Mid-Infrared Variability in Binary Brown Dwarfs

Michael F. Sterzik1, Gael Chauvin2, Kerstin Geißler1,3 and Eric Pantin4

1European Southern Observatory, Casilla 19001, Santiago 19, Chile
2Laboratoire d’ Astrophysique, Observatoire de Grenoble, 38041 Grenoble Cedex 9, France
3Max-Planck-Institut for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
4CEA/Saclay, DSM/DAPNIA/Service d’ Astrophysique, 91191 Gif-sur-Yvette, France

Abstract. We have spatially resolved several nearby binary brown dwarfs and obtained mid-infrared photometry with VISIR at the VLT. In particular, we have monitored ε Indi B and HD 130948 in several narrow-band MIR filters. The 10.5μm band is a probe to constrain non-equilibrium chemistry in the atmosphere of cool brown dwarfs.

Keywords. stars: low-mass, brown dwarfs; binaries: close

1. Ground-based MIR measurements

Ground-based mid-IR imaging of binary brown dwarf systems with sub-arcsecond spatial resolution can complement high sensitivity, but low-spatial resolution space-based photometry as obtained e.g. with Spitzer. The spatially resolved photometry of the close (separation 0.7") brown dwarf binary ε Indi Ba and Bb (Sterzik, Pantin, Hartung et al. 2005) and of three other brown dwarfs in binary systems, GJ 229 B (separation 7.8"), HD 130948 B (separation 2.6", B itself a L4 binary with a separation of 0.1") and HR 7329 B (separation 4.2") allows to constrain atmospheric models of ultra-cool brown dwarfs of various ages and metallicities (Geißler, Chauvin and Sterzik 2008). On-source integration times of about one hour in the 8.6μm, 10.5μm and 11.3μm bandpasses yield 3σ detection sensitivities of less then 1-2 mJy for point sources. In case of the HD 130948 B, we have noticed a flux variation of at least 1.7\pm0.6mJy within 48 hours in the 10.5μm bandpass and could not explain it through insufficient sensitivity during one epoch of observations. Therefore we conducted time-series measurements in order to probe potential variability. In particular, significant variations in the 10.5μm band may be expected in the atmospheres of brown dwarfs at the L/T transition in case non-equilibrium chemistry affecting the CO, CH\textsubscript{4} and NH\textsubscript{3} abundances is important (Hubeny and Burrows 2007). While in the case of HD 130948 B the likelihood of variability is small (Geißler et al. 2009), ε Indi Ba (a L/T transition object) may be variable in 10.5μm.

References

Geißler, K., Chauvin, G., & Sterzik, M. F. 2008, \textit{A\&A} 480, 193