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ON A CLASS OF MULTIVALUED MAPPINGS IN 
BANACH SPACES 

BY 

C. J. RHEE 

1. Introduction. A. Granas [4] has studied single-valued compact vector fields in 
Banach spaces. In [3], he extended the fixed point theorems of Roth, Boknenblust 
and Karlin to the case of multi-valued functions. Closely following [4], we give 
here some general theorems in a class of multi-valued functions in Banach spaces. 

Let E be an arbitrary infinite dimensional Banach space and P the space E 
without the point 0. If xQ is a point of E and r is a positive number, then we denote 
by V(x0, r) an open ball with center x0 and radius r. If A is a subset of E, then 
V(A,r)=\J{V(x,r)\xeA}. 

A mapping/defined on the set A and assigning to each x G A a nonempty set 
f(x)<^E is called upper semicontinuous, if the conditions l i m ^ ^ xn=x, 
limn_>00 yn=y, yn e F(xn) imply y e F(x). In what follows we consider only upper 
semicontinuous mappings and assume their values to be closed convex sets in E. The 
notation f:A-+E denotes an upper semicontinuous mapping defined on A whose 
every value f{x) is a compact convex set in E. 

2. Compact mappings. A multi-valued mapping F:A->E is compact, if the 
closure of the image F(A)= \J {F(x) | x e A} is compact in E. 

THEOREM 1. Let A be a subset ofE and F: A->E is a compact mapping. Then there 
is a sequence of compact mappings Fm : A-^En{m) c= E, where En{m) is a finite dimen­
sional subspace ofE, such that ife>0 there is a positive integer N such that 

Fm(x) a V(F(x), e) and F(x) c V(Fm(x), e) for each xeA and m>N. 

Proof. Let en = l/«, « = 1 , 2, 3 • • •. Since the closure of F(A) is compact, let 
Nm be a |£m-net in F(A), and En{m) be the finite dimensional subspace of ̂ generated 
by Nm. For each xeA, and each m = l , 2, 3 , . . . , let N(x, m)={y e (J&Li Nk | 
d(y, F(x))< | e m } , where d(y, F(x)) is the distance between the point y and the set 
F(x), and define Fn(x) to be the convex closure of N(x, m). Let m be a fixed number. 
Let x e A and y e F(x). Since (J^Li Nk is also a |em-net in F(A), there is a point 
Jo e \Jk-i Nk such that \\y-y0\\ < | e m . Hence we have y e V(Fm(x), sJ. On the 
other hand, N(x, m)^ V(F(x), sm) and V(F(x)9 em) is convex, so that Fm(x)^ 
V(F(x), ej. 
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For each ra = l, 2, 3, . . . , and each x e A, Fm(x) is contained in the convex 

closure of F(A) which is compact so that Fm(A) is compact. 
Suppose l i m ^ x~x0, x,- eA9yte Fn(xt), l i m ^ yi=y0. We first prove that if 

w{ G N(xi9 ri)^ ( JJLI Nk such that l im^^ wt=w0, then w0 e N(x0, ri). Let zt e F(x{) 
such that | |z f—wJI^J^ for / = 1 , 2, 3 , . . . . Since each z i is a point of the convex 
closure of F(A), we may assume that l im^^ Z—ZQ. Then by the upper semi-
continuity of F, we have z0eF(x0). But l im^^ ||^—w4|| = ||z0-~w0||<j£n. So that 
w0 G #(*„, ri). 

Now corresponding to the sequence {xj , we have a sequence {N(xi9 «)}*=i of sub­
sets of the finite set (J La Nk. Select a subsequence {N(xn,, ri)} such that N(xn., «)== 
N(xn., ri) for all / a n d / Then it is easy to see that N(xn., ri)^N(x0, ri) for all /. To 
see upper semicontinuity of Fn, we observe that lim,^^ ji=jo> J<G ^w(X)> 
j n . G convex closure of N(xn., ri) and conclude that y0 e Fn(xQ). 

THEOREM 2. Let Abe a closed subset of J e E and F: A->E is a compact mapping. 
Then there is an extension F of F over X such that F(x)c^ convex closure of F(A). 

Proof. Since Xis a stratifiable space, according to [2], F has an extension to an 
upper semicontinuous function F of F whose values lie as closed subsets in F(A). We 
define F(x) to be the convex closure of F(x) for each xeX. Let xn e X, 
l i m ^ xn=x0 and yn G F(xn), l i m ^ yn=y0. Assume that y0 £ F(x0). Let s be a 
positive number such that y0 $ V(F(x0), s). Since l i m ^ ^ xn=x0, F is upper 
semicontinuous and F(x0)^F(x0), there is an integer N such that 

F(xn) cz V(F(x0), e) c V(F(x0), e) for n > N. 

But V(F(x0), s) is convex and contains the closed set F(xn), so we have yn e 
F(xn)^ V(F(x0), e). This is a contradiction, Fis upper semicontinuous. Since, for 
each xe X, F(x)^convex closure of F(A), the closure of F(A) is compact. 

Let F.X->E be a compact mapping, X<^ E. A point x0 e X such that x0 e F(x0) 
is called a fixed point of F. 

LEMMA 3. IfF:X-^E is a compact mapping, then the set of fixed points of F is 
closed. 

The following theorem is an extension to the case of multi-valued functions of 
the well known theorem of Kakutani [6]. 

THEOREM 4. Let X be a closed, bounded and convex subset of E. IfF: X-^X is a 
compact mapping, then F has a fixed point. 

Proof. By Theorem 1 there is a sequence of compact mappings 

Fk:X->En{k) c E 
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such that 

F(x) c V (Fk(x), -\ and Fk(x) c V (F(X), -) for each x G X. 

Since Ffc(x)c X n £w(fc) for each x G l , w e may suppose without loss of generality 
that the partial mapping Fk=Fk | X n i?n(fc) is a compact mapping o f i n j£n(fc) 

into itself, and hence by Kakutani's fixed point theorem [6], there is xk e X such 
that xkeFk(xk), for each fc = 1, 2, 3, • • • . Since *fc G F ^ f e ) , 1/A:), choose 
yk G Ffe ) such that \\xk — yk\\ < \jk. But the closure of F(x) is compact, so we may 
assume that l i m * ^ yk=y0 G closure of F(X) <= X. Then lim*-^ (yfc—xfc)=0. Hence 
limfc_>oo xk=y0. By the upper semicontinuity of F, we have y0 G ̂ (jo)-

3. Compact vector fields. A multi-valued mapping f:X->E is called a compact 
vector field on X, if it can be represented in the form: 

f(x) = x-F(x) = {x-y eE\ye F(x)}, 

where F is a compact mapping on X. 

THEOREM 5. Let X be a closed subset ofE andf: X-+E be a compact vector field, 
f(x)=x-F(x). Then f(X) is closed. 

Proof. Let znef(X), « = 1 , 2 , . . . such that lim^oo zn=z0. Let zn=xn— yn, 
yn G F(xn), « = 1 , 2, 3, • • • . Since the closure of F(X) is compact, we may assume 
without loss of generality that lim^a, yn=y*. Then l i m ^ ^ xw=limn->oo (zn+yn)= 
z0+y* G X. So by the upper semicontinuity of/, z0 G / ( Z 0 + J * ) C= /(X). 

Let X and Y be subsets of E. Denote by i?(X, Y) the set of compact vector 
fields on Xinto Y. Two elements/ G O§?(X, Y) Z = 0 , 1 are said to be homotopic in 
i?(X, Y) if there is a compact mapping H:XxI-+E such that (1) /7(;c, 0)~Fo(x), 
H(x, l)=*i(jc), where/<(x)=A:-F<(x), i=0 , 1 and (2) for each t e I,ft e JS?(X, Y)9 

where/(x)=x—H(x, t). 

LEMMA 6. Any two compact vector fields fl9 f2 e JS?((X, E) are homotopic in 
J?(X,E). 

Proof. Let/(x)=x—F t(x)9 / = 1 , 2, and define 

H(x, t) = tFiW+a-Of aW = {^i+(i-0y21 y± e ^(x), Î = l, 2}. 

Then for each (x, t) e Xxl, H(x, t) is compact and convex, and contained in the 
convex closure of Ft(X) U F2(X). 

Let/*(*, 0=*—#(*> 0- ? G X a n d O < f < l . 
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THEOREM 7. Letfx andf% be a compact vector fields on X into P.fi(x)=x~Fi(x). 
Suppose any one of the following conditions are satisfied 

(i) 0 £ tfi(x)+(l-O/2O), 0 < t < 1, x G X 

(ii) JC £ tFx(x)+(l-t)F2(x), 0 < * < 1, x e l . 

Thenf andf2 are homotopic in ̂ (X, P). 

Proof. In fact, the two conditions are equivalent. For 

!fi(x)+(l-0/2(*) = ^ [ ^ ( x ) + ( l - 0 ^ W ] , xeX, 0<t<L 

If one of the conditions is satisfied, then we define H:XxI-^E by H(x,t)= 
tFx(x)+(l-t)F2(x) for each xeX and 0 < f < l , and let h(x,t)=x-H(x,t). 
Then A is a homotopy between/j and/2 in i?(X, P). 

COROLLARY 1. Suppose fx,f2 G J?{X, P) such that for each xe X \\z1—z2\\ < (| ̂  || 
for all zx e/i(x), / = 1 , 2. Thenfx andf2 are homotopic in ££(X, P). 

Proof. Suppose/(x)=x—F,(x), Zi=x--yi9 y{ G7^(X), / = 1 , 2 . Then |ki~2r2|| = 

l l j i - jyi < ll-x-Jill= U z i l l - L e t £== l l ^ i I I - I f llzi~z2ll <e t h e n> s i n c e ^Oi> e) is convex, 
tzx+(l—t)z2 G F(z1? e), and hence tzx+(l — t)z2?£0. 

If ||zx—z2||=fi, and for some /, 0 < / < l , tzx+(l — /)z2=0, then we would have 
\\zx\\ = \\zx-(tzx+(\-t)z2)\\ = (\^ So we conclude 
that tzx+(l —t)z27^0 for 0<t< 1. Hence by Theorem 7,/i and/2 are homotopic in 

COROLLARY 2. Suppose fe J?(X, P) is a compact vector field such that the 
distance s from the point 0 to the setfiX) is positive. Suppose g G J? (X, P) such that 
g(x) c: V(f(x), e)for each x G X. Then f and g are homotopic in ££(X9 P). 

Proof. V(f(x), e) is a convex set which does not contain 0. Hence 0<£ tf(x)+ 
(l-t)g(x) for each x eXand 0<t< 1. 

THEOREM 8. Let X0 be a closed subset of X c: E andf, g0 G ^(X0, P) such that 
f0 andg0 are homotopic in J?(X0, P). If there is an extension fe J?(X, P) off0 over 
X, then there is an extension g G <2?(X, P) ofg0 such that f and g are homotopic in 
J?(X,P). 

Proof. Let f0(x)=x—F0(x), and g0(x)=x—G0(x), and f(x)=x—F(x). Since / 0 

and g0 are homotopic in i?(X, P) there is a compact mapping H0:X0xI->E such 
that x$H0(x,t) for each x e X0 and 0 < * < 1 , and H0(x, 0)=F0(x), //0(x> I)— 
G0(x) for x e X0. 
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Let r 0 = Z 0 x / U Xx 0 and define H* : T-+E by 

The mapping # * is compact on T0 and hence by Theorem 2 it can be extended to a 
compact mapping H*:XxI-+E. Let Zx={x eX\ 0 ex—#*(x, f) for some t). 
Then Xx is a closed subset of X disjoint from X0. Let w:X->Jbe a Urysohn function 
such that u(x0)=1 , x 0 e l 0 and w(Xi)=0 for xx eXV 

Now consider a mapping H:XxI->E defined by H(x, t)=H*(x, u(x) • t ) , for 
x e X and 0 < f < l . It is clear that H is a compact mapping and A: ^ # (x , 0 for 
x e J a n d O < K l . 

If we define a mapping A:XxI->P by /z(x, t)=x—H(x, t) and g(x)=/z(x, 1), we 
see that g e <Sf(X, P) is an extension of g0 and /and g are homotopic in J?(X, P). 

4. Essential and inessential compact vector fields. Let X be a closed subset of E 
and U a component of the complement of X in E. An element fe 3?(X, P) is said 
to be inessential, with respect to U, if there is an extension/in ££(X U U, P) off 
over X KJ U. Otherwise/is said to be essential. 

THEOREM 9. Let X be a closed subset of E. Let A0 <= E\X be a compact and 
convex subset ofE\X, and U a component ofE\X, and letfe J?(X, P) be defined by 
f(x)=x—A0, xeX. Then 

(1) fis inessential with respect to UifA0 n U=<f>. 
(2) fis essential with respect to UifA0 n Uy£<f> and both X and U are bounded. 

Proof. (1) Definef(x)=x—A0 for each x e X U U. 
(2) A0 n Vr 76(f) implies A0 c: U. Suppose, on the contrary, t h a t / i s inessential 

with respect to U. Then there is a compact mapping F:X U U->E such that 
x $ F(x) for each x e X U U, and F(x)~A0 for x e X. Define 

F*M-lFto if xeXVU W ~ U o if xeK\(XUU), 
where K is a closed ball which contains X \J U and F(X U U). Evidently F* is a 
compact mapping of Kinto ^without a fixed point, which is a contradiction with 
Theorem 4. 

THEOREM 10. Letfe J§?(S, P), S the unit sphere in E,f(x)=x—F(x). Suppose F 
is a compact mapping of S into a finite dimensional subspace En ofE. LetfQ=f\ Sn_l9 

where Sn_1=S n En. If fis essential with respect to the unit open ball V in E then 
fQ is essential with respect to the unit open ball Vn in En. 

Proof. Let/0(x)=x—F0(x). Suppose/0 is inessential with respect to Vn. Then 
the mapping F0: Sn_1-^En can be extended to a compact mapping GQ:Kn->En such 
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that x <£ G0(x) for each x e Kn9 where Kn is the closed unit ball in En. Let T= S U Kn 

and define 

(F(x) if xeS 
G*(x)-\G0(x) if xeKn. 

Then G*:T-+En is a compact mapping such that x $ G*(x) for each x e T. Since 
T is the closed subset of the closed unit ball K in E, by virtue of Theorem 2, the 
mapping G* can be extended over K to a compact mapping F* : X"->convex closure 
of G*(T)c: En. Then for x e S KJ Kn9 we have x<£F*(x)=G*(;c). If JC 0 G^\ 

(S U j^rn) such that x0 eF*(x0), then x0 G Fn <= ifn. This is impossible. Hence 
x $ F*(x) for x e K.So this would mean tha t /has an extension f,f(x)=x—F*(x), 
Je ££(K9 P) which is a contradiction. 

THEOREM 11. Let X be a closed subset of E. Suppose Ax and A2 are disjoint 
compact convex subsets ofE\X. Let Fi(x)=Ai and/(x)=*—i^C*), x e X, /==1, 2. 

(1) If the set X does not separate Ax and A29 then f± andf2 are homotopic in 
&{X9P). 

(2) If X is bounded and one of A{ is contained in a bounded component of E\X 
andf andf2 are homotopic in J£(X, P) then X does not separate Ax and A2. 

Proof. (1) If Ax and A2 belong to the same component of E\X, \Qtr\I^E\X be 
an arc from a point in Ax to a point in A2. Define r:I-*E\X by 

r(t) = iAi i f r(^eAi 
\r(t) if otherwise. 

Then r is a compact mapping. Let h(x,t)=x—r(t), xeX and 0 < ^ < 1 . Then 
h(x9 0)=/i(jc) and h(x, \)=f2{x). xeX. 

(2) Suppose Ax and A2 belong to two different components U1 and U2 respec­
tively, and suppose Ux is bounded. Then the mapping f2 has an extension f2 e 
3?{X\J U^P), f2{x)=^x—F2{x)9 xeXU Uv S i n c e / a n d / 2 are homotopic in 
Se{X, P), by Theorem 8 we have an extension/ G J§?(X U Ul9 P) of / . But this is 
a contradiction to the second part of Theorem 9. 

THEOREM 12. Let S be the boundary of V(x09 s), and K=V(x0, e). Suppose 
fe 3?(K9 E) such that for some y0 ef(x0) we have y0 $f(S). Let f0 e J?(S, P) be 
defined by f0(x)=f(x)—y0. Iff0 is essential with respect to V(xQ9 s)9 then there is a 
ô-neighborhood U ofy0 in E such that U c f(K). 

Proof. Since f0(S) is closed, let ô=d(f0(S), 0)>0. Let U be a ^-neighborhood of 
y0 in E and let yeU. Let g0 e J§?(S, E) be defined by g0(x)=f(x)—y9 x G S. Then 
/oW <= V(g0(x), Ô) and g0(x) c V(f0(x)9 8), x e S. Hence g0 G &(S9 P). Then by 
Corollary 2 of Theorem 79f0 and g0 are homotopic in <^(S9 P). Since/) is essential 
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so is g0 by Theorem 8. From this we infer that the compact vector field g:K->E 
defined by g(x)=f(x)— y, being an extension of g0 over K, has at least one point 
xe K such that 0 eg(x)=f(x)—y, i.e., y ef(x). 
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