numbering of which is indicated below) of Lidl and
Niederreiter [11], we can replace "there exist C\, c^, . . . such that for all q ^ c n " by
"for all q ^ n 4 " ; we refer to their text for a complete bibliography.

COROLLARY 3 . Let n G N, n > 1, F , a finite field with q elements, and assume

(i) (Corollary 7.30) Suppose that f £ F,[x] is separable of degree n . Tien
/ is a permutation polynomial if and only if f is exceptional.

(ii) (Theorem 7.31) Suppose that gcd(n, q) = 1 and F , contains an nth root
of unity, different from 1. Tien there is no permutation polynomial of
Fq witi degree n.

(iii) (Corollary 7.32) Suppose that n is positive and even, and gcd(n, q) — 1.
Tlien tiere is no permutation polynomial of F? witi degree n.

(iv) (Corollary 7.33) Suppose that gcd(n, q) = 1. Tien tiere exists a permu-
tation polynomial of F , with degree n if and only if gcd (n, q — 1) = 1.

We obtain a probabilistic polynomial-time algorithm to test whether a given poly-
nomial / G F,[x] of degree n is a permutation polynomial, as follows. We first note
that any u € F , has exactly one preimage under / (that is, # / - 1 ({u}) = 1) if and
only if gcd [xq — x, f — u) is linear. Calculating xq — x mod / — u by repeated squar-
ing takes O~(n log q) operations, and the gcd calculation then 0~(n) operations in F ,
(Aho, Hopcroft and Ullman [1, Section 8.9]). (The "soft O" notation O~(m) means
0(mlog*mj for some fixed fc, thus ignoring factors logm.) If q < 4n4, we test for
each u £ F , whether it has one (or at least one) preimage under / . This costs O~(nq)
or O~(ns) operations in F g .

If q ^ 4n4, we have the following probabilistic algorithm, with a confidence parame-
ter e > 0 as further input. We choose k = [2nlogee~1] elements u 6 F , independently
at random, and test whether u has exactly one preimage under / . If this is not the
case for some, u, then / is not a permutation polynomial. If it is true for all u tested,
then we declare / to be a permutation polynomial. It may of course happen that / is
not a permutation polynomial and this test answers incorrectly; the probability of this
event is at most

k / a \ 2n*Jb/2n

by Corollary 2 (ii). The cost is k gcd's or 0~ (n loge 1 • nlogg) operations in F , .

This test is conceptually much simpler than the one in von zur Gathen [5]; however,
that test is more efficient, using only O~(nloge~1) operations (if e ^ q~1).
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