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ON THE EXISTENCE OF SUPPORT MAPS WITH DENSE IMAGES
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Abstract

For a normed linear space X we investigate conditions for the existence of support maps
under which the image of X is a dense subset of the dual. In the case of finite-dimensional spaces
a complete answer is given. For more general spaces some sufficient conditions are obtained.

Throughout we will use || • || for the norm function of a normed linear
space X, X' for its dual space and S{X) to denote its unit sphere {x G X:

| | * | |=1} .
We will be particularly interested in S(X') regarded as a metric space

under the metric d(f, g) = \\f - g || for all f,g& S(X').
Unless otherwise stated, by the interior, int A, or the boundary, bdry A,

of a subset A CS(X') we mean in the context of (S(X'), d). Thus, for
example, / e i n t A if there exists r > 0 such that B,(f) =
{ g e S ( X ' ) : | | / - g | | < r } C A

It is a simple consequence of the Hahn-Banach Theorem that we may
define a set valued map 3) from S(X) into the non-trivial subsets of S(X') by

This map is frequently termed the duality map of X. When we want to
emphasize the underlying space X we will write 3>x(x) in place of 3){x).

A support map is a selector for 3), that is a function

4>: S(X)->S(X'): x»<t>x<E2)(x).

The important property of subreflexivity, as established by Bishop and Phelps
(1961), states that for a Banach space X, UxeS(X)3i(x) is a dense subset of
S(X'). We will be interested in the geometry of spaces which have a support
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map <t> with <f>(S(X))= S(X'). Such a support map will be referred to as
having dense image.

Not every Banach space has a support map with dense image, a fact
amply demonstrated by the space ll(@t).

Recalling that a Banach space X is smooth at x G S(X) if 2(x) is a
singleton set, we see that subreflexivity establishes that for every smooth
Banach space the unique support map has dense image. So a sufficient
condition for a Banach space to have a support map with dense image would
be the existence of a lower semi-continuous support map (norm to weak*,
Cudia (1964)).

That the requirement of smoothness is over strong may be seen from the
example of 0l3 equipped with norm the gauge of the "lens-shaped" set

{x: | |x-(<U0)| | 2£l and ||x + (<U0)||2S 1}.

In this space the selection of a support map with dense image follows from the
existence of a function / : dt -> 3? under which the image of an open
neighbourhood is a dense subset of 9?. Accordingly we seek weaker condi-
tions than smoothness which will ensure the existence of support maps with
dense images.

The following equivalence is an obvious consequence of subreflexivity.

PROPOSITION 1. A support map </> of the Banach space X has dense image
if and only if for each x G S(X) and f G 2>(JC) there exists a sequence {*„} of
points in S(X) with <f>Xn —* f.

As a consequence of this proposition we have:

If for any x G S(X), intS>(x)^0 and

[int @(x)l n fUy6S(XW,t@(y)l = 0 ;

then X does not have a support map with dense image.

The next lemma shows that the second (underlined) condition is redun-
dant.

LEMMA 2. In the normed linear space X, if f E. int 3}(x) for some x G
S(X), then f£ 2>(y) for any y G S(X)\{x}.

PROOF. Assume the contrary, that there exists y G S(X)\{x} with / G
2>x(y). Let Y be the two-dimensional subspace of X spanned by x and y.
Then f\Y G 3)Y(y) and further in S(Y'), f\Y G int 3)Y(x) which clearly cannot
be the case in a two-dimensional space unless x = y, a contradiction.
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COROLLARY 3. If the normed linear space X has a support map with dense
image, then int 3s(x) = 0 for all x £ S(X).

We now develop some partial converses to Corollary 3.

LEMMA 4. For the Banach space X, if mt3){x) = 0 for all x E E a
countable subset of X, then

int[
L

PROOF. Assume the contrary, then there exists f0 E S(X') and r > 0 with
Br(/0) = {/ES(X'): | | / - / 0 | |<r}Cint[LU£2>(x)] . Now the closed subset
B,/2[fa] = {/£ S(X'): | | / - / 0 | |g5r} is a complete metric space. However,

*U/o]= U (3(x)DBr/2[fo])
ie£

and for each x E. E, 2>(x) Pi Br/2[/0] is nowhere dense, since 3){x) is closed and
in B,/2[/o], int(2i(jc)n Br/2[/0]) = 0 , contradicting the Baire Category
Theorem.

For any normed linear space X denote by A(X) the set of non-smooth
points of the unit sphere S(X) and let A= U{3)(x): x £ S(X)} and A =

): xEA(X)}.

LEMMA 5. Every support map of the Banach space X has dense image in
S(X')\intA.

PROOF. For / £ S(X')\intA, either / £ S(X')\A or /EbdryA. If /be-
longs to the open set S(X')\A, then by the subreflexivity of X there exists a
sequence {/„} of functionals in A\A convergent to /. Now each /„ £ 2)(xn) for
some xn £ S(X)\A(X) in which case 3){xn) is the singleton set {</>»„} and so we
have a sequence {*„} in S(X) with <f>Xn-+f.

On the other hand, if /EbdryA, then by definition there exists a
sequence {/„} of elements in S(X')\A with /„ —»/. From the first half of the
proof we can choose an xn £ S(X) with ||< ,̂n ~ / n | |< l/« in which case

and again we have established the existence of a sequence {xn} in S(X) with
4>Xn —* f, thus establishing the result.

COROLLARY 6. Let X be a Banach space and suppose A is nowhere dense.
Then every support map on X has dense image.

LEMMA 7. Let X be a normed linear space. If A has empty interior in the
metric subspace A, then every support map has dense image in A.
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PROOF. If / G A then, for any e > 0 , Bc(f) contains a point g G A \ A .

Since g = <f>x for some x G S(X), \\f — <f>x || < e so the image of 4> is dense in A.

THEOREM 8. Let X be a Banach space with separable dual, then X has a
support map with dense image if and only if int 2(x) = 0 for each x G S(X).

PROOF. Necessity has already been proved in Corollary 3.
To prove sufficiency, by Lemma 5, we need only ensure the image of <f> is

dense in int A.
Since int A is an open subset of S(X') we may choose {/i,/2, •••,/„,•• •} to

be a countable, dense subset of int A.
Now let 6: n >-> (0,(n), 62{n)) be a 1-1 map from the set of natural

numbers K onto N x N, and inductively select xn from

{x£A(X) \{x 1 , xv ,x , - , } :9 ( i )nB , , ( / W B l ) / 0 where rn = 0,(n) '}

and <t>Xn from 2(xn) P\ B,n(fe2(n)).

Such a selection is possible since int A is an open subset of A, and for any
n £ N

U 9>(x)
* e A ( X ) \ ( i , . • • • , * „ }

is a dense subset of A as int 3)(x) = 0 , 3){x) is closed, and so UT-i ®(x,) is
nowhere dense by Lemma 4.

It is clear from the above selection procedure that {$,„: n G N} is dense
in int A. Thus assigning <f>x arbitrarily for x G A(X)\{xi,x2, • • •, xn, • • •} we
arrive at a support map with dense image.

We now investigate some conditions under which int 3)(x) = 0 . From the
convexity of the norm in the normed linear space X it follows that for any
x, y G S(X) and a real

g*(x ; y) = Limit a~'(||x + ay || — 1) and

g~(x; y) = Limit a~'(||x + ay || — 1)

exist.
It is well known that

;y) = inf{Re/(y):/G2)(x)}

Ssup{Re/(

= g+(x;y).
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The norm is differentiate at x G S(X) in the direction y if g~(x; y) = g*(x; y),
in which case we will denote the common value of these two limits by g(x; y).

If the norm is differentiate at x G S(X) in some direction y G
S(X)\{JC, - x} we say the norm is differentiate at x in a non-radial direction, y.

LEMMA 9. In the normed linear space X, if the norm is differentiable at
x G S(X) in a non-radial direction y, then the real linear hull of 3)(x) is a
proper subset of X'.

PROOF. It suffices to observe that z = y — g(x; y)x is a non-zero element
of X for which Re/(z) = 0 for all / G 3>(x), and so should the real linear hull
of 3)(x) equal X' we would contradict the Hahn-Banach Theorem.

As a partial converse to this result we offer the following.

LEMMA 10. // X is a finite-dimensional normed linear space and x E
S(X) is such that the real linear hull of 3>{x) is a proper subset of X', then the
norm is differentiable at x in a non-radial direction.

PROOF. Let D be the real linear hull of 3>(x) then D is a proper closed
subspace of (X')a —the dual of X regarded as a linear space over 3?. So by
the Hahn-Banach Theorem there exists FE(X ' ) i with | |F| |=1 and

Form F' by F'(f) = F(f) - iF(if) for all / G X' then F' G X" and so by the
reflexivity of X, F'= y for some y G S(X), where y(/) = /(y)- Clearly
y^x, -x as / (x)= - / ( - * ) = 1 for all / G 3){x) while Re/(y)= Rey(f) =
F(f) = 0 for all / E 9 ( i ) . From this it also follows that g~(x; y) = g+(x; y) = 0
and so g(x; y) exists.

LEMMA 11. //, in the normed linear space X, x G S(X) has int 2(x) / 0 ,
then X' is the real linear hull of 3)(x).

PROOF. Choose /GintS(x) , then, for g G X' either g = kf for some
k E& or{f}^(3}(x)n{f, g)m) where (f, g)<* is the real linear hull of {/,g}. So
there exists / ' G (2)(x)\{f}) n (/, g)m and further f / kf (k G <3t) since | k | = 1
so fc = ±1 but i f / ' = - / then 0 = £/+ If G 2i(x) which is impossible. Thus
/, / ' form a basis of (/, g)» and so g is a real linear combination of / and / ' as
required.

LEMMA 12. Let X be a normed linear space. If the norm is differentiable at
x ES(X) in a non-radial direction, then intS>(x) = 0 .

PROOF. The result follows from Lemmas 9 and 11.

Whether this requirement of differentiability is also a necessary condition
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is not known. Since in general the converse of Lemma 11 may be untrue, a
reversal of the above line of reasoning cannot be attempted. However in the
case of finite-dimensional spaces we have the following result.

LEMMA 13. Let X be a normed linear space of finite dimension n. If
x E S(X) is such that the real linear hull of 3)(x) isX', then int ® ( x ) / 0 .

PROOF. Let /, ,/2, •••,/„ G S)(x) have X' as their real linear hull. Form
/ = 2t_,( l /n)/k G 3>(x) by its convexity. From the continuity of the natural
projections irk: X'—>{fk) we can choose an e > 0 so that, if g =S"«1/xk/k

(/xk G9?)has| |g - f\\< e then \fik - 1/n | < l/2n and so/xk > 0 for each k. For
such an e, take g G S(X) with | | / - g | | < e , then 1 = | |g | |g 2k, , / i k while
g '= g/Xk,,/i t is a convex combination of the {fk} and so belongs to 3)(x).
Consequently g' has norm 1, whence 2k_, /jik = 1 and so g = g' G Si(x). That
is {gGS(X): | | g - / | | < e } C 2 > ( x ) and so / G i n t S ( x ) .

Combining this partial converse to Lemma 11 with Lemma 10 and
Theorem 8 we arrive at the following characterization in finite-dimensional
spaces.

THEOREM 14. Let X be a finite-dimensional normed linear space. Then
the norm is differentiable at x E S(X) in a non-radial direction if and only if
int D(x) = 0 . Therefore X has a support map with dense image if and only if at
each point of S(X) the norm is differentiable in a non-radial direction.

PROOF. Lemmas 10, 12 and 13 establish the first equivalence, while the
second equivalence follows from the first and Theorem 8.

THEOREM 15. Let X be a Banach space with A(X) finite. If at each
x G A(X) the norm is differentiable in some non-radial direction, then every
support map has dense image.

PROOF. Applying Lemma 12 then Lemma 4 shows that A is nowhere
dense. Hence the conclusion follows from Corollary 6.

THEOREM 16. Let X be a reflexive space and A(X) countable. If at each
x G A(X) the norm is differentiable in some non-radial direction, then every
support map has dense image.

PROOF. Since X is reflexive, S(X') = A, so the result follows from the
successive application of Lemmas 12, 4 and 7.

THEOREM 17. Let X be a Banach space with separable dual. If at each
x G S(X) the norm is differentiable in some non-radial direction, then X has a
support map with dense image.
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PROOF. The conclusion follows from Lemma 12 and Theorem 8.

A considerable improvement in the organisation and presentation of the
above material resulted from the referee's constructive criticism of the
original manuscript for which the author expresses his indebtedness.
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