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ON A CLASS OF MULTIVALUED MAPPINGS IN
BANACH SPACES

BY
C. J. RHEE

1. Introduction. A. Granas [4] has studied single-valued compact vector fields in
Banach spaces. In [3], he extended the fixed point theorems of Roth, Boknenblust
and Karlin to the case of multi-valued functions. Closely following [4], we give
here some general theorems in a class of multi-valued functions in Banach spaces.

Let E be an arbitrary infinite dimensional Banach space and P the space E
without the point 0. If x, is a point of E and r is a positive number, then we denote
by V(x,, r) an open ball with center x, and radius r. If 4 is a subset of E, then
V(4,n=U {V(x,r)| x € 4}.

A mapping f defined on the set 4 and assigning to each x € 4 a nonempty set
f(x)=E is called upper semicontinuous, if the conditions lim,_,  x,=x,
lim, . y.=y, ¥, € F(x,) imply y € F(x). In what follows we consider only upper
semicontinuous mappings and assume their values to be closed convex sets in E. The
notation f: A—E denotes an upper semicontinuous mapping defined on 4 whose
every value f(x) is a compact convex set in E.

2. Compact mappings. A multi-valued mapping F:A—E is compact, if the
closure of the image F(4)= U {F(x) | x € A} is compact in E.

THEOREM 1. Let A be a subset of E and F: A—E is a compact mapping. Then there
is a sequence of compact mappings F,,: A—E,,,,< E, where E,,,,, is a finite dimen-
sional subspace of E, such that if >0 there is a positive integer N such that

F,(x) < V(F(x),e) and F(z) < V(F,(x),e) foreachxe€A and m > N.

Proof. Let ¢,=1/n, n=1,2,3---. Since the closure of F(4) is compact, let
N,, bea }e,,-netin F(4), and E,,,, be the finite dimensional subspace of Egenerated
by N,,. For each x € 4, and each m=1,2,3,..., let N(x, m)={y € Up Nkl
d(y, F(x))<3}e,}, where d(y, F(x)) is the distance between the point y and the set
F(x), and define F,(x) to be the convex closure of N(x, m). Let m be a fixed number.
Let x€ A4 and y € F(x). Since |J;_, N, is also a }¢,,-net in F(4), there is a point
Yo € Uiy Ny such that ||y—y,l<%e,,. Hence we have y € V(F,(x), ¢,). On the
other hand, N(x, m)<V(F(x), ¢,) and V(F(x), ¢,) is convex, so that F,(x)<
V(F(x), &,)-
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For each m=1,2,3,..., and each x € 4, F,,(x) is contained in the convex

closure of F(A) which is compact so that F, (4) is compact.

Suppose lim;_,, x;=X,, X; € 4, y; € F,(x,), lim,_, , y;=y,. We first prove that if
w; € N(x;, n)< Uz-y Ny such that lim, ,  w,=w,, then w, € N(x,, n). Let z; € F(x,)
such that ||z;—w,||<1e, for i=1, 2, 3, . ... Since each z; is a point of the convex
closure of F(4), we may assume that lim; ,  z;=z, Then by the upper semi-
continuity of F, we have z, € F(x,). But lim,_, _ [z;—w;|=zy—w,l <3&,. So that
wo € N(x,, n).

Now corresponding to the sequence {x,}, we have a sequence {N(x;, n)};2, of sub-
sets of the finite set [ J;_y NV, Select a subsequence {N(x, , n)} such that N(x, , n)=
N(xnj, n) for all i and j. Then it is easy to see that N(x, , n)< N(x,, n) for all i. To
see upper semicontinuity of F,, we observe that lim, ,  y,=y, ¥;€ F,(x)),
Vn, € convex closure of N (xni, n) and conclude that y, € F, (x).

THEOREM 2. Let A be a closed subset of X< E and F: A—E is a compact mapping.
Then there is an extension F of F over X such that F(x)< convex closure of F(A).

Proof. Since X is a stratifiable space, according to [2], F has an extension to an
upper semicontinuous function F of F whose values lie as closed subsets in F(4). We
define F(x) to be the convex closure of F(x) for each xe€X. Let x,€X,
lim,_,, x,=x,and y, € F(x,), lim,_,, y,=y,. Assume that y, ¢ F(x,). Let ¢ be a
positive number such that y, ¢ V(F(x,), ¢). Since lim,_, x,=x, F is upper
semicontinuous and F(x,)< F(x,), there is an integer N such that

F(xn) < V(F(x0)5 8) < V(F(XO), 8) fOI' h 2 N.

But V(F(x,), €) is convex and contains the closed set F(x,), so we have y, €
F(x,)= V(F(x,), ¢). This is a contradiction, Fis upper semicontinuous. Since, for
each x € X, F(x)<=convex closure of F(A), the closure of F(4) is compact.

Let F: X—E be a compact mapping, X< E. A point x, € X such that x, € F(x,)
is called a fixed point of F.

LEMMA 3. If F: X—E is a compact mapping, then the set of fixed points of F is
closed.

The following theorem is an extension to the case of multi-valued functions of
the well known theorem of Kakutani [6].

THEOREM 4. Let X be a closed, bounded and convex subset of E. If F: X—X is a
compact mapping, then F has a fixed point.

Proof. By Theorem 1 there is a sequence of compact mappings

Fp:X >E,q) < E
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such that
F(x) < V(Fk(x), -11;) and Fi(x) < V(F(x), i) for each x € X.

Since F(x)= X N E,, for each x € X, we may suppose without loss of generality
that the partial mapping F; =F; | X N E,, is a compact mapping of X N E,,
into itself, and hence by Kakutani’s fixed point theorem [6], there is x; € X such
that x, € F,(x,), for each k=1,2,3,---. Since x,€ V(F(xg), 1/k), choose
Vi € F(x;) such that || x; — y,|| <1/k. But the closure of F(x) is compact, so we may
assume that limy_,, y,=y, € closure of F(X) < X. Then lim;_,, (y,—x;)=0. Hence
limy_, , x;=Y,. By the upper semicontinuity of F, we have y, € F(y,).

3. Compact vector fields. A multi-valued mapping f: X—FE is called a compact
vector field on X, if it can be represented in the form:

f(x) = x—F(x) = {x—y € E|y € F(x)},
where F is a compact mapping on X.

THEOREM 5. Let X be a closed subset of E and f: X—E be a compact vector field,
Jf(x)y=x—F(x). Then f(X) is closed.

Proof. Let z,€f(X), n=1,2,... such that limn, z,=2z,. Let z,=x,—y,,
Yn € F(x,), n=1,2,3,---. Since the closure of F(X) is compact, we may assume
without loss of generality thatlim, ., y,=y*. Thenlim, ., x,=limu_, (z,+y,)=
Zy+y* € X. So by the upper semicontinuity of f, z, € f(z,+y*) < f(X).

Let X and Y be subsets of E. Denote by £ (X, Y) the set of compact vector
fields on X into Y. Two elements f; € £ (X, Y) i=0, 1 are said to be homotopic in
Z(X, Y)if there is a compact mapping H: X X I-E such that (1) H(x, 0)=Fy(x),
H(x, 1)=F,(x), where f;(x)=x—F;(x), i=0, 1 and (2) foreacht e I, f, € (X, Y),
where f,(x)=x—H(x, ?).

LEMMA 6. Any two compact vector fields f, f, € £((X, E) are homotopic in
ZL(X, E).

Proof. Let f;(x)=x—F;(x), i=1, 2, and define

H(x, t) = tFy(x)+(1=0)Fy(x) = {ty1+(1=1)y; | y € Fy(x), i = 1, 2}.

Then for each (x, ) € Xx I, H(x, t) is compact and convex, and contained in the
convex closure of Fy(X) U F(X).
Let h(x, t)=x—H(x, t). t € X and 0<¢<L]1.
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THEOREM 7. Let f, and f, be a compact vector fields on X into P. f;(x)=x—F;(x).
Suppose any one of the following conditions are satisfied

@) 0¢th()+(1-Dfi(x), 0<t<1,  xeX
(i) x ¢ tF(x)+(1—0Fy(x), 0<Lt<1, xeX.

Then f, and f, are homotopic in £ (X, P).

Proof. In fact, the two conditions are equivalent. For

() +A-Dfx) = x—[tF(x)+(1-DFy(x)], xeX, 0Lt<1L

If one of the conditions is satisfied, then we define H:XxXI—E by H(x, t)=
tF;(x)+(1—1t)F,(x) for each x€ X and 0<¢<1, and let A(x, t)=x—H(x, t).
Then 4 is a homotopy between f; and f; in Z (X, P).

CoROLLARY 1. Supposef,, f, € L(X, P) such that for each x € X ||z,—2z,|| < z,||
for all z, € f,(x), i=1, 2. Then f, and f, are homotopic in £(X, P).

Proof. Suppose f;(x)=x—F;(x), z;=x—y,;, y; € Fy(x), i=1, 2. Then ||z;—z,] =
=yl Ll x—y1ll =z |l. Let e=]z||. If |z, —2,|| <e then, since V(z,, &) is convex,
tzy+(1—1)z, € V(z,, €), and hence 1z, + (1 —1)z,70.

If ||lz,—z,] =¢, and for some ¢, 0<¢<1, tz;+(1—1)z,=0, then we would have
Izl =lzy— @z, + (A =Dz ll=(A =)l zy— 7| <llz;— 2| = z;]|=¢. So we conclude
that £z, +(1—1)z,5%0 for 0<¢< 1. Hence by Theorem 7, f; and f; are homotopic in
Z(X, P).

COROLLARY 2. Suppose fe L (X, P) is a compact vector field such that the
distance ¢ from the point O to the set f(X) is positive. Suppose g € £ (X, P) such that
g(x) = V(f(x), ¢) for each x € X. Then f and g are homotopic in £ (X, P).

Proof. V(f(x), ¢) is a convex set which does not contain 0. Hence 0 ¢ #f(x)+
(1—1)g(x) for each x € X and 0<#<1.

THEOREM 8. Let X, be a closed subset of X < E and fy, gy € L (X,, P) such that
fo and g, are homotopic in £ (X,, P). If there is an extension f€ £ (X, P) of f, over
X, then there is an extension g € L (X, P) of g, such that [ and g are homotopic in
ZL(X, P).

Proof. Let fy(x)=x—Fy(x), and go(x)=x—Gy(x), and f(x)=x—F(x). Since f,
and g, are homotopic in £ (X, P) there is a compact mapping H: X, X I—E such
that x ¢ Hy(x, t) for each x € X; and 0<7<1, and Hy(x, 0)=Fy(x), Hy(x, 1)=
Gy(x) for x € X,
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Let Ty=XyxI U Xx0 and define Hy: T—~E by

F(x), xeX, t=20
HiGx, 1) = {H(o(l ), xeX, O0<t<l.
The mapping H,' is compact on Ty and hence by Theorem 2 it can be extended to a
compact mapping H*:XxI—E. Let X;={x eX‘ 0 e x—H*(x,t) for some t}.
Then Xj is a closed subset of X disjoint from Xj,. Let u: X—I be a Urysohn function
such that u(xy)=1, x, € X, and u(x,)=0 for x, € X;.

Now consider a mapping H: XX I—E defined by H(x, t)=H*(x, u(x) - t), for
x € X and 0<L¢<1. It is clear that H is a compact mapping and x ¢ H(x, t) for
x € Xand 0<1<1.

If we define a mapping h: X X [P by h(x, t)=x—H(x, t) and g(x)=h(x, 1), we
see that g € £ (X, P) is an extension of g, and f'and g are homotopic in Z(X, P).

4. Essential and inessential compact vector fields. Let X be a closed subset of E
and U a component of the complement of X in E. An element f€ £ (X, P) is said
to be inessential, with respect to U, if there is an extension fin (X U U, P) of f
over X U U. Otherwise fis said to be essential.

THEOREM 9. Let X be a closed subset of E. Let Ay < E\X be a compact and
convex subset of E\X, and U a component of E\X, and let f € £ (X, P) be defined by
f(x)=x—Ay, x € X. Then

(1) fis inessential with respect to U if Ay N\ U=4¢.
(2) fis essential with respect to U if Ay N\ Us¢ and both X and U are bounded.

Proof. (1) Define f(x)=x—A, for each x e X U U.

(2) 4, N U#¢ implies 4, < U. Suppose, on the contrary, that f is inessential
with respect to U. Then there is a compact mapping F:X U U—E such that
x ¢ F(x) for each x € X U U, and F(x)=A4, for x € X. Define

F(x) if xeXUU

* —

F(x) = {Ao it xeK\(X UU),

where K is a closed ball which contains X U U and F(X U U). Evidently F* is a

compact mapping of K into K without a fixed point, which is a contradiction with
Theorem 4.

TaeorReM 10. Let fe L (S, P), S the unit sphere in E, f(x)=x—F(x). Suppose F
is a compact mapping of S into a finite dimensional subspace E,, of E. Let fy=f| S,_;,
where S, =S N E,. If f is essential with respect to the unit open ball V in E then
fo is essential with respect to the unit open ball V,, in E,,.

Proof. Let fy(x)=x—Fy(x). Suppose f, is inessential with respect to V,. Then
the mapping F,:S,_,—E, can be extended to a compact mapping G,: K,—E,, such
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that x ¢ G,(x) for each x € K,,, where K,, is the closed unit ballin E,,. Let T=S U K,
and define
F(x) if xeS
*(1) —
(Mﬂ_k@)ﬁxem.

Then Gy : T—E,, is a compact mapping such that x ¢ Gy (x) for each x € T. Since
T is the closed subset of the closed unit ball X in E, by virtue of Theorem 2, the
mapping Gy can be extended over K to a compact mapping F*: K—convex closure
of GX(T)< E,. Then for xe S U K,, we have x ¢ F*(x)=G}(x). If x,€K)\
(S U K,) such that x, € F*(x,), then x, €V, < K,. This is impossible. Hence
x ¢ F*(x) for x € K. So this would mean that f has an extension f, f(x)=x—F*(x),
fe Z(K, P) which is a contradiction.

THEOREM 11. Let X be a closed subset of E. Suppose A, and A, are disjoint
compact convex subsets of E\X. Let F(x)=A; and f,(x)=x—F;(x), x € X, i=1, 2.

(1) If the set X does not separate A, and A,, then f; and f, are homotopic in
ZL(X, P).

(2) If X is bounded and one of A; is contained in a bounded component of E\X
and f; and f, are homotopic in £ (X, P) then X does not separate A, and A,.

Proof. (1) If 4, and A, belong to the same component of E\X, let r:I>E\ X be
an arc from a point in 4, to a point in A,. Define 7:[—-E\X by

(A, if r(t)e4,
“0—{40 if otherwise.

Then 7 is a compact mapping. Let A(x, t)=x—7(t), x € X and 0<¢<1. Then
h(x, 0)=f,(x) and h(x, 1)=f(x). x € X.

(2) Suppose 4, and A, belong to two different components U; and U, respec-
tively, and suppose U, is bounded. Then the mapping f, has an extension f, €
L(X U Uy. P), fo(x)=x—Fy(x), x € X U U,. Since f; and f, are homotopic in
Z(X, P), by Theorem 8 we have an extension f; € Z(X U Uy, P) of f;. But this is
a contradiction to the second part of Theorem 9.

THEOREM 12. Let S be the boundary of V(x,y,¢), and K=V(x,, €). Suppose
f€ZL(K, E) such that for some y, € f(x,) we have y, ¢ f(S). Let fy € Z(S, P) be
defined by fo(x)=f(x)—y,. If [, is essential with respect to V(x,, €), then there is a
d-neighborhood U of y, in E such that U < f(K).

Proof. Since fy(S) is closed, let d=d(fy(S), 0)>0. Let U be a J-neighborhood of
Yoin E and let y € U. Let g, € Z(S, E) be defined by go(x)=f(x)—y, x € S. Then
Jo(x) € V(gy(x), 6) and gyo(x) = V(fy(x), ), x € S. Hence g, € Z(S, P). Then by
Corollary 2 of Theorem 7, f; and g, are homotopic in £ (S, P). Since f; is essential
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so is g, by Theorem 8. From this we infer that the compact vector field g: K—E
defined by g(x)=f(x)—y, being an extension of g, over K, has at least one point
x € K such that 0 € g(x)=f(x)—y, i.e., y €f(x).
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