ORTHOMODULAR POSETS FROM SESQUILINEAR FORMS

ROBERT PIZIAK

(Received 28th April 1971)

Communicated by P. D. Finch

In this paper, we show how to generate orthomodular posets from sesquilinear forms on a vector space.

Let E be a vector space over the division ring k. A binary relation \perp on E is called a *linear orthogonality relation* provided

(1) $x \perp y$ iff $y \perp x$, and

(2) for each x in E, $\{x\}^{\perp} = \{y \mid y \perp x\}$ is a linear subspace of E.

For a subset M of E we define the orthogonal of M by

 $M^{\perp} = \{ y \mid y \perp m \text{ for all } m \text{ in } M \}.$

Also we let [M] denote the linear span of M in E.

The first lemma is trivial.

LEMMA 1. For M, M_i , and N subsets of E, we have

- (1) $M \subseteq M^{\perp \perp}$ (2) $M \subseteq N$ implies $N^{\perp} \subseteq M^{\perp}$ (3) $M^{\perp} = M^{\perp \perp \perp}$
- (4) $(\cup M_i)^{\perp} = \cap M_i^{\perp}$
- (5) M^{\perp} is a subspace of E

(6) $M^{\perp} = [M]^{\perp}$ so in particular if $x \perp y$ and $x \perp z$ then $x \perp y + z$ and $x \perp \alpha y$ for all α in k.

(7) $(0)^{\perp} = E \text{ and } E = E^{\perp \perp}$

Note that $M \mapsto M^{\perp \perp}$ is a closure operator on the lattice of all subspaces of E.

Let \perp be a linear orthogonality relation on E. We say \perp is nondegenerate when $E^{\perp} = (0)$. In this case we call (E, \perp) a linear orthogonality space.

Call a subspace M of E orthogonally closed or \perp -closed if $M = M^{\perp\perp}$. Let $P_c(E, \perp)$ denote the set of all \perp -closed subspaces of E ordered by inclusion. Using well known generalities on closure operators we see that $P_c(E, \perp)$ is a comlete involution lattice with zero (0) and unit E. Also for M_i in $P_c(E, \perp)$ we have

265

 $\inf(M_i) = \bigcap M_i$ and $\sup(M_i) = [\bigcup M_i]^{\perp \perp}$.

Call a vector x in E isotropic if $x \perp x$ and anisotropic otherwise. For a subspace F of E, define the radical of F by $rad(F) = F \cap F^{\perp}$. Say that F is semisimple provided rad(F) = (0). Let $P_{ss}(E, \perp)$ denote the set of all semisimple subspaces of E ordered by inclusion.

It can be shown that the orthogonal of a semisimple subspace need not be semisimple. However,

$$P_{ss}(E,\perp) \cap P_c(E,\perp)$$

is easily seen to be an orthocomplemented poset under the natural involution $F \mapsto F^{\perp}$. It need not though be orthomodular.

LEMMA 2. Let $\{F_i\}$ be an orthogonal family of linear subspaces of E(i.e. $F_i \subseteq F_j^{\perp}$ for $i \neq j$). Let F be the smallest subspace of E containing all the F_i . We write $F = \sum F_i$. Then $rad(F) = \sum rad(F_i)$.

PROOF. First rad $(F) = F \cap F^{\perp} = F \cap (\cap F_i^{\perp}) = \cap (F \cap F_i^{\perp})$. For each fixed *j* and for any *i* we have

$$\operatorname{rad}(F_j) = F_j \cap F_j^{\perp} \subseteq F \cap F_i^{\perp}.$$

Hence for each j, $rad(F_j) \subseteq rad(F)$ so $\sum rad(F_i) \subseteq rad(F)$.

Conversely, suppose x is in rad (F). Since x is in F we can write x as a finitely nonzero sum $x = \sum x_i$ with x_i in F_i . For each j,

$$x_j = x - \sum_{i \neq j} x_i.$$

Since x is in rad (F) then x is in F_j^{\perp} . Since the family $\{F_i\}$ is orthogonal, each x_i with $i \neq j$ also belongs to F_j^{\perp} . Thus x_j is in F_j^{\perp} . It follows each x_j is in rad (F_j) . Thus x is in Σ rad (F_i) .

COROLLARY 3. If $\{F_i\}$ is an orthogonal family of semisimple subspaces of E, the join exists in $P_{ss}(E, \bot)$ and in fact the join is the orthogonal direct sum of the F_i .

Next we have a technical lemma.

LEMMA 4. Let F and G be linear subspaces of E. Suppose $F \subseteq G$ and $G \subseteq F + F^{\perp}$. Let G be semisimple. Then $G \cap F^{\perp}$ is semisimple.

PROOF. If $G \cap F^{\perp}$ were not semisimple, we would have a vector w different from zero with w belonging to

$$\operatorname{rad}(G \cap F^{\perp}) = (G \cap F^{\perp}) \cap (G \cap F^{\perp})^{\perp}.$$

Since G is semisimple and w is in G we cannot have w in G^{\perp} . Thus there

is a vector y in G such that y fails to be orthogonal to w. Since G is contained in in $F + F^{\perp}$ and F is contained in G we see

$$G = F + (F^{\perp} \cap G) \, .$$

Hence we can write y = u + x where u belongs to F and x is in $F^{\perp} \cap G$ Since w is in F^{\perp} and w is in $(F^{\perp} \cap G)^{\perp}$, then w is orthogonal to y, a contradiction.

A subspace F of the linear orthogonality space (E, \perp) is called *splitting* if $E = F + F^{\perp}$. Let $P_s(E, \perp)$ denote the set of all splitting subspaces of E again ordered by inclusion.

The next lemma is straightforward and we omit the proof.

LEMMA 5. (1) (0) and E are splitting subspaces (2) if F is in $P_s(E, \perp)$ then so is F^{\perp}

(3) every splitting subspace is closed and semisimple

(4) $P_s(E, \perp)$ is an orthocomplemented poset under the inovolution $F \to F^{\perp}$.

The next lemma establishes the first crucial property of an orthomodular poset.

LEMMA 6. Finite orthogonal joins exist in $P_s(E, \perp)$.

PROOF. Let e be any vector in E. Let F and G be in $P_s(E, \perp)$ with $F \subseteq G^{\perp}$. We claim

$$F + G = F \oplus G$$

is in $P_s(E, \perp)$. First $e = w + w_1$ with w in G and w_1 in G^{\perp} and $e = v + v_1$ with v in F and v_1 in F^{\perp} . Clearly

$$e = (v + w) + x$$

where x = e - v - w, $v_1 - w = w_1 - v$. Since v_1 is in F^{\perp} and w is in G then x is in F^{\perp} . Similarly, x is in G^{\perp} . Thus e is in

$$(F+G) + (F^{\perp} \cap G^{\perp}) = (F+G) + (F+G)^{\perp}.$$

Hence $E = (F + G) + (F + G)^{\perp}$

We now come to the main result.

THEOREM 7. Let (E, \perp) be a linear orthogonality space. Then $P_s(E, \perp)$ is an orthomodular poset.

PROOF. We have already that $P_s(E, \perp)$ is an orthocomplemented poset with zero (0) and unit E under the involution $F \mapsto F^{\perp}$. Orthogonal joins are just orthogonal direct sums. It suffices then to show the orthomodular identity. Let F and G be spliting subspaces with $F \subseteq G$. Then $G^{\perp} \leq F^{\perp}$ so F is orthogonal to G^{\perp} so $F \lor G^{\perp} = F + G^{\perp}$. Thus

$$(F \lor G^{\perp})^{\perp} = (F + G^{\perp})^{\perp} = F^{\perp} \cap G.$$

Now $G = G \cap E = G \cap (F + F^{\perp}) = F + (G \cap F^{\perp}) = F \vee (F \vee G^{\perp})^{\perp}$ which completes the proof.

Note if E is finite dimensional, $P_s(E, \perp)$ is necessarily an atomic orthomodular poset. Also note that linear orthogonality relations exist in great abundance. Let E be any vector space. Let Φ be a θ -sesquilinear nondegenrate orthosymmetric from on E. For x and y in E, define $x \perp y$ by $\Phi(x, y) = 0$. Then $(E, \perp) = (E, \Phi)$ is a linear orthogonality space. Call such a quadratic space. We have characterized which linear orthogonality spaces are quadratic spaces elsewhere. For a quadratic space (E, Φ) it can also be shown that $P_s(E, \Phi)$ is an ample atomic orthomodular poset with the ortho-covering and ortho-exchange properties.

A crucial problem is to determine when $P_s(E, \Phi)$ is a lattice. The next theorem provides and important partial answer. We are indebted to H. R. Fischer for the proof.

THEOREM 8. Let (E, Φ) be a quadratic space of dimension at least 4 over a field of characteristic different from two. Suppose not every vector of E is isotropic. If $P_s(E, \Phi)$ is a lattice then Φ admits no non-zero isotropic vectors.

PROOF.

Suppose on the contrary that Φ admits a nonzero isotropic vector. Since every nondegenerate space of dimension at least 4 contains a four dimensional semisimple subspace, it suffices to consider the case where the dimension of *E* equals 4 and show that *E* contains two distinct three dimensional semisimple subspaces whose intersection is a degenerate plane, but not totally isotropic (i.e. with radical properly contained in this plane, thus of dimension one).

The proof proceeds as follows: we shall construct in E a plane [x, y] such that $x \perp x$, $y \not\perp y$, and $x \perp y$. Then we shall find two distinct three dimensional semisimple spaces F and G in E such that $F \cap G = [x, y]$. Once this is done, it is clear that F and G do not possess any infimum in $P_s(E, \Phi)$; [y] and [x + y] are distinct noncomparable lower bounds of F and G in $P_s(E, \Phi)$.

The construction is as follows. Choose any nonzero x in E such that $x \perp x$. Then $[x]^{\perp}$ is a subspace of dimension three. Therefore it cannot be totally isotropic. Now choose anisotropic y in $[x]^{\perp}$. Then [x, y] is the required plane. It is degenerate with rad([x, y]) = [x].

Next $[y]^{\perp}$ is three dimensional and semisimple. Since x is in $[y]^{\perp}$ there exists a in [y] such that $x \not\perp a$. If a is anisotropic, let z = a. If a is isotropic, let z = a + x. This will be anisotropic and still not orthogonal to x. In either case we have an anisotropic z in $[y]^{\perp}$ such that $x \not\perp z$. From this it follows that [x, y, z] is semisimple; its radical is properly contained in [x] whence is (0).

The three dimensional space F = [x, y, z] is also spanned by x, x + y, and z.

Since x + y is anisotropic $[x + y]^{\perp}$ is semisimple. Hence, x being in [x + y] there is an anisotropic u in $[x + y]^{\perp}$ such that $x \not\perp u$. Then [x, x + y, u] = [x, y, u] is again semisimple and of dimension three.

We now have two cases:

case a: u is not in [x, y, z]. Then we put G = [x, y, u] and get $F \cap G = [x, y]$. case b: u is in [x, y, z]. By construction, $\{x, x + y, u\}$ is a linearly independent subset of F and hence is a basis of F. In particular, $[x, x + y, u]^{\perp} =$ $[u]^{\perp} \cap [x]^{\perp} = [x + y]^{\perp}$ is one dimensional semisimple, i.e. is spanned by an anisotropic vector a. Now u is in $[x + y]^{\perp} = [u] \oplus M$, M of dimension two and semisimple. Note that $M = [u]^{\perp} \cap [x + y]^{\perp}$. Also $[a] = [u]^{\perp} \cap [x]^{\perp} \cap [x + y]^{\perp}$ $= [x]^{\perp} \cap M$. Thus there exists an anisotropic vector w in M such that $a \perp w$. Clearly then w is not in $[x]^{\perp}$ but w is in $[x + y]^{\perp}$. In this case we put G = [x, x + y, w] = [x, y, w]. Again we have $F \cap G = [x, y]$ both F and G semisimple of dimension three. This completes the proof.

We remark that if the dimension of E does not exceed 3, then $P_s(E, \Phi)$ is a lattice simply because there is not enough height for things to go wrong. If in the above theorem, the dimension of E is finite and Φ admits no nonzero isotropic vectors, then $P_s(E, \Phi) = P_{ss}(E, \Phi)$ is the lattice of all subspaces of E. Also in particular we note that if Φ is the Minkowski metric fo space-time, then $P_s(\mathbb{R}^4, \Phi)$ is an orthomodular poset that is not an orthomodular lattice.

We close with some open questions:

QUESTION 1. What about the converse of Theorem 8?

QUESTION 2. What is the cut completion of $P_s(E, \perp)$?

Acknowledgement

The author wishes to express his thanks to D. J. Foulis for his help.

References

- [1] N. Bourbaki, Livre II Algèbre, Chapître IX, Forme Sesquilinéaire et Formes Quadratiques (Hermann, Paris, VI, 1959),
- [2] O. T. O'Maera, Introduction to Quadratic Forms (Springer Verlag, Band 117, (1963)).
- [3] J. C. T. Pool, Simultaneous Observability and the Logic of Quantum Mechanics, (Ph. D. Thesis, Iowa University, 1963).
- [4] R. Piziak, An Algebraic Generalization of Hilbert Space Geometry (Ph. D. Thesis, Massachusetts 1969).
- [5] A. Ramsay, 'A Theorem on Two Commuting Observables' J. Math. and Mech. 15 (1966). 227-234.

Department of Mathematics University of Florida 205 Walker Hall, Gainesville Florida 32601 U. S. A.