VALUES OF POLYNOMIALS
OVER FINITE FIELDS
JOACHIM VON ZUR GATHEN

Let \(q \) be a prime power, \(F_q \) a field with \(q \) elements, \(f \in F_q[z] \) a polynomial of degree \(n \geq 1 \), \(V(f) = \# f(F_q) \) the number of different values \(f(a) \) of \(f \), with \(a \in F_q \), and \(\rho = q - V(f) \). It is shown that either \(\rho = 0 \) or \(4n^4 > q \) or \(2\rho n > q \). Hence, if \(q \) is “large” and \(f \) is not a permutation polynomial, then either \(n \) or \(\rho \) is “large”.

Possible cryptographic applications have recently rekindled interest in permutation polynomials, for which \(\rho = 0 \) in the notation of the abstract (see Lidl and Mullen [10]). There is a probabilistic test for permutation polynomials using an essentially linear (in the input size \(n \log q \)) number of operations in \(F_q \) (von zur Gathen [5]). There are rather few permutation polynomials: a random polynomial in \(F_q[z] \) of degree less than \(q \) is a permutation polynomial with probability \(q! / q^q \), or about \(e^{-q} \). For cryptographic applications, we think of \(q \) as being exponential, about \(2^N \), in some input size parameter \(N \); then this probability is doubly exponentially small: \(e^{-2^N} \).

In the hope of enlarging the pool of suitable polynomials, one can relax the notion of “permutation polynomial” by allowing a few, say polynomially many in \(N \), values of \(F_q \) not to be images of \(f: \rho = N^{O(1)} \). There is a probabilistic test for this property, whose expected number of operations is essentially linear in \(n\rho \log q \) (von zur Gathen [5]). The purpose of this note is to show that this relaxation does not include new examples with \(q \) large and \(n, \rho \) small: if \(\rho \neq 0 \), then either \(+4n^4 > q \) or \(2\rho n > q \) (Corollary 2 (ii)).

The theorem below provides quantitative versions of results of Williams [15], Wan [14], and others, which we now first state. As an application, we will show that a naïve probabilistic polynomial-time test for permutation polynomials has a good chance of success; this could not be concluded from the previous less quantitative versions.

If \(p = \text{char} F_q \), then \(a \mapsto a^p \) is a bijection of \(F_q \). If \(f = g(x^p) \) for some \(g \in F_q[z] \), then \(V(f) = V(g) \), and, in particular, \(f \) is a permutation polynomial if and only if \(g \)
is. Replacing f by g (and repeating this process if necessary) we may therefore assume that f is not a pth power, that is, that $f' \neq 0$. Then f is called separable. We consider the difference polynomial

$$f^* = \frac{f(x) - f(y)}{x - y} \in \mathbb{F}_q[z, y],$$

and the number σ of absolutely irreducible (that is, irreducible over an algebraic closure of \mathbb{F}_q) factors in a complete factorisation of f^* into irreducible factors in $\mathbb{F}_q[x, y]$. We call f exceptional if $\sigma = 0$. Any linear f is exceptional.

Facts. Let $f \in \mathbb{F}_q[z]$ be separable of degree n.

(i) (MacCluer [12], Williams [16], Gwehenberger [7], Cohen [3]). If f is exceptional, then f is a permutation polynomial.

(ii) (Davenport and Lewis [4], Bombieri and Davenport [2], Tietäväinen [13], Hayes [8], Wan [14]). There exist c_1, c_2, \ldots such that for any separable $f \in \mathbb{F}_q[z]$ of degree n we have: If $q \geq c_n$ and f is a permutation polynomial, then f is exceptional.

(iii) (Williams [15]) If q is a fixed prime, large compared with n, say $q \geq q_0(n)$, and $\rho = O(1)$ (that is, ρ depends only on n, but not on q), then f is exceptional (hence, by (i), a permutation polynomial).

(iv) (von zur Gathen and Kaltofen [6], and Kaltofen [9]) There is a probabilistic test whether f is exceptional using a number of operations in \mathbb{F}_q that is polynomial in $n \log q$.

We will establish quantitative versions of Facts (ii) and (iii). The proof follows the lines of Williams’ argument; a central ingredient is, as in Williams’ and Wan’s work, Weil’s theorem on the number of rational points of an algebraic curve over a finite field.

Theorem 1. Let $n \geq 1$, $f \in \mathbb{F}_q[z]$ separable of degree n, $V(f)$ the number of values of f, $\rho = q - V(f)$, and $0 < \varepsilon \leq 8$.

(i) If $q \geq n^4$ and f is a permutation polynomial, then f is exceptional.

(ii) If $q \geq \varepsilon^{-2}n^4$ and σ is the number of absolutely irreducible factors of f^* in $\mathbb{F}_q[z, y]$, then $\rho > (\sigma - \varepsilon)q/n$.

Proof: Since any linear polynomial is a permutation polynomial and exceptional (that is, $\sigma = 0$), we may assume that $n \geq 2$. For $1 \leq i \leq n$, let

$$R_i = \{a \in \mathbb{F}_q : \#(f^{-1}(\{a\})) = i\}$$

be the set of points with exactly i preimages under f, and $r_i = \#R_i$. Then $\bigcup_{1 \leq i \leq n} R_i = \{a \in \mathbb{F}_q : f^{-1}(a) \neq \emptyset\}$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 06 Mar 2019 at 21:52:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028860
$f(F_q)$ is a partition, and

\begin{align*}
(1) \quad \sum_{1 \leq i \leq n} r_i &= q - \rho, \\
(2) \quad \sum_{1 \leq i \leq n} ir_i &= q.
\end{align*}

Subtracting (1) from (2), we find

\begin{equation}
(3) \quad \sum_{2 \leq i \leq n} (i - 1)r_i = \rho.
\end{equation}

Let

\[S = \{(a, b) \in F_q^2 : a \neq b, f(a) = f(b)\}, \]

and \(s = \#S \). We map every \((a, b) \in S\) to \(c = f(a) \in \bigcup_{2 \leq i \leq n} R_i \); every \(c \in R_i \) with \(i \geq 2 \) has exactly \(i(i-1) \) preimages under this map. Together with (3), this shows that

\begin{equation}
(4) \quad np \geq \sum_{2 \leq i \leq n} i(i-1)r_i = s.
\end{equation}

We may assume that \(f \) is not exceptional, and it is sufficient to prove \(\rho > 0 \) if \(q \geq n^4 \) for (i), and \(\rho n > (\sigma - \varepsilon)q \) if \(q \geq \varepsilon^{-2}n^4 \) for (ii). We write \(f^* = h_1 \cdots h_\sigma h_{\sigma+1} \cdots h_\tau \), with \(h_1, \ldots, h_\tau \in F_q[x, y] \) irreducible, and \(h_i \) absolutely irreducible if and only if \(i \leq \sigma \). We have \(\sigma \geq 1 \).

Let \(K \) be an algebraic closure of \(F_q \), and for \(1 \leq i \leq \tau \) let

\[\overline{X}_i = \{(a, b) \in K^2 : h_i(a, b) = 0\} \]

be the curve defined by \(h_i \), \(X_i = \overline{X}_i \cap F_q^2 \) its rational points, \(n_i = \deg h_i \), and \(X = \bigcup_{1 \leq i \leq \tau} X_i \). We observe that \(f(x) - f(y) \) is squarefree, since for a factor \(h^2 \) one finds, by differentiating, that \(h \) divides \(\gcd(f'(x), f'(y)) = 1 \). In particular, \(x - y \) does not divide \(f^* \), and if \(\Delta \subseteq K^2 \) is the diagonal, then \(\overline{X}_i \neq \Delta \) for all \(i \). Then

\begin{equation}
(5) \quad n - 1 = \deg f^* \cdot \deg \Delta \geq \#(\overline{X} \cap \Delta) \geq \#(X \cap \Delta),
\end{equation}

by Bezout's theorem. Similarly,

\[n_i n_j \geq \#(\overline{X}_i \cap \overline{X}_j) \geq \#(X_i \cap X_j) \]
for $1 \leq i < j \leq \tau$. Furthermore, by Weil's Theorem (see Lidl and Niederreiter [11, p.331]) we have
\[
\#X_i \geq q + 1 - \left((n_i - 1)(n_i - 2)q^{1/2} + n_i^2 \right)
\]
for $1 \leq i \leq \sigma$. Together, we obtain
\[
(6) \quad \#X \geq \# \bigcup_{1 \leq i \leq \sigma} X_i \geq \sum_{1 \leq i \leq \sigma} \#X_i - \sum_{1 \leq i < j \leq \sigma} \#(X_i \cap X_j)
\]
\[
> \sigma q - \sum_{1 \leq i \leq \sigma} \left((n_i - 1)(n_i - 2)q^{1/2} + n_i^2 \right) - \sum_{1 \leq i < j \leq \sigma} n_i n_j.
\]

The maximum value of $\sum_{1 \leq i \leq \sigma} (n_i - 1)(n_i - 2)$ with $\sum_{1 \leq i \leq \sigma} n_i \leq n - 1$ and $1 \leq n_1, \ldots, n_{\sigma}$ is achieved at $(n_1, \ldots, n_{\sigma}) = (n - \sigma, 1, \ldots, 1)$, where it equals $(n - \sigma - 1)(n - \sigma - 2) \leq (n - 2)(n - 3)$. Adding the terms n_i^2 into the last sum, we find again that $\sum_{1 \leq i < j \leq \sigma} n_i n_j$ reaches, under the given conditions, its maximum at the same $(n_1, \ldots, n_{\sigma})$. Its value there is $(n - \sigma)^2 + (\sigma - 1)(n - \sigma) + (\sigma - 1)\sigma/2$. This function achieves its maximum $(n - 1)^2$ at $\sigma = 1$.

Since $X \setminus (X \cap \Delta) \subseteq S$, we have from these estimates and (4), (5), and (6)
\[
(7) \quad n \rho \geq s \geq \#X - (n - 1)
\]
\[
> \sigma q - (n - 2)(n - 3)q^{1/2} - (n - 1)^2 - (n - 1).
\]

To prove (i), it is sufficient to have the right hand side of (7) nonnegative. This is clearly the case for $n \leq q^{1/4}$, since $\sigma \geq 1$. To prove (ii), we note that
\[
0 \geq u\left(-5\sqrt{\varepsilon} u^2 + (6 + \varepsilon) u - \sqrt{\varepsilon}\right) \text{ for } u \geq \delta = \frac{6 + \varepsilon + \sqrt{36 - 8\varepsilon + \varepsilon^2}}{10\sqrt{\varepsilon}}.
\]
Using this for $u = q^{1/4}$, assuming $q \geq \varepsilon^{-2} n^4$ (which implies $u \geq 2\varepsilon^{-1/2} \geq \delta$), and using (7), we have
\[
n \rho > \sigma q - ((n - 2)(n - 3)q^{1/2} + n(n - 1))
\]
\[
> \sigma q - (\varepsilon q + (\varepsilon q^{3/4} + 6q^{1/2} + \varepsilon^{1/2} - \sqrt{\varepsilon} q^{1/4}))
\]
\[
> (\sigma - \varepsilon) q.
\]

COROLLARY 2. Let $n \geq 1$, $f \in \mathbb{F}_q[x]$ separable of degree n, $V(f)$ the number of values of f, $\rho = q - V(f)$, and assume that $q \geq 4n^4$.

(i) If σ is the number of absolutely irreducible factors of f^* in $\mathbb{F}_q[x, y]$, then
\[
\rho > (\sigma - 1/2)q/n.
\]

(ii) If $\rho \leq q/2n$, then f is a permutation polynomial.
PROOF: (i) Set $\epsilon = 1/2$ in (ii) of the Theorem. (ii) If f is not a permutation polynomial, then it is not exceptional (Fact (i)); hence $\sigma \geq 1$ and $\rho > q/2n$ by (i).

In various statements (the numbering of which is indicated below) of Lidl and Niederreiter [11], we can replace "there exist c_1, c_2, \ldots such that for all $q \geq c_n$" by "for all $q \geq n^4$"; we refer to their text for a complete bibliography.

Corollary 3. Let $n \in \mathbb{N}$, $n \geq 1$, F_q a finite field with q elements, and assume $q \geq n^4$.

(i) (Corollary 7.30) Suppose that $f \in F_q[x]$ is separable of degree n. Then f is a permutation polynomial if and only if f is exceptional.

(ii) (Theorem 7.31) Suppose that $\gcd(n, q) = 1$ and F_q contains an nth root of unity, different from 1. Then there is no permutation polynomial of F_q with degree n.

(iii) (Corollary 7.32) Suppose that n is positive and even, and $\gcd(n, q) = 1$. Then there is no permutation polynomial of F_q with degree n.

(iv) (Corollary 7.33) Suppose that $\gcd(n, q) = 1$. Then there exists a permutation polynomial of F_q with degree n if and only if $\gcd(n, q - 1) = 1$.

We obtain a probabilistic polynomial-time algorithm to test whether a given polynomial $f \in F_q[x]$ of degree n is a permutation polynomial, as follows. We first note that any $u \in F_q$ has exactly one preimage under f (that is, $\#f^{-1}(\{u\}) = 1$) if and only if $\gcd(x^n - x, f - u)$ is linear. Calculating $x^n - x \mod f - u$ by repeated squaring takes $O^*(n \log q)$ operations, and the gcd calculation then $O^*(n)$ operations in F_q (Aho, Hopcroft and Ullman [1, Section 8.9]). (The "soft O" notation $O^*(m)$ means $O(m \log^k m)$ for some fixed k, thus ignoring factors $\log m$.) If $q < 4n^4$, we test for each $u \in F_q$ whether it has one (or at least one) preimage under f. This costs $O^*(nq)$ or $O^*(n^5)$ operations in F_q.

If $q \geq 4n^4$, we have the following probabilistic algorithm, with a confidence parameter $\epsilon > 0$ as further input. We choose $k = \lceil 2n \log_q^{-1} \rceil$ elements $u \in F_q$ independently at random, and test whether u has exactly one preimage under f. If this is not the case for some u, then f is not a permutation polynomial. If it is true for all u tested, then we declare f to be a permutation polynomial. It may of course happen that f is not a permutation polynomial and this test answers incorrectly; the probability of this event is at most

$$\left(\frac{q - \rho}{q} \right)^k < \left(\frac{q - q/2n}{q} \right)^{2n-k/2n} < (e^{-1})^{k/2n} \leq \epsilon,$$

by Corollary 2 (ii). The cost is $k \gcd$'s or $O^*(n \log e^{-1} \cdot n \log q)$ operations in F_q.

This test is conceptually much simpler than the one in von zur Gathen [5]; however, that test is more efficient, using only $O^*(n \log e^{-1})$ operations (if $\epsilon \leq q^{-1}$).
REFERENCES