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Abstract

For finite dimensional linear systems it is known that in certain circumstances the input
can be retrieved from a knowledge of the output only. The main aim of this paper is to
produce explicit formulae for input retrieval in systems which do not possess direct linkage
from input to output. Although two different procedures are suggested the fundamental
idea in both cases is to find an expression for the inverse transfer function of the system.
In the first case this is achieved using a general method of power series inversion and in
the second case by a sequence of elementary operations on a Rosenbrock type system
matrix.

1. Introduction

The first systematic paper on the problem of input retrieval in finite dimensional
linear systems appears to have been the one by Brockett and Mesarovic [1] in
which conditions were given that are necessary and sufficient to guarantee
retrieval of input from a knowledge of the output only. Subsequently these
conditions were modified by Sain and Massey [3] and later by Wang and Davison
[5] to produce alternative simplified conditions. Methods for input retrieval were
first suggested by Sain and Massey [3] and Silverman [4]. Since that time many
other authors have made significant contributions to the subject. The present
paper is motivated by the methods of Sain and Massey [3] in which the retrieval
problem is formulated via a collection of matrix equations. Some of the questions
posed by this formulation appear not to have been answered.
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358 P. G. Hewlett [2 ]

In this paper we will consider only systems which can be written in the form

x(t)=Ax(t)+Bu(t),

with x(0) = 8 where x G R", u E Rm, y £ Rm and n>m. Further, A, B and C
are real matrices of appropriate dimensions. Throughout this paper, 0 will denote
a matrix of appropriate dimensions with zero elements. We will assume that both
B and C have rank m and that u{t) is analytic "near" / = 0—to which neighbour-
hood the analysis will be restricted. The problem is to state conditions under
which the input u(t) can be retrieved from a knowledge of the output y(t) only
and to explain the structure of a suitable recovery procedure. The omission of
direct feed from input to output is deliberate because for many commonly
formulated systems there is no such connection and because the inclusion of such
a term tends to obscure a direct retrieval procedure for these systems.

In order to present the problem in its simplest form we will for the moment
assume that the product matrix CB is invertible. By taking a formal Laplace
transform of (1) we have

y(s) = T(s)u(s) (2)

where u(s) and y(s) are the respective Laplace transforms of u(t) and y(t). The
transfer function T(s) is given by the formula

T(s) = C(sIn-A)'lB
00

= ( 1 A ) 2 CA'B/sJ (for sufficiently la rge \s\)
7 = 0

J , (3)
y=o

in which we have used Jj = CA'B for eachy = 0,1,2, Since it is easy to see
that || jr. || < aJ+* for some sufficiently large real constant a > 0, it follows that
T(s) is analytic in the region | j | > a . In attempting to solve (2) it seems
intuitively reasonable to seek a "solution" in the form

Hs)=[T(s)]-ly(s) (4)

where the inverse transfer function [r($)]~' is defined as nearly as possible by a
power series in \/s. In fact if we assume an expansion of the form

, (5)
7=0
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then it follows by equating coefficients that the Kj must satisfy each of the
countable collections of equations

/0A:0 = Im

and

and 2 Jk-j
Kj = 9 for Ac = 1,2,3,...

and 2KjJk-j = e for k= 1,2,3,....
7 = 0

(6)

We will show that there is a uniquely defined solution to (6) and that the
coefficients Kj are sufficiently small to ensure that [T^)]"1 is well defined by (5).
Because the Kj can be shown to satisfy a finite recurrence relation it is necessary
to solve only a finite subcollection of the equations (6). Nevertheless the suggested
technique of direct power series inversion does not generate the simplest recur-
rence satisfied by the Kj and for this reason we also consider an alternative
method of retrieval.

Let us define a slightly modified form N(s) of the Rosenbrock system matrix
[2] by setting

' e -c
-B si. ~ AN(s)=[_

If we choose non singular matrices B^ and C* written in partitioned form as

such that

and

and CC*=[lm 6],

then using elementary row and column operations on N(s) we can show that it is
(rank) equivalent to each of the matrices

Nt(s) = -C(sln-A) B 0

e si.-A

and

N2(s) =
Im 0 0

6 Im 0
0 0 B\(sln - A)C\
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From this equivalence it follows that T(s) = C(sln — A)'lB is invertible if and
only if B\(sln — A)C\ is invertible and hence we obtain the key inversion formula

[T(s)Yl = B\(sln - A)[(sln - AY1 - B\}{sln - A)C\.

(7)

If we assume that the product matrix CB is invertible then we can use (7) to
show that for j = 2,3,4,... the coefficients Kj of the previous section satisfy a
recurrence relation defined by the minimum polynomial of the matrix

t. It is also possible to rewrite (7) in the form

[T(s)Y] = Kos + AT, + H(sln_m - (8)

and hence part of the input retrieval can be achieved via an "inverse" system in
the form of (1).

2. On the inversion of power series—non singular case.

In order to discuss the construction of the inverse transfer function [7^(5)]"'
using a power series in l/s it is convenient first to consider the general problem
of power series inversion. Because of the repeated use of a particular type of
augmented matrix we will use the following notation throughout. If {Aj} is a
sequence of (m X m) matrices then for each k = 1,2,3,... we define a sequence
{(£]*'} of (mk X mk) matrices as follows. Let

fl<*> =

e

A
k-2

e
e

and

&f =
Ajk

Au+\)k-\ A

A(j-\)k + 2

Ajk

for eachy = 1,2,3,—
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THEOREM 1. Let {Aj} be a sequence of square (w X m) matrices such that Ao is
non singular. Then the linear systems

k

A0X0 = Im and ^Ak_jXj = 6 for k = 1 , 2 , 3 , . . .
7 = 0

and (9)
k

Y0A0 = Im and 2 ^ A - , = # for k = 1,2,3, . . .
7 = 0

each have uniquely defined solutions {Xj} and {Yj} respectively and furthermore
Xj= Yjforallj = 0,\,2,....

PROOF. We can define solutions to (9) using the following inductive procedure

Xn = AT} and X, = -AT} for A: = 1 , 2 , 3 , . . .
7 = 0

and (10)

Yo = A~o
l and Yk = - 2 J ^ A - z U o ' for* = 1,2,3, . . . .

\ 7 = 0 /

It is easy to see that these solutions are unique. If we now choose an arbitrary
value of k, say k = / then we can see that

PP = Iim and %'W» = Iim.
Thus from elementary matrix algebra %$) = ^^ 0 and the proof is complete.

COROLLARY 1. Let {Aj} be a sequence of square matrices as in Theorem 1 and
suppose also that \\Aj\\ < aJ+x for some real number a > 0. Then the function
A(s) — 2J=0AjSJ is well defined for \s\< \/a and we can find a uniquely de-
termined series X(s) = 2°°=0 XjSj with positive radius of convergence and such that
in the region where both series converge we have A(s)X(s) = X(s)A(s) = Im. We
write X(s) = [A(s)]~K

NOTE: In all cases MH = s u p x e / r Mx | | / IUH where | |x | | 2 = 2?=, xf.

PROOF. Define {Xj} as in Theorem 1 and let

b = max{\\A-0
i\\,\\A-0

i\\a2 + a} + 1.

It is now easy to see that II Xj || < bJ+' for all7 = 0 ,1 ,2 , . . . .
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COROLLARY 2. Let {Aj} be defined as in Theorem 1 and suppose that for some
integer r > 0 we have

r+\
Aj+r+\= 2 akAj+r+i-k for each j = 0 , 1 , 2 , . . . .

k=\

If we define a finite sequence {A*} by setting

j

A%= Ao,A* = Aj- 2 akAj-k foreachj = l,2,...,r,

and use the notation A*(s) = 2r
J=0A*sJ, then

w*)]-' = ( i - i«k*
k=\

THEOREM 2. Let A(s) = 'Zj=0AjSJ where {Aj} is a finite sequence of square
(m X m) matrices with Ao non singular. Then we can write [A(s)]~l = '2'JLQXJS-'

where the Xj satisfy a finite recurrence relation of the form
h

xj+rh = 2 £* xj+rh-rk for each J = 0 , 1 , 2 , . . . , where h < rm.
k=\

PROOF. Define {Xj} as in Theorem 1 and let £ = &(
o
r) and % = &\r\ Then for

each i = 1,2,3,. . . we have

t e e
% e e
e % £

e e e

e
e
e

£_

SV(r)'

%\r)

6V" (r)

r - |

rm

e
e

. e _

(11)

Since Ao is non singular it follows that £ is non singular and hence we can solve
these equations to give

r 1 fory = 0 , l , 2 , . . . , i . (12)

Since / is arbitrary it follows that this formula holds for ally. Thus the % j r > satisfy
a finite recurrence relation defined by the minimum polynomial of the mr X mr
matrix (-1 )£~'%. Therefore for some fixed h < wr we have

fiX"(r> = V £ 6Jf(r) for; = 0 1 2-^y+A Lt ik-^j+h-k IUIJ " i 1 ) - 4 )
k=\
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By applying this recurrence to each position in the partitioned matrix we obtain
h

Xj + rh = 2 tkXj+rh-rk f01J = 0, 1,2,. . . .
k=\

One practical disadvantage of this procedure is that the recurrence relation
derived for the coefficients Xj is not (usually) the simplest such recurrence.

3. On the inversion of power series—singular case.

We will continue the discussion of the previous section by extending the results
obtained in that section to cover inversion of a power series A(s) = 2%°=0Aks

k in
the case where Ao is singular.

THEOREM 3. Let {Ak} be a sequence of square (m X m) matrices such that Ao is
singular. If we can find non singular matrices M and N such that

MA0N =
[ e i el

and MA.N =
A* I A*
-"in -"112

1

where mu m2 > 0 and m] + m2 = m, then the linear systems
k

and y, Ak_jXj = 6 for k = 2 , 3 , . . .A0X0 =
7 = 0

and (13)

Y0A0 = and 2 YjAk_j = 6 for k = 2 , 3 , . . .

each have uniquely defined solutions {Xj} and {Yj} respectively and furthermore
Xj=

PROOF. Choose M and N as stated and define

A*j = MAjN, XJ = N-]XjM-1 and Y* =

It is clear that for all k and any scalar ak we have
k k

Zi Ak^jXj = aklm <=> 2J '
7=0 7=0

and
k

2
7=0

k_j = aklklm

*̂ = aklm

\-j = <*klm

7 = 0
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Thus the original systems (13) have solutions if and only if the modified systems
(where Aj is replaced by AJ) have solutions. Moreover there is a 1-1 correspon-
dence between the solutions to the original equations and the solutions to the
modified equations. Thus without loss of generality we assume

e i e
and A, =

M12

Now

and

= 6 and

^ 0 ^ 1 ~ Im ^ ^021 ~ ^ and -*"o22 ~ ^m,"

Thus we obtain a unique solution for Xo, namely

0 ' t

If we now suppose that Xj is uniquely defined for 0 < j < k — 1 then

k-i
AQXk = - 2 Ak_jXj implies that

7 = 0

and

7 = 0

and Xkn = -
7 = 0 / ,2

k-\

AxXk + A0Xk+l = - 2 Ak+i-jXj implies that
7 = 0

(14)

Xk2l ~ ^ I 2d
\ 7=0

y=o

and
21

22

Thus Xk is uniquely defined. Hence the solution {Xj) is uniquely defined and a
similar argument shows that the solution {Yj) is also uniquely defined. Now for
an arbitrarily chosen value of k, say k = / + 1 we have

= £ and
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where % denotes the (j

Thus we have
ft G

It follows that 9C<0 =

+ l)mX

% =

0

0

) — c

Input retneval

(' +
0

0

In,

0
0

\)m matrix

0 •••

0 •••

0 •••

0 . . .
0 •••

0 0

0

0

0

0

0

0

0

0
0

0

365

LEMMA 1. For the partitioned matrix

A =
Ann An

2\ I
22

we have IIA
PI'

COROLLARY 3. Let {Ak} be a sequence of matrices as in Theorem 3 and suppose
in addition that \\Ak\\ < ak+x for some real number a > 0. Then the function
A(s) = '2f=0Aks

k is well defined for \s\< I/a and we can find a uniquely
determined series X(s) = 2j?-0Xks

k with positive radius of convergence and such
that in the region where both series converge we have ^4(^)^(5) = X(s)A(s) = slm.
We write [A(s)]'1 - X{s)/s for s=£0.

PROOF. AS in Theorem 3 we assume

0 i e
and A, =

and we define {Xj} as in the proof of Theorem 3. Let

b = max{6a4 + a, 6a2 + a, 1} + 1.

It is now easy to use Lemma 1 to show that || Xj II < bi+' for eachy = 0,1,2, —

THEOREM 4. Let A(s) = "Zrj=QAjSJ where {Aj} is a finite sequence of square
(m X m) matrices satisfying the conditions of Theorem 3. Then we can write

]'1 =X(s)/s fors^O,
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where X(s) = '2jL0XjSJ' and the Xj satisfy a finite recurrence relation of the form
h

xj+rh = 2 Zkxj+rh-rk foreachj = 0 , 1 , 2 , . . . whereh< rm.
k=\

PROOF. Once again we assume

/ ' 9
AO= _ m :L_

8 i 9.
and

""ill -"112
1

and define {Xj} as in Theorem 3. If we now define

1,22
and

for each j = 0,1,2,... and if we let £=%r) and %=®(, r ) then for each
/ = 1,2,3,... we have

t e e
% e e
e % e

8 8 8 ••• e | | <¥,(r)

where the matrix % is defined by

(15)

8
m\
8

8

8

8

8

0

8

0

0

8

8

8

/«,

8

8

8

8

8

0

0

8

8

8

8

0

8

8
8

8

8

8

• • • / _

0
0

0

0

lm

8
rmXrm

From (15) it is clear that for eachy = 0,1,2, . . . , / ' we have

(16)

The remainder of the proof follows as in Theorem 2.

THEOREM 5. Let {Aj} be a sequence of square (m X m) matrices such that neither
the conditions of Theorem 1 nor the conditions of Theorem 3 is satisfied. Let i be the
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smallest integer for which we can find non singular 91L and 91 such that

367

lm

~f

1 e
i

i e
and

3± ~l
I ^m2

w/iere m,, w2 > 0 andmx + m2 = im. Then the linear systems
k

2 Ak_jXj = $ fork = 0,1,2,... andk¥=i,

(17)
k

7 = 0

2 Î._y. = /M>
7 = 0

each have uniquely defined solutions {Xj} and {Yj} respectively and furthermore
Xj=Yjforallj.

PROOF. It is easy to see that the equations (17) above can be rewritten as
k

^%^ = 6, % and

forA: = 2 , 3 , . . .

and (18)

X0®^ = 6, and
7 = 0

forA: = 2 , 3 , . . . .

The required result now follows from Theorem 3.

COROLLARY 4. Let {Aj} be a sequence of square (m X m) matrices satisfying the
conditions of Theorem 5 and also with \\Aj\\ < aJ+1 for some real a > 0. Then
A(s) = '2c°=0AJs

J is well defined for \s\< \/a and we can find a uniquely de-
termined series X(s) = 2°°=0A /̂5-' with positive radius of convergence and such that
in the region where both series converge A(s)X(s) = X(s)A(s) = s'Im. We write

1 =X(s)/si fors^O.
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PROOF. Use the method of Theorem 5 and apply Corollary 3 to obtain
appropriate bounds on the coefficients Xj.

THEOREM 6. Let A(s) = 2,j=0AjSj where {Aj} is a finite sequence satisfying the
conditions of Theorem 5. Then we can write

]'X = X{s)/s' fors ¥= 0,

where X(s) = 2°°=0XJs-' and the Xj satisfy a finite recurrence relation of the form

j = 0,1,2,...)
k=\

where h < pirn and where p is the unique integer such that pi > r> (p — \)i.

PROOF. Use the methods of Theorem 5 and Corollary 4 and apply Theorem 4
to the finite sequence {<£]''} of im X im matrices.

EXAMPLE. The methods of inversion used in this section will now be illustrated
with a numerical example. Consider the finite sequence

_ 1 0
0 01 '

A = | ] l
1 0 0

It can be shown that neither the conditions for Theorem 1 nor Theorem 3 hold
and hence we proceed as in Theorem 5, Corollary 4 and Theorem 6. [In the
appendix we will mention a convenient test due to Sain and Massey which allows
us to determine which of the inversion theorems (if any) can be applied.] In this
example we simply note that if we choose non singular matrices 91L and % given
by

1 0 0 0
- 1 0 1 0
0 - 1 0 0
0 0 0 1

and 91 =

1 0 0 0
0 1 - 1 0
0 0 1 0
0 0 0 1

then

and

0 i 6

&* = 91K2(,2)9l 'l!2
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and hence the conditions of Theorem 3 apply to the finite sequence {$j2)}. Thus
we define

e

and obtain the "solution"

I -<2j

I 6V*

r 6V *
I •A7+l,l2

&*n

and % =

^ -'% for all; = 0 , 1 , 2 , . . . .

Now we also know that the matrix ^ = (-1)£~'% satisfies the polynomial
equation ^P3 = -^P2 — "iP and hence it follows that

<¥;<2>3 = - for ally = 0 ,1 ,2 , . . . .

It can now be seen that

Xj+S = -XJ+6 - Xj+A for ally = 0 ,1 ,2 , . . . .

Since we can determine X0,Xu...,X-j directly by solving the equations

Ao

A\
A2

0
Ao

A\

0
0

Ao

0
0
0

0

e
o

0 A,

0 6 0 0

we can now write down the complete solution.

X2

[x9

' 0'

0

h
0

0

4. Input retrieval using power series inversion

In this section we give a brief outline of how the power series inversion could
be applied to input retrieval. We consider the system described by equations
(l)-(6). The coefficients of satisfy a recurrence relation of the form

7-+1

Jj+r+i = 2 akJj + r+\-k fOr./ = 0 , 1 , 2 , . . . ,
k=\
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wherep(s) = s r + 1 — 2£='i aks
r+l~k is the minimum polynomial of the matrix A.

Thus if we define
j

JS = Jo and J* =Jj- 2 <*kJj-k lorj = 0 ,1 ,2 , . . . ,r,
k=\

then we have

7 = 0

If we assume now that 70* (= Jo) is non singular then J*{\/s) can be inverted by
the method used in Theorem 2. Therefore we define £ = ^ ( r ) and % = £?(r). If
we use the notation K*(\/s) = [J*(l/s)]'] and write

K*{\/S) = 1 A:;/^
7 = 0

then the coefficients KJ satisfy a finite recurrence of the form

K*+hr = 2 hV+Hr-kr tOTJ = 0, 1, 2, . . .
k=\

where q{s) = sh — 1h
k=x ftks

h~k is the minimum polynomial of the matrix
(- l )£- '%. Thus we have

where Q(l/s) is a matrix polynomial of degree at most (hr — 1) in \/s. It follows
that K(\/s) = [J(\/s)]'x can be written as

where P(l/s) is a polynomial of degree at most (/i + 1)/- in 1/s. Thus if we write

K(\/s) = 1 A-y/*>
7 = 0

it can be seen that the coefficients Kj also satisfy a recurrence defined by the
polynomial q(s). In fact we have

Kj+rh = 2 PkKJ+rh-rk iorj = r + 1, r + 2,....

Because of this recurrence we can solve directly for the coefficients Ko,
K,,...,Kr(h+]) and hence determine the complete sequence {KJ].
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Unfortunately the method as such is not very practical because the recurrence
for the coefficients Kj is not the simplest such recurrence. Before applying the
suggested procedure we look therefore at an alternative method of inversion that
does produce the simplest recurrence. This means that {Kj} can be determined as
above but with a much reduced finite system to solve for initial coefficients.

5. A closed formula for inversion of the transfer function

In this section we derive a closed formula for [T(s)] '. Following Rosenbrock
[2] the system is represented by a single matrix. By performing a sequence of
elementary row and column operations we obtain an alternative system matrix
and relationship of the two matrices yields the key formula.

Before implementing the full inversion it is convenient to consider an important
preliminary application. We define non singular square matrices 2?* and C*
written in partitioned form as

and & =[C\ C|]

such that

= [7-] and C&=[Im 0].

These matrices can easily be constructed using elementary row operations but we
will show later a specific method of construction. We now claim that the matrix

N =
0 ' -C

~ T 77-B\ L

can be converted using elementary row and column operations into each of the
equivalent matrices Nx and N2 defined by

_m_\ L

1 • ( -

0 i 0 i

e
0

In fact we can convert iV, into N2 using left multiplication by

L =

0 B\

~C

B\{ln-C\C)\
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and right multiplication by

R = "I

i -B\C}

B j [In~BB\)C\\ ( / „ - BB\)C\

Now since N2 = ZJV,/? where L and R are non singular it follows that ,/V, is
invertible if and only if N2 is invertible. Equivalently (CB)'1 exists if and only if
(B\Cl)~x exists and when these inverses do exist

and

e i e
However we also know that iV, ' = RN2

 lL and this gives

_, _ -B\VC\ \ B\v(ln - C\C)

\ln - BB\)VC\ \ ln - (/„ - BB\)v\ln - C\C)

where V — In — C2\B\C%) XB\. From the original expression for iV, ' we there-
fore obtain

(CB)'1 = B\VC\, (/„ - BB})V= 0 and V(ln - C\C) = 6. (19)

These formulae relate to subsequent inversion theorems.
A slightly modified version of the Rosenbrock system matrix can be written as

N(s)= _"_h_Ic__
K} [-BiSIH-A

and we can show that this matrix can be converted using elementary row and
column operations into each of the equivalent matrices

-C(sIn-AYlB\

e sf-A
, N2(s) =

e

!
9 ! B\\sIn-A)C\

Conversion from iV,(s) to N2(s) can be achieved using multiplication on the left
by

L(s) =

e
r
i
r

B\

C{sln-A)-

[ -B\{sln - A)C\ i B\{sln - A){ln - C}C){sIn - A)- i
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and multiplication on the right by

373

(sln - {sln - A)-\ln - BB\)(sIn - A)C}

(sIn-AY\ln-BB})(sIn-A)Cl

We note that L(s) and R(s) are both non singular with determinants that do not
depend on s. Since N2(s) = L(s)Ni(s)R(s) we can now see that Nt(s) is invert-
ible if and only if N2(s) is invertible. Equivalently, [C(sln — A)'XB]'X exists if and
only if [B\\sln — A)C%]~1 exists in which case

e
\ - i

and

0 \ Im

e
e

6 i

Since - l _ /?(5)[iV2(5)]-'L(5) we also have

-B\V(s)C] !

(sIn-A)-\ln-BB\)V(s)Ct

- l(*/„ - ^ r ' - (sln - A)-\ln - BB\)V(s){ln - C}C){sIn - A)

where V(s) = (sln - A){(sln - A)~x - C^[Bj(*/n - A)C$Y'B\)(sIn - A). From
the original expression for [iV, (.$)]"' we can now deduce that

[C{sln - A)-]BY = B\V(s)C}, (/„ - BB\)V(s) = 0,

and (20)
V(s){ln - C\C) = 6.

Thus we can state the following theorem.

THEOREM 7. The inverse transfer function [T(s)]~l — [C(sln - A)'XB]'X is well
defined if and only if the matrix [B\(sln — A)C%]~] is well defined and in this case

= B\V(s)Cl
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6. A formula for input retrieval—non singular case

In this section we consider special formulae for input retrieval when JQ = CB is
non singular.

THEOREM 8. If J^ = (C5)'1 is well defined then &et[B\(sIn - A)C$\ is a
polynomial of degree n — in with at most n — m distinct zeros in the s plane. At all
other points [T(s)]~l = [C(sln - A)~lB]-] is well defined and

[T(s)]'1 =[B\VCf]s - B\VAVC\ - B\VAC\{B\{S1„ - A)C}]~]XB\AVC\.

(21)

PROOF. We have already noted that (B\C\yx exists if and only if (CB)"1 exists
and hence V= /„ - C^B\C^)-XB\ is well defined. The result now follows by
rearranging the expression for V(s) in the equation [T(s)]~l = B\V(s)C\.

If we define Ko = B\VC\, Ki = -B\VAVC}, F'= {B\C\yxB\ACl, G =
(B\Cl)-xB\A VC\ and H = ~B\VAC\ then we can rewrite (21) as

[T(s)Yl = Kos + K,+ H{sln_m - F)-lG (22)

and hence equation (4) can be written as

u(s) = {R(s) + H{sln_m - FY1G}y(s)

where R(s) = KQs + Kx. Therefore the input can be retrieved from a knowledge
of the output only. By considering the "inverse" system

z(t) = Fz{t) + Gy{t)

v(t) = Hz(t)

with z(0) = 6 and where y G Rm is the input (the output of the original system
(1)), v 6 Rm is the output and z £ R"~m is the state of the inverse system then we
can retrieve the input to the original system (1) in the form

u(t) = R(D)y(t) + v(t)

where R(D) = K0D + Kx is a first order differential operator with constant
coefficients.

COROLLARY 5. If J^1 = (CB)'] exists then we can write the inverse transfer
function in the form

[T(s)Yl = sK(\/s) = s 1 Kj/sJ
7 = 0
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for sufficiently large s, and where the coefficients Kj satisfy a recurrence relation of
the form

k=\

for all 7 ^ 2 where p(s) — sr —
matrix F= (B\C![yxB\AC$.

r k is the minimum polynomial of the

PROOF. Using the Neumann expansion in (22) for (sln_m — F) ' we obtain
Kj = HFJ~2G for ally s* 2 from which the result follows.

When JQX = (CB)~l is well defined there is a standard formula for constructing
Z?t and C*. Let 9 = {p\p = (/?,, p2,- • -,pm)) where pt are integers such that
1 < p, < p2 < • • • pm< n and for each p £ ^ define square matrices Bp and Cp

by

and C = [
Cpfp2 •••CP,

where b\ is the tth row of B and Cj is theyth column of C. It was shown by
Cauchy&Binet in 1812 that

det(Cfl) = 2

Since det(C5) =£ 0 there is at least one value of p G "5P for which det(CpBp) =£ 0
and for which therefore B and Cp are non singular. By reordering the compo-
nents in the state vector of the system (1) we can assume that p — (1 ,2 , . . . ,m) in
which case we can write

and C = C2]

where Bt = j?(l 2 m) and C, = C(i2,. m) are each non singular. Now we can
define

8

It is straightforward to show that

and
"1 -Cf'C2
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=In_m-B2(CB)-lC2

EXAMPLE. We now illustrate previous results with a numerical example. For the
system described by equation (1) take

A =

0
-1
0
0
0

0
0
2
0
0

0
0
0
3
0

0 '
0
0
0

-2

, B =

1 0 0
0 1 0
1 -1 0
1 2 0
0 0 1

and

C =
1 2 0 - 3
0 0 1 1
0 0 0 0

A suitable choice of p E "5P (as defined above) is p = (1,3,5) and hence we
reorder the components of the state which gives

A =

1 0
0 2

0
0

0 0 - 2
0 0
0 0

0
0

0
0
0
-1
0

1 0 0
1 -1 0
0 0 1
o ~ T ~ o

Ll 2 0

and

Thus we have

c =
0 ' 2 - 31 0

0 1
0 0 1 i 0

o ; o

1 0 0 ' 0 0
1 -1 0 ' 0 0

_0_ _ 0 _ 1 } 0 _ 0
- 1 1 O i l O
- 3 2 0 i 0 1J

and

1 0 0 ' -2
0 1
0 0

0 0 -1
0 0

0 0 0 i 1 0
LO 0 O i O 1 J

We can then use the formulae of Section 6 to calculate

1/6 2/3 0
-1/3 -1/3 0

0 0 1
K, =

-5/9 -14/9 0
29/18 10/9 0

0 0 2

-7/3
-2

5/3] f35/18 13/9 0
0 J' [ 7/6 2/3 0 and / / =

2/3 1/3
0 0

-4/3 -5/3
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Since the characteristic polynomial of F is s2 + (7/3)j — 10/3 the coefficients Kj
are defined by KQ, AT, and the recurrence relation

K K + K

for 7 = 0,1,2, If we wish only to determine the coefficients Kj then an
alternative procedure is to calculate det[Bl(sIn — A)C$] (which is essentially the
characteristic polynomial of F and hence determines the above recurrence) and
then find KQ and Kl simply by solving the equation

' 0

Jo

7. A formula for input retrieval—singular case

In this section we consider special formulae for input retrieval when Jo = CB is
singular. We use the general matrix inversion formula to write

tl-1 - adi[g}(»/,-/l)C,']
- [ ]

Now because B\C% is singular we can find an integer h with 0 < / i < n — m — 1
such that the previous expression can be rewritten in the form

where Q(s) is a matrix polynomial of degree at most n — m — 1 and where
q(s) = sh — 2y— i BjSh~J is a scalar polynomial of degree h. Now from Theorem 7
we obtain

[T{s)V = [<7(*)*!K - A)C\ - B\(sln - A)C}Q(s)Bi(sIH - A)C}]/q{s)

and since the numerator is a matrix polynomial of degree at most n — m + 1 it is
easily seen that we can write

[T(s)Yl = s
n~m+i-h J Kj/sJ. (23)
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By using the previous expression to equate coefficients it can be seen that the
coefficients Kj satisfy a recurrence relation of the form

h

j
7 = 1

for each k = 1,2,3, Thus if we can find Ko, Kt,. ..,Kn_m+l directly we can
determine all subsequent Kj from the recurrence relation. From the expression

T{s) = (l/s) 2 Jj/sj,

7 = 0

we can equate coefficients using (23) and (24) to see that

k k

2 Jk-jKj = 2 KjJk-j = e fork
7=0 7=0

(24)

and (25)
i i

2 1 V — V Jf 7 — 1
i-j j ~~ • " 7 1-7 ~ "

7=0 7=0

where we are writing / = n — m - h. From these equations it can be seen that the
vector space generated by the rows of the matrices Jo, ./,,...,Jt is precisely Rm.
Therefore if we assume Ko, K]t.. .,Kj_t are known then Kj is uniquely de-
termined by the equations

Jo
J\

Ji

0

Jo

• • e'
• • e y-f-1

J~^~'

— _

JJ

JJ+>

Jj+i

jj-t

JJ

• V + i - l

• Jl

• Jl

• Ji+i

Ko

Thus KO,KX,..., Ki+h+, are uniquely determined by the equations

k

2 Jk-jKj = 0 for k ¥= i, 0 < k < 2/ + h + 1
7 = 0

and

7 = 0
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It is now possible to apply a standard realization procedure by setting

e im o •• e

e e im •• e

F =

e 0

G =

Li+2

K 1 + 3

K:

and H = [imee-e],

where F: Rhm -> Rhm, G: Rm -* Rhm and H: Rhm -> Rm. We see from this
construction that

H(sIhm-F)-*G= 1 Kj/sJ-«+i\

and hence we can now retrieve the input in the form

(26)

o

Thus we see again that the input is retrieved from a knowledge of the output only.
By considering the "inverse" system

z(t) = Fz{t) + Gy(t),

with z(0) = 6 and where;' £ Rm, v S Rm and z e Rhm are the input, output and
state of the system we can retrieve the input to the original system (1) in the form

«(r) = R(D)y{t) + v{t)

where R(D) = 2i
J±

i
0KJD

(i+l)~J is a differential operator of order (/ + 1) with
constant coefficients. Of course this procedure can also be applied when (CB)"1

exists.

EXAMPLE. We illustrate these results with the following example. Define

A =

1
0
0
0

0
-1
0
0

0
0
2
0

0
0
0
2.

R —
> D —

1
0

~2
. 0

0 '
1

-2
- 1 ,

a n d C - ~2 - 3
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It is easy to see that suitable matrices B* and C* are given by

[24]

B\
1 0 0 0
0 1 0 0
2 ~ 2 ~ T ~ 0

L0 1 0 1

ct=[cf
1 0 ' 1 -2
0 1 - 2
0 0 , 1
0 0 i 0

3
0
1

and hence we have

-10
-1

Thus det[5|(j/4 - A)C}] = -9s + 12 and the coefficients K} therefore satisfy the
recurrence relation

K - V

for eachy = 3,4,5,... and we must solve the equations

Jo 0 9
J^ JQ 0 0

/ , Jo

0 6

e o
o e
r0 o
h Jo

K\
K2

K3

K4

—
h
0

e
e•M •''h

to find, initially, KO,KU K2 and ^3. We obtain the solution

K - I
Ao I _4/9 -1/3J*

K
1

= ff /
[8/27 1/3

r _ f - V 9 0 ] _ f -2/27 0
A2~[68/81 2/3J aOd *3 "[56/243 0j"

Hence the "inverse" system is defined by the matrices

0
0 4/3

0
56/243 0 j '

and the full input retrieval in the form (26) as

Hi ?•

00 1 2 . F / 1 +f
-1/3 J5 + [8/27 1/3 J [68/81 2/3

j-4/3 0 I-1!" -2/27 0
0 J - 4 / 3 J [56/243 0
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8. Concluding remarks

381

One of the principal reasons for the method of investigation used in this paper
was a desire to extend input retrieval to infinite dimensional systems and one of
the main problems in this regard was a lack of directly applicable inversion
formulae for systems having the form of (1). It is known that some of the
formulae in this paper can be applied to infinite dimensional systems, at least in
certain circumstances, and further research will proceed in that direction.

Appendix: a test to determine the inversion procedure

In this section we will indicate how a rank test due to Sain and Massey [3] can
be applied to determine the precise inversion procedure.

LEMMA 2. Let {Aj} be a sequence of square matrices. If we define A(z') by

Jrank<3#+1\ if i = 0,

{ rank (£</+ " - rank &%\ if i = \,2,3,...,

we have A(z + 1) > A(z) for all i = 0 ,1 ,2 , . . . .

This result is due to Sain and Massey and the proof is omitted.

THEOREM 9. Let {Aj} be a sequence of square (m X m) matrices with A(z) as
defined in Lemma 2. We can see that Ao is non singular if and only if A(0) = m. On
the other hand when A(0) < m we can find non singular matrices "D1L and 9L such that

In, ' 9
and

* I a*
111 | ^ 1 1

* "' I

where m,, m2 > 0 and mt + m2 = im, if and only if A(/) = m.

PROOF. The case where Ao is non singular is obvious. Otherwise the conditions
stated above are equivalent to

e i 9it

<£</> J
«r 6 i 91 a*

(3*a i 2

e
0

*n

m2

0

6

0

0

0

0

0
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which is equivalent, in turn, to

°! 8
rank r

i

= 2m] + m2 — im + m, and rank((J^,')) = m] + m2 — im + m, and rank((J^,)) = ml,

that is, rank(^2<)) - rank(<5$>) = im. By Lemma 2 this condition is equivalent
to A(/) = m.

In order to determine which inversion procedure to use we simply calculate the
rank of 6t̂ 0 for each value / = 1,2,3,... until we find the first value of / for which
A(z') = m. By Theorem 9 we can now determine which of the Theorems 1, 3 or 5
to use in the inversion procedure.
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