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Abstract

It has been hypothesized that even ‘perfect’ polygenic scores (PGSs) composed of only causal variants may not be fully portable between
different social groups owing to gene-by-environment interactions modifying the expression of relevant variants. The impacts of such inter-
actions involving two forms of social adversity (low socioeconomic status [SES] and discrimination) are examined in relation to the expres-
sivity of a PGS for educational attainment composed of putatively causal variants in a large, representatively sampled and genotyped cohort of
US children. A relatively small-magnitude Scarr–Rowe effect is present (SES × PGSEDU predicting General Cognitive Ability [GCA]; sR= .02,
95% CI [.00, .04]), as is a distinct discrimination × PGSEDU interaction predicting GCA (sR=−.02, 95% CI [−.05, 00]). Both are independent
of the confounding main effects of 10 ancestral principal components, PGSEDU, SES, discrimination and interactions among these factors. No
sex differences were found. These interactions were examined in relation to phenotypic and genotypic data on height, a prospectively more
socially neutral trait. They were absent in both cases. The discrimination × PGSEDU interaction is a co-moderator of the differences posited in
modern versions of Spearman’s hypothesis (along with shared environmentality), lending support to certain environmental explanations of
those differences. Behavior-genetic analysis of self-reported discrimination indicates that it is nonsignificantly heritable (h2= .027, 95% CI
[−.05, .10]), meaning that it is not merely proxying some underlying source of heritable phenotypic variability. This suggests that experiences
of discrimination might stem instead from the action of purely social forces.
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It is well known that polygenic scores (PGSs) for educational
attainment, and more broadly for other traits, are sensitive to
cross-ancestry comparisons, being generally less predictive of
relevant trait variance among populations that are ancestrally more
distant from the populations in which the PGSs were originally
estimated (e.g., Belsky et al., 2018; Duncan et al., 2019; Guo et al.,
2019; Lee et al., 2018; Weissbrod et al., 2021). One explanation of
this ‘portability problem’ is that it results from linkage disequilib-
rium (LD) decay, whereby genetic variants that are noncausal of
the relevant phenotype, but are nevertheless in LD with causal
variants in the discovery sample, will be ‘flagged’ as though they
were causal. Once the same PGS is estimated in a more distantly
related population, the apparent predictivity of the PGS dimin-
ishes, as many of its constituent variants are now no longer in
LD with the causal variants owing to recombination (Zanetti &
Weale, 2018). Rabinowitz et al. (2019) proposed an interesting
hypothesis, specifically that some of the PGS portability problems
between socially identified racial and/or ethnic (SIRE1) groups in
the US context, specifically in comparisons involving African

American and White groups using PGSs for educational attain-
ment and related phenotypes, might stem from gene-by-environ-
ment interactions. They state that ‘[e]nvironmental experiences
such as poverty, racial discrimination and attending under-
resourced schools may influence whether genetic propensity for
educational attainment confers benefits for achievement and
college attendance’ (p. 2).2

Rabinowitz et al. (2019) offer the Scarr–Rowe effect (or
‘hypothesis’ or ‘interaction’) as evidence for the plausibility of their
idea. This effect is a gene-by-environment interaction character-
ized by reductions in the heritability of measures of general cogni-
tive ability (GCA), such as IQ, among those exposed to social
adversity associated with low socioeconomic status (SES). This
is thought to in turn reduce GCA among individuals from low-
SES backgrounds by effectively preventing them from realising
their full genetic potential for GCA (Rowe et al., 1999; Scarr-
Salapatek, 1971; Turkheimer et al., 2003; Turkheimer et al.,
2009). Scarr-Salapatek (1971, see also Scarr, 1981) and others
(e.g., Flynn, 2018; Jensen, 1968; Lewontin, 1970, 1976) also consid-
ered gene-by-environment interactions involving forms of social
adversity specific to SIRE groups to be prospective moderators
of heritability, and therefore potential causes of SIRE group
differences in cognitive performance means.

One meta-analytic report indicates that the heritability of GCA
varies as a function of level of SES, at least in light of apparently
robust Scarr–Rowe effects in US cohorts (Tucker-Drob & Bates,
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2015).3 Consistent with this finding, Guo and Stearns (2002) report
evidence for the Scarr–Rowe effect in the Add Health dataset;
however, they also identified an additional statistically significant
negative impact on the proportion of heritable variance associated
with Peabody Picture Vocabulary Test (PPVT) performance
stemming from participant African American (relative to
White) designation, even after controlling for a number of SES
variables. In relation to this, they noted that:

[O]ne assumption for such consideration is that the environments for intel-
lectual development of African American children are still more disadvan-
taged than those for white children after controlling for the included family
SES variables. Recent work has documented the discrimination African
Americans face, decades after the civil rightsmovements : : : , and the legacy
discrimination has left hinders the development of the middle-class
vocabularies that would allow children to score highly on the PPVT.
(p. 905)

A key prediction therefore is that even if hypothetical PGSs could
be constructed using only causal variants, such PGSs would still not
be fully portable between populations (or even among subgroups
of individuals of the same population exposed to different environ-
ments), as heritability-attenuating gene-by-environment inter-
actions associated with racial discrimination, poverty and other
forms of social adversity would cause them to fail to predict equal
amounts of phenotypic variance when examined in the context of
differentially socially advantaged groups. Some evidence consistent
with this observation comes from two studies (Woodley of Menie
et al., 2018;Woodley ofMenie et al., 2021) that were able to recover
Scarr–Rowe effects using childhood SES as a moderator of the
expressivity of educational attainment PGSs on measures of
GCA in two large genetically informed US samples (sourced from
the Wisconsin Longitudinal and Health and Retirement Studies,
respectively). In both cases, the effects were relatively small by
the standards of psychological science (specifically ≤.l0, the
average meta-analytic effect magnitude in psychology being
around .20; Gignac & Szodorai, 2016), but they were statistically
significant and robust to the use of different sets of controls and
measurement models.

In the current study, an attempt is made to test the hypothesis of
Rabinowitz et al. (2019) in relation to the impacts of two forms of
social adversity, low SES and racial and ethnic discrimination, on
the expressivity of a PGS for educational attainment (predicting
GCA) using a sample composed of individuals from multiple
SIRE groups. The study will also examine whether sources of social
adversity associated with SIRE, such as racial and ethnic discrimi-
nation, modify PGS expressivity on GCA, independent of the
effects of SES, which would effectively replicate Guo and
Stearns’ (2002) findings of distinct effects of these on the herit-
ability of a cognition measure. The current effort uses individuals
sourced from the US Adolescent Brain and Cognitive
Development (ABCD) dataset (Jernigan et al., 2018), which is
broadly representative of the US population, and contains a variety
of SES variables, in addition to (multiple) measures self-reported
racial and ethnic discrimination. These data are available for large
numbers of (specifically parentally identified) Black, White and
Hispanic children (Jernigan et al., 2018). As the sample is geno-
typed, PGSs predictive of GCA and other traits can also be esti-
mated. As an additional step, in order to reduce confounding
effects stemming from cross-ancestry comparisons, the interaction
models are estimated using an educational attainment PGS gener-
ated via the new ‘PolyFun-Pred’ (POLYgenic FUNctionally-
informed fine mapping PREDiction) method, which uses very
large numbers of single nucleotide polymorphisms (SNPs) coupled

with fine mapping-based functional area weighting to reduce
between-population biases due to LD decay, via the identification
of prospectively causal variants (Weissbrod et al., 2021).
Furthermore, as a null-test of the model, another PolyFun-Pred-
type PGS is estimated for a prospectively more socially neutral
trait, specifically height, where gene-by-environment interactions
involving social adversity might be substantially weaker to
nonexistent, at least in relatively modernized social contexts
where serious malnutrition is uncommon.4

Interestingly, thus far no research on gene-by-environment
interactions has attempted to determine whether discrimination
(measured directly, rather than crudely proxied via the use of
SIRE, as in Guo & Stearns, 2002) uniquely impacts, through
adverse gene-by-environment interactions, GCA (contrast this
with the extensive body of research into the adverse effects of
low SES on the additive heritability of GCA; e.g., Tucker-Drob
& Bates, 2015). This is an interesting oversight, as (within the
US context) self-reported experiences of racial discrimination
are quite prevalent, especially among minority populations (e.g.,
Boutwell et al., 2017; Lee et al., 2019). Moreover, there has been
considerable academic debate concerning the mechanisms
through which discrimination might adversely affect GCA among
minority populations in the US (for discussion on the plausibility
of skin reflectance or color-based prejudice mediated by socio-
structural factors, see Cooper, 2005 and Rowe, 2005).

To bring some clarity to this debate, discrimination itself will be
examined using behavior-genetic techniques (on data from the
ABCD twin subsample) in order to determine whether it is merely
proxying some underlying heritable phenotypic variation (with
which it would then be associated), or whether it functions instead
as a purely environmental, and therefore almost certainly social,
force. In the case of the former, it would be expected that it exhibits
significantly nonzero heritability, but in the latter case it would be
expected that discrimination is not significantly heritable,
being instead a function of shared and/or nonshared environmen-
tality. To the authorship’s knowledge, no direct behavior-genetic
analysis of self-reported discrimination has ever been carried
out, despite the fact that such efforts have the potential to substan-
tially clarify the empirical foundations of arguments about the
means by which discrimination might affect GCA.

Methods

Cohort

The subjects employed here were sourced from the ABCD (v. 3.01)
data release. This large longitudinal study involves collaboration
between 21 different sites across the US. ABCD sourced its data
from over 11,000 children, aged 9-10 years, who mostly came from
a mixture of public and private elementary school contexts. ABCD
offers data that are broadly representative of this age range of
healthy children from the US via probabilistic sampling and the
exclusion of those exhibiting severe medical and psychiatric condi-
tions (Jernigan et al., 2018). The sample employed in the current
analysis includes those who fall into the Black, White and Hispanic
SIRE categories. Although Black and White SIRE groups are most
germane to historical discussion on the impacts of different forms
of social adversity on the heritability of GCA (e.g., Guo & Stearns,
2002; Scarr-Salapatek, 1971), those who were identified as ethni-
cally Hispanic were also included, as such individuals are also likely
to have experienced higher levels of discrimination, relative to non-
HispanicWhites. In the case of ABCD, an 18-item questionnaire is
given to the parents asking ‘What race do you consider the child to
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be? Please check all that apply’. This allowed for participants to be
assigned to either the Black (element name: demo_race_a_p__11,
N = 1282), or White (demo_race_a_p__10, N = 5413) racial
categories. The following additional question was asked: ‘Do you
consider the child Hispanic/Latino/Latina?’. This allowed individ-
uals to be assigned to the Hispanic ethnic category (demo_ethn_v2,
N = 1185). Participants were coded as Hispanic if they were
categorized as ethnically Hispanic, irrespective of their racial iden-
tification (Black or White). Only non-Hispanic participants were
coded as either Black or White for the purposes of the current
study. This yielded a total sample size of 7,880 individuals with
complete data on all of the following variables.

Variables

Genetic data. ABCD provides microarray data on genotyped
individuals, where imputation was performed employing the
TOPMed imputation server. The following preimputation steps
were utilized (by ABCD). First, PLINK v1.9 (Purcell et al., 2007)
was used to calculate allele frequencies. Second, .bim files were
checked against two reference datasets, the Haplotype Reference
Consortium and the 1000 Genomes project. Third, PLINK v1.9
was used to convert everything to VCF files; and fourth,
checkVCF.py was used to determine whether this conversion
was successful. ABCD then uploaded the VCF files to the
TOPMed Imputation Server, where imputation was performed
using Eagle v2.4 phasing and mixed ancestry. Postimputation
quality filtering was performed by excluding SNPs with an
imputation quality score of r2 < .40 using bcftools (v.1.7.2;
Li, 2011). The total number of variants that remained after filtering
was 103,382,718 for 11,101 participants.

PGSs. Two PGSs were generated, one for educational attainment
(PGSEDU) and a second one for height (PGSHEIGHT). Both were
generated using PolyFun-Pred, a novel method for polygenic
prediction, developed by Weissbrod et al. (2021), which they
describe as follows:

PolyFun-Pred is a new predictor that leverages genome wide functionally
informed fine-mapping : : : to estimate posterior mean causal effects
(instead of tagging effects : : : ) for all SNPs with European MAF≥0.1%
(accounting for MAF-dependent architectures : : : 18 million SNPs in this
study) by applying PolyFun þ SuSiE35 to European training data across
2,763 overlapping 3Mb loci. Leveraging fine-mapped posteriormean causal
effects for cross-population polygenic prediction aims to address LD
differences between populations; to our knowledge, the application of
PolyFunþ SuSiE (or any other fine-mapping method) to polygenic predic-
tion has not previously been explored. (p. 2–3)

Weissbrod et al. (2021) provide methods for estimating PolyPred-
Fun type PGSs for a large number of traits with summary statistics,
based on the UKBioBank. They make all weighting terms for all
analyzed SNPs in the UKBioBank publicly available, which allows
for the equivalent variants in ABCD to be identified and weighted
accordingly for use in generating the relevant equivalent PGSs in
this cohort. The PGSs were scored using PLINK (v1.90b6.17). For
educational attainment, there was an average (across participants)
of 1,013,790.05 (N= 7880; SE= .002) variants that overlapped
with those identified by Weissbrod et al. (2021). For height, there
was an average of 850,474.59 (N = 7880; SE= .002) overlapping
variants.

Ancestral principal components. All SNPs were used (in PLINK)
to generate 10 ancestral principal components (PCs). These

correspond to genome wide patterns of covariation among the
frequencies of alleles, which capture, in the form of distinct dimen-
sions, different ancestral population structures among (in this case)
the ABCD participants. These can be used as simple and effective
controls for the effects of population stratification on the results of
studies employing the outputs of GWASs, such as PGSs in mixed
ancestry samples (Price et al., 2006). Population stratification can
potentially confound the results of such studies by generating
spurious patterns of association between PGSs and their outcomes.

GCA. The ABCD contains data on 11 cognitive ability measures.
The first seven comprise the NIH Toolbox® cognitive battery.
This battery includes picture vocabulary, flanker, list sorting, card
sorting, pattern comparison, picture sequence memory, and oral
reading recognition subtests. Also included are the matrix
reasoning subtest from the Wechsler Intelligence Scale for
Children, the efficiency score from the Little Man test, and the
Rey Auditory Verbal Learning (immediate recall and delayed recall
memory) Tasks (RAVLT; for details of these, see Luciana et al.,
2018 and Thompson et al., 2019).

To construct a GCA factor for the participant pool, we
employed unit-weighted factor estimation (Gorsuch, 1983). This
form of exploratory factor scoring involves standardizing each
participant’s score on each subtest and then averaging across them
to generate a unit-weighted factor. Unit-weighted estimation has
the advantage of potentially yielding latent variables that generalize
to a far greater degree across samples that are heterogeneous with
respect to sampling error than the results of other dimension-
reduction techniques (Gorsuch, 1983). Part-whole correlations
between each subtest and the unit-weighted factor yield factor
loadings. Squaring the factor loadings and then averaging them
allows for the proportion of variance accounted for by that factor
to be estimated. In the total participant pool, GCA was found to
account for 32.7% of the variance (N= 7880). Factor loadings
(λ) ranged from .64 (in the case of RAVLT short-term memory
and RAVLT long-term memory) to .43 (in the case of the Little
Man test). The full set of factor loadings is reported in Table 9
in the Results section. Factorial invariance with respect to both
SIRE and sex was determined via the estimation of Tucker’s
congruence coefficients (CC), which index factor similarity.
Based on the unit-weighted factor loadings, it was found that
GCA exhibited strong consistency in terms of factor structure
across sex and SIRE groups (average CC= .997). Coefficients of
.95 or greater indicate virtual identicality among factors
(Lorenzo-Seva & Ten Berge, 2006).

The predictive validity of PGSEDU onGCAwas examined disag-
gregated by SIRE in order to determine the patterns of portability
(Table 1). Prior to entry into the model, PGSEDU was residualized
for the fixed effects of the following confounds: family ID
(rel_family_ID); within- and between-family singleton, twin, and
triplet status (rel group id and rel ingroup_order); relationship of
the participant in their family (rel_relationship); and collection site
ID (site id 1). In the combined sample, these confounds account for
8% of the variance in PGSEDU. Each main effect of PGSEDU on
GCA was then estimated with controls for the first 10 ancestral
PCs (results for these not shown). This (and subsequent) port-
ability analysis was conducted using SAS v. 9.4.

Running regressions using PGSEDU predicting GCA in each
SIRE group separately (controlling for the 10 PCs in each case)
indicates that despite the use of a technique that is designed
to increase the portability of PGSs derived from one population
to others, cross-ancestry comparisons employing this PGS
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still exhibit significant portability problems when the regression
parameters among the SIRE groups are compared. Portability
between the White and Hispanic groups appears to be high,
however, since there is no (Bonferroni-adjusted) significant differ-
ence in the variance in GCA explained by the PGS between the two
groups.

Height. Three height measurements were collected per partici-
pant (anthro_1_height_in to anthro_3_height_in, all measure-
ments are in inches). The average of all three measures (where
available) was used to assign a phenotypic height value to each
participant. As with PGSEDU, the portability of PGSHEIGHT was
examined in relation to the three SIRE groups (results presented
in Table 2).

As with PGSEDU, prior to entry into the model, PGSHEIGHT was
residualized for the fixed effects of the following confounds: family
ID; within- and between-family singleton, twin, and triplet status;
relationship of the participant in their family; and collection site
ID. In the combined sample, these confounds account for 2% of
the variance in PGSHEIGHT. Each main effect of PGSHEIGHT on
GCA was then estimated with controls for the first 10 ancestral
PCs (results for these not shown).

Running regressions using PGSHEIGHT predicting height in
each SIRE group separately (controlling for the 10 PCs in each
case) indicates that cross-ancestry comparisons are associated with
fewer significant portability problems (relative to PGSEDU), with
PGSHEIGHT accounting for similar amounts of variance in

phenotypic height in all three SIRE groups. Only the Black-
White portability difference reached (Bonferroni-adjusted)
significance.

Socioeconomic status. Six SES measures were chosen to capture
a broad range of environments relevant to participant exposure to
childhood economic and social adversity. These include seven
items assessing financial adversity in different contexts, which were
reverse-scored and then summed into an index score. Additionally
included is a measure of neighborhood safety (a three-item index
asking about different aspects of neighborhood safety, scaled 1–5),
parental marital status (recoded such that 1=married, and 0= any
other arrangement) and employment status (1= employed, 0= not
currently employed), parental educational attainment (both
parents, measures highest level of educational attainment achieved
rescaled in order to generate scores ranging from 0 to 18 approxi-
mate years of attained education as follows: Never attended/
kindergarten only= 0; 1st grade= 1; 2nd grade = 2; 3rd grade = 3;
4th grade = 4; 5th grade = 5; 6th grade = 6; 7th grade = 7; 8th
grade = 8; 9th grade = 9; 10th grade = 10; 11th grade = 11; 12th
grade; High school graduate, GED or equivalent diploma = 12;
Associate degree: occupational program, associate degree:
academic program = 14; Bachelor’s degree= 16; Master’s degree,
professional school and doctoral degree= 18), and family income
(parentally reported total dollar amount income over the past 12
months, recoded using the lowest reported amount within a range
of earnings [except for 1, where the low end was $0, so $500 was
subtracted from the high end] as follows: 1= $4500, 2= $5000,
3= $12,000, 4= $16,000, 5= $25,000, 6= $35,000, 7= $50,000,
8= $75,000, 9= $100,000, and 10= $200,000). A general SES
dimension was extracted from among these items using unit-
weighted estimation. All variables along with their element names
and associated factor loadings (ranging from .534 to .757) are listed
in Table 3. CCs revealed virtual identicality in factor structures
across sexes and all three SIRE groups (average CC= .996).

Discrimination. ABCD administered a variety of items at the year
1 follow-up mark to determine participant self-reported experi-
ence of various forms of discrimination. Six of these items clearly
tap some aspect of racial, ethnic, or national-origin discrimination.
These are listed in Table 4 along with their variable codes, whether
they are continuous (Likert) or binary. Also displayed are the
results of unit-weighted estimation, coupled with the use of the

Table 1. Results of running the regression analyses predicting GCA using PGSEDU
separately by SIRE group, along with Bonferroni-corrected significances of
differences

SIRE group N β
Lower
95% CI

Upper
95% CI

White (non-Hispanic) 5413 .250 .222 .278

Black (non-Hispanic) 1282 .130 .044 .216

Hispanic 1185 .229 .034 .295

Comparison
Between β
(z value)

Lower
95% CI

Upper
95% CI p value

Black-Hispanic −2.59 −.170 −.020 .0095*

Black-White −4.10 −.180 −.060 .0000*

Hispanic-White −.71 −.080 .040 .4753

Note: *Significant based on Bonferroni adjusted p= .0166.

Table 2. Results of running the regression analyses predicting height using
PGSHEIGHT separately by SIRE group, along with Bonferroni-corrected
significances of differences

SIRE group N β
Lower
95% CI

Upper
95% CI

White (non-Hispanic) 5413 .338 .314 .362

Black (non-Hispanic) 1282 .260 .192 .328

Hispanic 1185 .279 .222 .336

Comparison
Between β
(z-value)

Lower
95% CI

Upper
95% CI p value

Black-Hispanic −.525 −.090 .052 .5999

Black-White −2.86 −.133 −.024 .0042*

Hispanic-White −2.11 −.115 −.004 .0349

Table 3. Unit-weighted factor loadings of six SES indicators. All λ values are
statistically significant

Element name SES indicator
Variable
type SES λ (95% CI)

family_income_dfct1 to
family_income_dfct7

Financial
adversity
(reversed)

Continuous .614 (.601, .627)

mother_education,
father_education

Education
attainment

Continuous .568 (.553, .582)

dem_12 Parents marital
status

Binary .696 (.685, .707)

nsc_p_ss_mean_3_items Neighborhood
safety

Continuous .663 (.651, .675)

Empcur Employment
status

Binary .534 (.519, .549)

sub_income Income Continuous .757 (.748, .766)
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mice package (van Buuren & Groothuis-Oudshoorn, 2011) in R
with amaximum of 50 iterations to account for missingness, which
was used to extract a common discrimination dimension from
among the six items (factor loadings ranged from .435 to .745).
CCs revealed virtual identicality in factor structures across sexes
and the three SIRE groups (average CC= .998).

The discrimination variable was found to be strongly positively
skewed, with large numbers of individuals having reported no
experience of discrimination (skewness= 3.390). As gene-by-envi-
ronment interaction effects involving continuous measures are
(partially) scale dependent, meaning that they can result from
nonnormality and can be attenuated once appropriate transforma-
tions are made to the data (Martin, 2000), the discrimination
measure was double log-transformed, which reduced its skewness
to 1.815 (bringing it into the −2 to þ2 range considered generally
acceptable; e.g., George & Mallery, 2010). The SES factor was also
examined for problematic skewness, but none was found
(skewness=−1.034).

In order to determine whether discrimination was functioning
as expected, means of (double log-transformed) discrimination
along with standard errors and (multiple-comparison-corrected)
significances of the differences among the means were estimated
for all SIRE groups. These are presented in Table 5.

As anticipated, discrimination means varied significantly
between SIRE groups, such that Black participants reported experi-
encing discrimination to a significantly greater degree than did
Hispanic participants, who in turn reported experiencing signifi-
cantly greater discrimination than White participants.

Measurement model
General linear model. In the current analysis, GCA is used as the
dependent variable. All GLMs were conducted in UniMult 2 (for
documentation on an earlier version of this software, see
Gorsuch, 1991) with the Type-I sum of squares procedure, which
uses hierarchical partitioning of variance to estimate the effects of
independent variables based on their hypothesized sequence of
impacts on the dependent variable. In order to accurately report
standardized effect sizes using this GLM approach, semipartial
regression coefficients are estimated. These are presented along
with 95% CIs, F-ratio test statistics, and significance levels.
Hierarchical (rather than simultaneous) estimation of effects in
models containing interaction terms is theoretically reasonable,
as relevant interaction terms should be shown to be independent
of main effects in addition to confounding interaction terms, after
the estimation of the former (Nelder, 1994; Rodriguez et al., 1995).
Consistent with this, in population genetics, it is standard to parti-
tion phenotypic trait variance as follows:

VP ¼ VG þ VE þ VGE

Where VP is the phenotypic trait variance, VG is the variance asso-
ciated with all genetic influences, VE is the variance associated with
all environmental influences, and VGE is the variance associated
with gene-by-environment interactions (Singh & Singh, 2018).

In line with the above equation, the predictors of GCA are
entered into the model as follows. First, the main effects of genetic
confounds and influences are estimated in the following sequence:
(1) the main effects of the 10 ancestral PCs, (2) the main effect of
(residualised) PGSEDU. Then the main effects of environmental
influences are estimated in the following sequence: (3) the main
effect of SES, (4) the main effect of discrimination. Finally, the
interactions between the various genetic and environmental factors
are estimated in the following sequence: (5) the interactions
between the ancestral PCs and PGSEDU, (6) the interactions
between the ancestral PCs and SES, (7) the Scarr–Rowe effect,
which is operationalised as the interaction between PGSEDU and
SES, (8) the interactions between the ancestral PCs and discrimi-
nation, and finally (9) the discrimination × PGSEDU interaction.
The model is run separately on the combined sample, and for each
sex, in order to determine whether sex differences in the inter-
actions of interest are present. The same analysis (usnig the
combined sample) is conducted using height as the criterion

Table 4. Unit-weighted factor loadings of six discrimination indicators. All λ values are statistically significant

Element name Question
Variable
type

Discrimination
λ (95% CI)

dim_yesno_q1 In the past 12 months, have you felt discriminated against: because of your race, ethnicity,
or color? Definition of ethnicity: groups of people who have the same customs, or origin.

Binary .595 (.581, .609)

dim_yesno_q2 In the past 12 months, have you felt discriminated against: because you are (or your
family is) from another country?

Binary .435 (.417, .452)

dim_matrix_q1 How often do the following people treat you unfairly or negatively because of your ethnic
background? Teachers.

Continuous .668 (.656, .680)

dim_matrix_q2 How often do the following people treat you unfairly or negatively because of your ethnic
background? Other adults outside school.

Continuous .701 (.690, .712)

dim_matrix_q3 How often do the following people treat you unfairly or negatively because of your ethnic
background? Other students.

Continuous .745 (.736, .754)

dim_matrix_q4 I feel that others behave in an unfair or negative way toward my ethnic group. Continuous .705 (.694, .715)

Table 5. Self-reported double log discrimination means disaggregated by SIRE
group. Bonferroni-adjusted multiple comparisons examining the difference
between SIRE groups

SIRE group N Mean SD SE

Black 1282 .512 1.308 .037

Hispanic 1185 .183 1.161 .034

White 5413 −.161 .813 .011

Comparison Cohen’s d Lower 95% CI Upper 95% CI p value

Black-Hispanic .265 .186 .345 <.0001*

Black-White −.725 −.787 −.663 <.0001*

Hispanic-White −.388 −.452 −.325 <.0001*

Note: *Bonferroni adjusted p= .0166.
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variable and PGSHEIGHT instead of PGSEDU. This yielded three
different GLM models in total. In all cases, only the main effects
of the PGSs, SES, and discrimination, and the SES × PGS and
discrimination × PGS interactions are reported. Effect sizes asso-
ciated with ancestry and other interactions are not reported.

Finally, all variables were standardized prior to entry into the
regression (see Woodley of Menie et al., 2021 for the use of the
same approach to estimating the Scarr–Rowe effect using PGS data
in the Health and Retirement Study).

CPEM. A second method is also used to test the robustness of the
interactions of interest, specifically the Continuous Parameter
Estimation Model (CPEM; Gorsuch, 2005). This method uses
the dot-product of the participant’s standardized dependent and
the independent variable to generate a continuous parameter esti-
mate (CPE) of the covariance among these, which can then be
correlated with another variable in order to examine potential
moderation effects. The method has the advantage of utilizing
fewer model degrees of freedom than the more conventional
approach to estimating two-way interactions— as the interaction
term (the CPE) can be directly regressed against its moderator,
without the requirement for estimating main effects. The major
disadvantage to using this method is that the resultant effect size
will be confounded with unmodeled effects, thus CPEM effect sizes
tend to be larger than those generated using two-way interaction
models. This approach has been used (along with a two-way inter-
actionmodel) to test for the presence of the Scarr–Rowe effect in an
analysis employing data from the Wisconsin Longitudinal Study
(Woodley of Menie et al., 2018). In this study, a CPE was generated
via the dot-product of the participant’s standardized PGSEDU and
their IQ scores. This was then regressed against a composite
measure of their childhood socioeconomic conditions. The
resultant effect size was positive, meaning that as childhood SES
improved, the participant’s PGS covaried more strongly with their
IQ scores — suggesting increased expressivity of the former onto
the latter in response to improved SES. Here, CPEs will be
constructed using the participant’s PGSEDU along with their
GCA scores, yielding two separate effect sizes, one with SES as
the criterion and another with discrimination as the criterion. If
the latter effect is present, it is expected that the resultant effect size
will be negative in sign — meaning that PGSEDU is less expressive
on GCA when self-reported discrimination is high.

Behavior-genetic analyses. ABCD contains data on both
monozygotic (MZ) and dizygotic (DZ) twins, along with full
siblings (with ages for correction), covering all SIRE groups
currently considered. These will be used to estimate the additive
heritability (A) and shared (C) and nonshared (E) environmen-
tality of self-reported discrimination. This is to test whether
discrimination is a proxy measure for heritable phenotypic varia-
tion of some sort, which could occur for any number of possible
reasons, or whether it is purely environmental. If discrimination
is associated with some underlying phenotype (a major candidate
being skin reflectance; Cooper, 2005; Rowe, 2005), which is the
actual factor that discriminatory behavior targets, then it might
be expected that participant experiences of discrimination will
exhibit a heritability >0%, as it will reflect (by statistical associa-
tion) the heritability of this underlying trait. In the case of skin
color, there is evidence that heritability is very high. Paik et al.
(2011), for example, found in one human population that a constit-
utive skin color measure exhibited an additive heritability (h2) of
.82. As a reference trait, the heritability of GCA will also be

estimated. These analyses are conducted using the behavior
genetics R packages lavaan 0.6–9 (Rosseel, 2012) and pacman
5.1 (Rinker & Kurkiewicz, 2017).

Co-moderation analysis. An additional analysis is conducted in
order to determine whether and how the GCA loadings among
cognitive ability subtests moderate the effect magnitudes of
(any) Scarr–Rowe and discrimination × PGSEDU interactions on
the cognitive ability measures. For this analysis, the GLMmodel is
estimated using each cognitive ability subtest separately (yielding
11 potential Scarr–Rowe and discrimination × PGSEDU inter-
actions). Unit-weighted estimation is then used to composite these
effect-size vectors into a common factor along with the vectors of
the subtest GCA loadings, White–Black–Hispanic performance
differences (expressed as r-statistics with weighted averaging)
for each subtest, PGSEDU-by-subtest associations, and subtest addi-
tivity (A), shared environmentality (C), and nonshared environ-
mentality (E) components estimated using the twin (plus full
siblings) subset (also rescaled as r-statistics). This configuration
allows for a determination of whether or not gene-by-environment
interactions might contribute to the differences posited by modern
versions of Spearman’s hypothesis, which hold that the magnitude
of the differences in ability means between SIRE groups is posi-
tively moderated by GCA5 (Jensen, 1980, 1998; Spearman, 1927;
see also the more contemporary work of Frisby & Beaujean,
2015; te Nijenhuis & van den Hoek, 2016; te Nijenhuis et al., 2019).

The results of vector correlation analyses involving clustering
among multiple correlated vectors have been offered as evidence
for the so-called hereditarian hypothesis6 on the basis that the
magnitudes of the impacts of ‘genetic’ factors (such as inbreeding
depression) on IQ battery subtests have been found to cluster along
with the vectors of subtest GCA loadings and (specifically) White-
Black mean performance differences, whereas the vectors of prob-
ably largely, possibly entirely, environmental effects, such as the
Flynn effect (the secular increase in IQ test scores across decades),
do not cluster with these effects (Rushton, 1999). In an item-level
analysis of Raven’s Progressive Matrices ‘puzzles’, Rushton et al.
(2007) observed that in comparisons involving multiple SIRE
groups, the group difference magnitudes in performance across
items were correlated (positively) with their heritabilities, but
not with their environmentalities (after controlling for item
reliability and pass-rate variance). This finding has been
interpreted as offering additional evidence for the hereditarian
hypothesis (see also discussion in Rushton & Jensen [2010] and
Warne [2021]). The hereditarian interpretation of results such
as these has been critiqued, however (Flynn, 1999; Nisbett, 2009;
Wicherts & Johnson, 2009, for discussion on the problem of facto-
rial identification in the results of vector correlation analyses see
Ashton & Lee, [2005]).

Utilizing a similar subtest-level co-moderation approach to
Rushton (1999), and incorporating behavior-genetic variance
components (A, C, and E), hereditarian predictions can be easily
tested, as (on Rushton et al.’s [2007] assumptions) it would be
expected that Scarr–Rowe and discrimination × PGSEDU inter-
actions, because they are thought to represent environmental
influences on gene expression, should be more pronounced on
subtests that are less GCA loaded, less additively heritable, less
strongly associated with PGSEDU (this essentially being a weaker
measure of subtest heritability), and less predictive of SIRE group
differences (these four vectors should exhibit strong, positive
intercorrelations by contrast), and correspondingly more strongly
associated with various forms of environmentality. Deviations
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from this pattern would be problematic for the hereditarian model,
since, if found consistently, they would indicate failure of one of its
key lines of supporting evidence (Warne, 2021).

Results

PGSEDU GLMs

Table 6 presents the results of the three GLMs (involving PGSEDU;
combined sample, males, and females) and the CPEM analyses.

In the main analysis, the overall model fit (based on
the Multiple R) is significant, with all independent variables
accounting for 19% of the variance in GCA. PGSEDU was a signifi-
cant predictor of GCA (independent of the PCs). SES and discrimi-
nation also had significant independentmain effects onGCA in the
theoretically anticipated directions. The model also revealed a
significant Scarr–Rowe effect (specifically a positively signed
interaction between PGSEDU and SES; graphed in Figure 1a).
An independent, significant discrimination × PGSEDU interaction
is also present in these data (graphed in Figure 1b).

Table 6. General linear models predicting GCA using PGSEDU residuals, SES, double log-transformed discrimination, and the corresponding interactions on GCA after
controlling for the influence of ancestral principal components and confounding interactions (corresponding effect sizes not shown). All variables are standardized
prior to regression. Results are for the combined sample, males, and females. Also presented are the results of two CPEM analyses, one examining the Scarr–Rowe
effect, and a second examining the discrimination × PGSEDU interaction

Combined sample

Variables Effect size (sR) 95% CI F value df1/df2 p value

Z-Residualized PGSEDU .19 .17, .21 356.61 1/7,834 <.0001

Z-Socioeconomic status .18 .16, .20 323.54 1/7,834 <.0001

Z-Discrimination −.08 −.10, −.06 61.21 1/7,834 <.0001

Z-Residualized PGSEDU*
Z-Socioeconomic status

.02 .00, .04 4.17 1/7,834 .04

Z-Residualized PGSEDU*
Z-Discrimination

−.02 −.05, .00 5.55 1/7,834 .02

Omnibus R2 95% CI F value df1/df2 p value

For all independent variables .19 .18, .20 41.88 45/7,834 <.0001

Variables (predicting SES) Effect size (sR) 95% CI F value df1/df2 p value

CPE[Z-Residualized PGSEDU NET OF PCs * Z-GCA] .04 .02, .06 14.49 1/7,878 .0001

Variables (predicting discrimination) Effect size (sR) 95% CI F value df1/df2 p value

CPE[Z-Residualized PGSEDUNET OF PCs * Z-GCA] −.03 −.05, −.01 8.15 1/7,878 .004

Female subgroup

Variables Effect size (sR) 95% CI F value df1/df2 p value

Z-Residualized PGSEDU .23 .21, .28 13.47 1/3,702 <.0001

Z-Socioeconomic status .20 .21, .28 12.98 1/3,702 <.0001

Z-Log discrimination −.07 −.13, −.06 −5.46 1/3,702 <.0001

Z-Residualized PGSEDU*
Z-Socioeconomic status

.03 .00, .06 4.38 1/3,702 .04

Z-Residualized PGSEDU*
Z-Discrimination

−.02 −.05, .01 2.47 1/3,702 .12

Omnibus R2 95% CI F value df1/df2 p value

For all independent variables .22 .20, .24 23.96 45/3,702 <.0001

Male subgroup

Variables Effect size (sR) 95% CI t value df1/df2 p value

Z-Residualized PGSEDU .16 .13, .19 127.16 1/4,086 <.0001

Z-Socioeconomic status .17 .14, .20 140.50 1/4,086 <.0001

Z-Discrimination −.08 −.12, −.05 5.27 1/4,086 <.0001

Z-Residualized PGSEDU*
Z-Socioeconomic status

.01 −.02, .04 .58 1/4,086 .44

Z-Residualized PGSEDU*
Z-Discrimination

−.02 −.05, .01 2.68 1/4,086 .10

Omnibus R2 95% CI F value df1/df2 p value

For all independent variables .18 .16, .19 19.78 45/4,086 <.0001
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The CPEM analyses revealed (1) a significant Scarr–Rowe effect
and (2) a significant discrimination × PGSEDU interaction
(Table 6). In terms of the sex-disaggregated samples, the analysis
revealed a significant Scarr–Rowe effect in the female subgroup
but not in the male subgroup. The models did not detect
discrimination×PGSEDU interactions in either the female or male
subgroups (Table 6). There were no significant sex differences
associated with either effect (Scarr–Rowe effect: z= .89, p= .3752;
discrimination × PGSEDU interaction: z= .00, p= 1.000).

It should be noted that the effect sizes associated with the inter-
action terms are relatively small in magnitude (≤.10; Gignac &
Szodorai, 2016), although this is anticipated given that gene-by-
environment interactions are expected to be much smaller than
main effects (McGue & Carey, 2017). Moreover, these estimates
are very similar in terms ofmagnitude to those found in PGS-based
studies of the Scarr–Rowe effect in other US samples, based on the
use of both two-way interaction and CPEM modeling approaches
(Woodley of Menie et al., 2018; Woodley of Menie et al., 2021),
suggesting cross-study replicative consistency.

PGSHEIGHT GLM

The results of the GLM (involving PGSHEIGHT) are presented in
Table 7.

As with the previous models, the overall model fit (based on the
Multiple R) is significant, with all independent variables
accounting for 12% of the variance in height. PGSHEIGHT was a
significant and positive predictor of height (independent of the
PCs). Although there are no significant main effects of SES,
discrimination had a relatively small magnitude negative effect
on height. The model did not detect significant interactions
between either PGSHEIGHT and SES, or between PGSHEIGHT and
discrimination.

Heritability Analysis of Discrimination and GCA

The results of the heritability analyses of discrimination and GCA
are presented in Table 8.

The analyses indicate that GCA exhibits a (statistically signifi-
cant) additive heritability of 49%. This is in line with previously
reported heritability values for this trait in cohorts aged around
10 years (Bouchard, 2013). There were also significant contribu-
tions stemming from shared and also nonshared environmentality
(with the contribution of the latter being substantially greater,
which is also consistent with the literature; Bouchard, 2004). By
contrast, discrimination exhibits no significant additive herit-
ability, but is associated with significant shared and nonshared
environmentality. This is inconsistent with theories positing that

Fig. 1 (a). Regression plane plot visualising the interactions between PGSEDU and SES on GCA scores (the Scarr-Rowe effect) (b). Regression plane plot visualising the interactions
between PGSEDU and discrimination on GCA scores (the discrimination×PGSEDU interaction).

Table 7. General linear model evaluating the influence of PGSHEIGHT residuals, SES, double log-transformed discrimination, and the corresponding interactions on
height controlling for ancestral principal components and confounding interactions (results not shown). All variables are standardised prior to regression

Variables Effect size (sR) 95% CI F value df1/df2 p value

Z-Residualized PGSHEIGHT .32 .30, .34 900.96 1/7,834 <.0001

Z-Socioeconomic status .01 −.01, .03 1.27 1/7,834 .26

Z-Discrimination −.03 −.06, .01 10.62 1/7,834 .001

Z-Residualized PGSHEIGHT *
Z-Socioeconomic status

−.01 −.04, .01 2.06 1/7,834 .15

Z-Residualized PGSHEIGHT *
Z-Discrimination

.01 −.02, .03 .34 1/7,834 .56

Omnibus R2 95% CI F value df1/df2 p value

For all independent variables .12 .11, .14 23.71 45/7,834 <.0001
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discrimination should proxy underlying phenotypes (such as skin
reflectance or color, which, as was previously noted, appears to be
very highly heritable), and indicates that participant experience of
discrimination is purely a function of the action of both shared and
(to a much greater degree) nonshared environmental factors.

Moderation Analysis

Table 9 lists the vectors of the subtest GCA loadings along with the
discrimination × PGSEDU interaction vector (these were rescaled
positively by multiplying each one by −1 in order to make the
results of the vector correlation analyses more intuitive), the
magnitude of the weighted averaged White-Black-Hispanic
(SIRE) performance differences for each subtest, which were
rescaled as r statistics in order tomake them equivalent to the other
effect sizes, the magnitude of the PGSEDU-by-subtest association,
the Scarr–Rowe effect vector, and the vectors of additivity (A),
shared environmentality (C), and nonshared environmentality
(E) estimated for each subtest (also rescaled as r-statistics). The
table also lists the correlations among these vectors, and the results
of the unit-weighted co-moderation (multivector) analysis.

Consistent with extant meta-analytic work on the relevant SIRE
group comparisons (te Nijenhuis & van den Hoek, 2016; te
Nijenhuis et al., 2019), the weighted (accounting for the dissimilar
sample sizes) vector of the mean differences among the three SIRE
groups was positively and significantly correlated with the vector of
GCA factor loadings (r= .68), indicating that Spearman’s hypoth-
esis holds in this cohort. There was a nonsignificant positive asso-
ciation between the vector of SIRE group differences and the
subtest A vector (r= .19); by contrast, there was a strong, signifi-
cant positive association between the vector of these differences
and the PGSEDU-by-subtest association vector (r= .96). The latter
vector correlated significantly and positively with the vector of
GCA loadings (r= .66). The PGSEDU-by-subtest association vector
is apparently only weakly (and nonsignificantly) proxying the
A vector (r= .19). A significant negative association between
the subtest E and the SIRE group differences vectors was also
present (r=−.63). Unsurprisingly, both subtest C and E vectors
were significantly negatively associated with the subtest A vector
(r=−.75 and −.79, respectively). The E vector was also
significantly negatively correlated with the PGSEDU-by-subtest
association vector (r=−.67). The discrimination × PGSEDU and
Scarr–Rowe interaction vectors were positively and negatively,
but nonsignificantly, associated with the subtest GCA-loading
vector (r= .26 and −.50, respectively).

The multivector unit-weighted factor loaded positively and
significantly onto the GCA subtest loading vector (λ= .69), the
discrimination × PGSEDU interaction vector (λ= .65), the SIRE
group difference vector (λ= .76), the PGSEDU-by-subtest associa-
tion vector (λ= .72), and the subtest C vector (λ = .75). In the case
of the Scarr–Rowe effect vector, the loading was close to zero
(λ= .06). Nonsignificant negative loadings were found in the case
of the subtest A and E vectors (λ=−.25 and −.26, respectively).

The multivector factor accounted for 34% of the variance across
vectors.

Discussion

The presence of both the Scarr–Rowe and discrimination ×
PGSEDU interactions is evidenced using two methods, a GLM with
a large number of controls and a more straightforward moderation
analysis involving CPEM. In both cases, the former effect posi-
tively, and the latter negatively, predicts participant GCA, consis-
tent with expectations that these sources of social adversity might
contribute to reductions in the portability of PGSs for GCA in
comparisons involving differentially socially advantaged groups.

The effects are found with the use of a PGSEDU, constructed
using the PolyFun-Pred method, which attempts to increase the
predictive validity of PGSs between different ancestral groups
via incorporation of variants that have a higher probability of being
causal. The fact that (in particular) a discrimination × PGSEDU
interaction can be recovered despite these precautions reduces
the likelihood that this result is purely a function of LD decay stem-
ming from cross-ancestry comparisons involving different SIRE
groups self-reporting different levels of discrimination, although
the PGS still seems to have significantly lower portability as a
predictor of GCA in the Black subsample compared to the
White and Hispanic ones (Table 1). It seems likely that some of
the difference in portability still stems from residual LD decay;
however, it should also be kept in mind that this pattern of findings
is very much in line with the expectation that reduced PGS
portability between SIRE groups should be present owing to
gene-by-environment interactions, even if hypothetically ‘perfect’
PGSs composed of only causal variants were to be used
(Rabinowitz et al., 2019). This interpretation is strengthened when
considered in relation to PGSHEIGHT, which exhibits much greater
between-SIRE group portability (Table 2), in addition to which
interactions between SES, discrimination, and PGSHEIGHT are
unambiguously absent when used to predict participant height
(as is a main effect of SES; however, a relatively small main effect
of discrimination is present in the theoretically expected direction).
This suggests that among more socially neutral traits, such as
height (relative to GCA), the forms of social adversity considered
here have no (apparent) effects on PGSHEIGHT expressivity. By
contrast, both low SES and high discrimination reduce PGSEDU
expressivity on GCA. No sex differences were present for either
interaction, but the subgroup analyses may have been underpow-
ered to detect these.

The finding of the Scarr–Rowe effect in the current work is
inconsistent with the outcome of one relatively recent study
(Figlio et al., 2017), which failed to detect the effect using a very
large sample of young (born in the 1990s and 2000s) US (specifi-
cally Floridian) twins and siblings. One possible reason for this
discrepancy is that ABCD samples more broadly with respect to
the US population than did the study of Figlio et al. (2017), thus
their findings may have been confounded by regional factors that

Table 8. Variance component analyses estimating the proportion of additive genetic variance (A2), shared environmental variance (C2), and unshared environmental
variance (E2) associated with discrimination and GCA along with 95% CIs

Group Phenotype NDZ þ sibs NMZ A2 (95% CI) C2 (95% CI) E2 (95% CI)

Full sample Self-reported discrimination 420 252 .027 (−.048, .102) .117 (.042, .190)* .855 (.834, .874)*

Full sample GCA 420 252 .488 (.429, .543)* .250 (.178, .319)* .263 (.192, .332)*

Note: *p< .05.
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Table 9. Loading of GCA on subtests along with (sign reversed) discrimination×PGSEDU interactions, (weighted) SIRE group difference in subtest score means (rescaled as r values), Scarr-Rowe effects, and A, C, and E
variance components transformed as r values. The vector correlations among these are reported along with the results of the multivector co-moderation analysis

Cognitive ability GCA λ (95% CI; 1) Discrimination × PGSEDU interaction (2) SIRE Difference; r (3) PGSEDU (4) A (r) (5) C (r) (6) E (r) (7) Scarr-Rowe effect (8)

Picture vocabulary .59* (.58, .60) .02 (−.00, .04) .29* (.27, .31) .20* (.18, .22) .45* (.39, .51) .55* (.50, .60) .70* (.66, .74) .01 (−.01, .03)

Flanker .54* (.53, .56) .03* (.01, .05) .12* (.10, .14) .05* (.03, .07) .37* (.30, .43) .26* (.19, .33) .89* (.87, .90) .02* (.00, .04)

List sorting .63* (.62, .64) .03* (.01, .05) .20* (.18, .22) .14* (.12, .17) .41* (.35, .47) .44* (.38, .50) .80* (.77, .83) .02* (.00, .05)

Card sorting .59* (.58, .60) .00 (−.02, .02) .15* (.13, .17) .08* (.05, .10) .60* (.55, .65) .00 (−.08, .08) .80* (.77, .83) .00 (−.02, .02)

Pattern comparison .47* (.45, .49) .01 (−.02, .03) .08* (.06, .10) .04* (.02, .06) .35* (.28, .41) .38* (.31, .44) .85* (.83, .87) .04* (.02, .06)

Picture sequence memory .56* (.55, 57) .02* (.00, .04) .16* (.14, .18) .08* (.06, .11) .69* (.65, .73) .00 (−.08, .08) .72* (.68, .75) .01 (−.01, .03)

Oral reading recognition .60* (.59, .61) .00 (−.02, .02) .20* (.18, .22) .16* (.14, .19) .83* (.81, .85) .00 (−.08, .08) .56* (.51,.61) .01 (−.01, .04)

Matrix test .57* (.56, .58) .00 (−.02, .03) .19* (.17, .21) .15* (.13, .17) .41* (.35, .47) .44* (.38, .50) .80* (.77, .83) .01 (−.01, .03)

Little Man Test .43* (.41, .45) .00 (−.02, .03) .09* (.07, .11) .05* (.03, .07) .48* (.42, .54) .00 (−.08, .08) .88* (.86, .90) .01 (−.02, .03)

Ravlt sd memory .64* (.63, .65) .02* (.00, .05) .18* (.16, .20) .12* (.10, .14) .42* (.36, .48) .41* (.35, .74) .81* (.78, .83) .01 (−.01, .03)

Ravlt ld memory .64* (.63, .65) .01 (−.01, .04) .18* (.16, .20) .12* (.10, .14) .39* (.32, .45) .48* (.42, .54) .78* (.75, .81) .00 (−.03, .02)

1 1.00 .26 (−.40, .74) .68* (.67, .69) .66* (.10, 90) .10 (−.53, .66) .38 (−.28, .80) −.43 (−.82, .23) −.50 (−.85, .14)

2 1.00 .18 (−.47, .70) .02 (−.59, .61) −.36 (−.79, .31) .41 (−.25, .81) .21 (−.45, .72) .32 (−.35, .77)

3 1.00 .96* (.85, 99) .19 (−.46, .71) .42 (−.24, .81) −.63* (−.89, −.05) −.43 (−.82, .23)

4 1.00 .19 (−.46, .71) .44 (−.22, .82) −.67* (−.91, −.12) −.37 (−.79, .30)

5 1.00 −.75* (−.93, −.27) −.79* (−.94, −.36) −.37 (−.79, .30)

6 1.00 .19 (−.46, .71) .22 (−.44, .72)

7 1.00 .31 (−.36, .77)

8 1.00

Multivector loading .69* (.15, .91) .65* (.08, .90) .76* (.30, .93) .72* (.21, .92) −.25 (−.74, .41) .75* (.27, .93) −.26 (−.74, .40) .06 (−.56, .64)

Note: A, Additivity; C, shared environmentality; E, nonshared environmentality.
*p ≤ .05,
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do not generalize to the larger population of the US. Alternatively,
as twin-based methods rely on phenotype-only resemblance
among individuals of differing zygosity, there may be confounding
phenotype-dependent effects in such models that can only be
resolved with reference to direct measures of the relevant geno-
types and their interactions. Figlio et al. (2017) were unable to
determine zygosity in their same-sex twin sample,7 which further
complicates interpretations of their results.

Interestingly, discrimination (unlike GCA) appears to show
virtually no influence from additive genetic factors. This strongly
militates against the idea that, for someone to report having expe-
rienced it, a heritable phenotypic locus of some sort is required in
order to act as a basis for, for example, discriminative social sorting.
The prime candidate for such a locus is skin reflectance or
color (Cooper, 2005; Rowe, 2005). As there is evidence that this
phenotype is very substantially heritable, where self-reported
discrimination is strongly a function of skin color, some significant
(association-based) heritability of self-reported discrimination
would reasonably be expected. These findings indicate that
discrimination acts primarily through shared and nonshared envi-
ronmental factors. This means that cognitively impairing forms of
discrimination are likely associated with the purely socially
constructed aspects of SIRE (those that are wholly independent
of heritable ancestry-related phenotypes such as skin reflectance
or color). It has been found that ‘race’ as a concept may, to a
substantial degree, be a byproduct of social coalitional categoriza-
tion, the significance of which can be ‘erased’ once alternative social
cues are presented that more accurately map onto relevant coali-
tional structure (Kurzban et al., 2001; for a meta-analysis of ‘erasing
race’ effects, see Woodley of Menie et al., 2020); thus, there is likely
much about ‘race’ and related phenomena that exists purely in the
psychological (and also sociological) realm and that is wholly
divorced from outward markers of biogeographic ancestry.
Elucidating the processes that go into the construction and persist-
ence of such ‘social forces’ goes well beyond the current study.8

It was found that a multivector composed of all vectors loads
positively and significantly onto the discrimination × PGSEDU
interaction vector, subtest GCA-loading vector, SIRE mean-
differences vector, the PGSEDU-by-subtest association vector,
and the subtest C vector. The exceptions were the subtest-level
Scarr–Rowe effect and the subtest A and E vectors, on which
the multivector loaded nonsignificantly in all cases (Table 9).
This indicates that the discrimination × PGSEDU interaction is a
potential contributing factor to the differences posited in modern
versions of Spearman’s hypothesis. More broadly, these findings—
in particular, the finding that the A vector is nonsignificantly nega-
tively related, whereas the C vector is significantly positively
related, to the multivector — runs contrary to the expectation
of proponents of the hereditarian hypothesis, which predicts that
vectors of strongly genetic factors and GCA loadings should
cluster, and should be independent of vectors involving strongly
environmental factors (e.g., Rushton, 1999; Warne, 2021).
The finding that the PGSEDU-by-subtest association vector is posi-
tively and significantly associated with the multivector might,
by contrast, be taken to evidence the hereditarian hypothesis
(on the basis that this counts as a ‘genetic effect’, as per
Rushton, 1999); however, this interpretation is confounded by
the aforesaid positive co-moderation effects associated with the
discrimination × PGSEDU interaction and C vectors, both of which
indicate environmental contributions. A plausible hypothesis is
that where polygenic influences on subtest scores are generally
higher, there is simply greater opportunity for (in particular)

shared environmental factors to contribute via gene-by-environ-
ment interactions (involving discrimination) to group differences
in GCA. It is notable in this regard also that the multivector
actually loads negatively onto the A vector (which is the stronger
measure of heritability). The finding that the A vector is a nonsig-
nificant correlate of the SIRE differences vector further conflicts with
the results of other studies that have used this parameter in vector
correlation analyses to support the hereditarian position (Rushton
et al., 2007). On this basis, Rushton’s (1999) argument may not hold
true, and therefore, should be treated more cautiously.

It should also be noted that the Scarr–Rowe effect is apparently
not contributing to SIRE group differences, as this vector is
nonsignificantly (and negatively) correlated with the vectors of
both GCA loadings and SIRE group differences. This finding rein-
forces the argument that the term ‘Scarr-Rowe effect’ (and related
terms) should be used exclusively to describe influences on GCA
stemming from the action of purely SES-related social factors that
are not intrinsically coupled with SIRE and associated phenomena
(such as the differences posited in modern versions of Spearman’s
hypothesis and racial/ethnic discrimination; Giangrande &
Turkheimer, 2021). The possibility that the Scarr–Rowe effect is
not associated with cognitive performance at the level of GCA is
furthermore consistent with a prediction ofWoodley ofMenie et al.
(2018), who noted that:

[I]f it is found that [GCA] loading negatively moderates ability measures’
sensitivity to the Scarr-Rowe effect, then the [GCA] loading of tests might
be an important factor to control for in future meta-analyses. Moreover, it
suggests that the Scarr-Rowe effect may help increase our understanding of
the Flynn effect (which also occurs to the greatest extent on the least
[GCA]-loaded abilities : : : ), as reductions in the strength of the former
effect may be a driver of the latter effect. (p. 500)

Critics of the current findings might object that the effect sizes of
the interactions are relatively small (by the standards of findings in
the psychological sciences); however, gene-by-environment inter-
actions involving specific environmental measures are theoretically
expected to be of relatively small magnitude when compared with
main effects (McGue & Carey, 2017). Just as ‘[a] typical human
behavioral trait is associated with very many genetic variants,
each of which accounts for a very small percentage of the behav-
ioral variability’ (the so-called fourth law of behavior genetics;
Chabris et al., 2015, p. 304), it may furthermore be the case that
a typical human behavioral trait is also associated with very many
gene-by-environment interactions, each of which accounts for a
very small percentage of the behavioral variability (a possibility
that McGue & Carey, 2017, p. 43 suggest). Moreover, the relatively
small magnitudes of these effects may also in part be a function
of the imperfect validity and reliability of the various
constructs employed in these analyses, the effect of which
would be expected to attenuate the associated effect sizes (see
Schmidt & Hunter, 2015).

A final objection might be made on the grounds that the popu-
lation assessed here is quite young and that the impact of the gene-
by-environment interactions detected might be transient, eventu-
ally exhibiting the fadeout effect. This relates to the tendency for
early-life environmental factors that raise (and presumably also
those that lower) IQ to no longer exert these effects as individuals
age. It has been hypothesized that this might reflect the action of
theWilson effect, the tendency for the additive heritability of IQ to
increase over (much of) the life course (Bouchard, 2013). While
there are indications that the Scarr–Rowe effect ‘fades’ with age
(Gottschling et al., 2019), it does not appear to fade to zero.
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Possibly the most compelling evidence of this has been found in
genetically informed studies employing cohorts that range from
mid to late age in the Wisconsin Longitudinal and Health and
Retirement Studies, where in both cases the Scarr–Rowe effect
was detected specifically using various measures of participant
childhood SES (Woodley of Menie et al., 2018, Woodley of
Menie et al., 2021). On this basis, it might be reasonable to expect
that the discrimination × PGSEDU interaction might not ‘fade out’
completely either, unless its apparently greater affinity for GCA
makes it more sensitive to fading out than the Scarr–Rowe
effect — continued longitudinal data collection on the ABCD
cohort could help to resolve this uncertainty in the future.
It might also be the case that the discrimination × PGSEDU inter-
action was generally stronger historically, as reductions in
discrimination have been posited as a potential cause of
(specifically) Black-White attainment gap closure on certain
cognitive ability measures in the US (Rindermann &
Thompson, 2013, p. 828).

In light of the theorizing of McGue and Carey (2017) discussed
above, it is possible that there are other as yet unknown gene-by-
environment interactions that, together with the discrimination ×
PGSEDU interaction, could jointly substantially account for the
SIRE group differences posited by modern versions of Spearman’s
hypothesis, which would obviously provide a strong evidential
basis for environmental as opposed to hereditarian accounts of
Spearman’s hypothesis. A great deal of future research is required
to adequately investigate this possibility.9
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Notes

1 SIRE sometimes denotes only self-identified race and/or ethnicity. Studies
employing data on race and/or ethnicity to which we refer sometimes use
other-identified, therefore not just self-identified, race and ethnicity data.
The more encompassing term ‘sociallyidentified race and/or ethnicity’ is there-
fore preferred here, as this captures data on race and ethnicity regardless of
whether self- or other-identification (or both) was used.

2 See Duncan et al. (2019, p. 7) for similar arguments concerning the role of SES
and racial discrimination in confounding genetically informed studies involving
socially non-neutral traits.
3 The Scarr–Rowe effect appears to be absent in the populations of other devel-
oped (e.g., Europe and Australia) and certain developing (e.g., Nigeria) regions
or nations (Bates et al., 2016; Tucker-Drob & Bates, 2015; Hur & Bates, 2019),
possibly reflecting the influence of greater equalization with respect to either
positive or negative environments. Thesemight includemore extensive (relative
to the US) welfare access in the case of the former, and higher levels of extreme
poverty in the case of the latter.
4 This would be expected on the basis that height is likely not as important for
attaining better life outcomes overall, relative to IQ, which partly reflects an
individual’s success in acquiring cognitive capital. On this basis, it is reasonable
to hypothesize that height is not likely to be as negatively impacted as IQ
through the action of social adversity. For this to hold, IQ/GCA should simply
bemore predictive of certain important positive life outcomes (such as income)
than height. This can be demonstrated empirically using the NLSY’79, where
regressing participant GCA scores (extracted from the subtests of the Armed
Services Vocational Aptitude Battery), height, and sex against family income
yields the following results: GCA β= .465, p< .0001, height β= .028, p= .064,
and sex β= .055, p< .0001 (N= 6310). Independent of GCA and sex, height is
not predictive of family income, consistent with the expectation that it is a more
neutral trait with respect to socially significant life outcomes. It should be noted
that our findings are consistent with claims of Duncan et al. (2019, p. 7), who
also argued that height is less likely to be influenced by or confounded with
sources of social adversity than traits like cognitive ability.
5 Spearman’s hypothesis is sometimes said to come in a strong and weak form:
on the strong form, mean SIRE group differences in cognitive test scores are
entirely due to GCA differences; on the weak form, mean SIRE group
differences in cognitive test scores are only partly due to GCA differences
(see Frisby & Beaujean, 2015). Throughout this paper, where we refer to
Spearman’s hypothesis, we are only referring to the weak form.
6 This hypothesis is often defined in different ways in this context. Sometimes it
seems to mean the view that genetic differences between SIRE groups account
for at least 50% of cognitive test score differences between them. Sometimes a
stronger view is taken where an explanation positing any genetic contribution to
such between-SIRE group differences (i.e., >0% of differences attributed to
genetic causes) is a hereditarian hypothesis. For recent discussion of the heredi-
tarian hypothesis, see Warne (2021).
7 They ran their model on the assumption that all mixed-sex twins were dizygotic
(in extraordinarily rare cases, monozygotic twin pairs can be mixed sex), and that
their same-sex twin sample was 50% monozygotic and 50% dizygotic.
8 An example of potentially relevant research is the social–psychological study
of Salvatore and Shelton (2007), who found that having (Black and White)
subjects encounter (simulated) racial prejudice in an experimental context (they
were tasked with reviewing job files in which an evaluator made either
nonprejudicial, ambiguously prejudicial, or blatantly prejudicial judgements
about a candidate) impaired their cognitive performance on the Stroop test.
However, Black and White performance impairments were associated with
different forms of perceived prejudice, with ambiguous prejudice impairing
the performance of the former to a greater degree and blatant prejudice
impairing the performance of the latter to a greater degree.
9 The existence of effects on GCA PGS expressivity stemming from discrimi-
nation potentially casts doubt on the conclusions drawn from the results of
global admixture analyses, specifically in instances where biogeographic-
ancestry (BGA)-informative genetic markers are used to predict variation in
phenotypes such as GCA, and where such influences are used to support heredi-
tarian hypotheses on the origin of SIRE group differences in such phenotypes
(for a review of such studies, see Warne, 2021). This is because BGA will corre-
late with exposure to adverse environmental factors such as discrimination, the
epigenetic influences of which on salient gene expression will be ‘folded’ into
BGA measures, potentially confounding them as predictors of GCA in a way
that, absent knowledge of the precise patterns of epigenetic marking in each
genome, would make the relevant genetic and environmental influences
extremely difficult to disentangle.
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