ORTHOMODULAR POSETS FROM SESQUILINEAR FORMS

ROBERT PIZIAK

(Received 28th April 1971)
Communicated by P. D. Finch

In this paper, we show how to generate orthomodular posets from sesquilinear forms on a vector space.

Let E be a vector space over the division ring k. A binary relation \perp on E is called a linear orthogonality relation provided
(1) $x \perp y$ iff $y \perp x$, and
(2) for each x in $E,\{x\}^{\perp}=\{y \mid y \perp x\}$ is a linear subspace of E.

For a subset M of E we define the orthogonal of M by

$$
M^{\perp}=\{y \mid y \perp m \text { for all } m \text { in } M\} .
$$

Also we let [M] denote the linear span of M in E.
The first lemma is trivial.
Lemma 1. For M, M_{i}, and N subsets of E, we have
(1) $M \subseteq M^{\perp \perp}$
(2) $M \subseteq N$ implies $N^{\perp} \subseteq M^{\perp}$
(3) $M^{\perp}=M^{\perp \perp \perp}$
(4) $\left(\cup M_{i}\right)^{\perp}=\cap M_{i}^{\perp}$
(5) M^{\perp} is a subspace of E
(6) $M^{\perp}=[M]^{\perp}$ so in particular if $x \perp y$ and $x \perp z$ then $x \perp y+z$ and $x \perp \alpha y$ for all α in k.
(7) (0) ${ }^{\perp}=E$ and $E=E^{\perp \perp}$

Note that $M \mapsto M^{\perp \perp}$ is a closure operator on the lattice of all subspaces of E.
Let \perp be a linear orthogonality relation on E. We say \perp is nondegenerate when $E^{\perp}=(0)$. In this case we call (E, \perp) a linear orthogonality space.

Call a subspace M of E orthogonally closed or \perp-closed if $M=M^{\perp \perp}$. Let $P_{c}(E, \perp)$ denote the set of all \perp-closed subspaces of E ordered by inclusion. Using well known generalities on closure operators we see that $P_{c}(E, \perp)$ is a comlete involution lattice with zero (0) and unit E. Also for M_{i} in $P_{c}(E, \perp)$ we have

$$
\inf \left(M_{i}\right)=\cap M_{i} \text { and } \sup \left(M_{i}\right)=\left[\cup M_{i}\right]^{\perp \perp}
$$

Call a vector x in E isotropic if $x \perp x$ and anisotropic otherwise. For a subspace F of E, define the radical of F by $\operatorname{rad}(F)=F \cap F^{\perp}$. Say that F is semisimple provided $\operatorname{rad}(F)=(0)$. Let $P_{s s}(E, \perp)$ denote the set of all semisimple subspaces of E ordered by inclusion.

It can be shown that the orthogonal of a semisimple subspace need not be semisimple. However,

$$
P_{s s}(E, \perp) \cap P_{c}(E, \perp)
$$

is easily seen to be an orthocomplemented poset under the natural involution $F \mapsto F^{\perp}$. It need not though be orthomodular.

Lemma 2. Let $\left\{F_{i}\right\}$ be an orthogonal family of linear subspaces of E (i.e. $F_{i} \subseteq F_{j}^{\perp}$ for $i \neq j$). Let F be the smallest subspace of E containing all the F_{i}. We write $F=\Sigma F_{i}$. Then $\operatorname{rad}(F)=\Sigma \operatorname{rad}\left(F_{i}\right)$.

Proof. First $\operatorname{rad}(F)=F \cap F^{\perp}=F \cap\left(\cap F_{i}^{\perp}\right)=\cap\left(F \cap F_{i}^{\perp}\right)$. For each fixed j and for any i we have

$$
\operatorname{rad}\left(F_{j}\right)=F_{j} \cap F_{j}^{\perp} \subseteq F \cap F_{i}^{\perp}
$$

Hence for each $j, \operatorname{rad}\left(F_{j}\right) \subseteq \operatorname{rad}(F)$ so $\Sigma \operatorname{rad}\left(F_{i}\right) \subseteq \operatorname{rad}(F)$.
Conversely, suppose x is in $\operatorname{rad}(F)$. Since x is in F we can write x as a finitely nonzero sum $x=\sum x_{i}$ with x_{i} in F_{i}. For each j,

$$
x_{j}=x-\sum_{i \neq j} x_{i}
$$

Since x is in $\operatorname{rad}(F)$ then x is in F_{j}^{\perp}. Since the family $\left\{F_{i}\right\}$ is orthogonal, each x_{i} with $i \neq j$ also belongs to F_{j}^{\perp}. Thus x_{j} is in F_{j}^{\perp}. It follows each x_{j} is in $\operatorname{rad}\left(F_{j}\right)$. Thus x is in $\Sigma \operatorname{rad}\left(F_{i}\right)$.

Corollary 3. If $\left\{F_{i}\right\}$ is an orthogonal family of semisimple subspaces of E, the join exists in $P_{s s}(E, \perp)$ and in fact the join is the orthogonal direct sum of the F_{i}.

Next we have a technical lemma.
Lemma 4. Let F and G be linear subspaces of E. Suppose $F \subseteq G$ and $G \subseteq F+F^{\perp}$. Let G be semisimple. Then $G \cap F^{\perp}$ is semisimple.

Proof. If $G \cap F^{\perp}$ were not semisimple, we would have a vector w different from zero with w belonging to

$$
\operatorname{rad}\left(G \cap F^{\perp}\right)=\left(G \cap F^{\perp}\right) \cap\left(G \cap F^{\perp}\right)^{\perp}
$$

Since G is semisimple and w is in G we cannot have w in G^{\perp}. Thus there
is a vector y in G such that y fails to be orthogonal to w. Since G is contained in in $F+F^{\perp}$ and F is contained in G we see

$$
G=F+\left(F^{\perp} \cap G\right)
$$

Hence we can write $y=u+x$ where u belongs to F and x is in $F^{\perp} \cap G$ Since w is in F^{\perp} and w is in $\left(F^{\perp} \cap G\right)^{\perp}$, then w is orthogonal to y, a contradiction.

A subspace F of the linear orthogonality space (E, \perp) is called splitting if $E=F+F^{\perp}$. Let $P_{s}(E, \perp)$ denote the set of all splitting subspaces of E again ordered by inclusion.

The next lemma is straightforward and we omit the proof.
Lemma 5. (1) (0) and E are splitting subspaces
(2) if F is in $P_{s}(E, \perp)$ then so is F^{\perp}
(3) every splitting subspace is closed and semisimple
(4) $P_{s}(E, \perp)$ is an orthocomplemented poset under the inovolution $F \rightarrow F^{\perp}$.

The next lemma establishes the first crucial property of an orthomodular poset.
Lemma 6. Finite orthogonal joins exist in $P_{s}(E, \perp)$.
Proof. Let e be any vector in E. Let F and G be in $P_{s}(E, \perp)$ with $F \subseteq G^{\perp}$. We claim

$$
F+G=F \oplus G
$$

is in $P_{s}(E, \perp)$. First $e=w+w_{1}$ with w in G and w_{1} in G^{\perp} and $e=v+v_{1}$ with v in F and v_{1} in F^{\perp}. Clearly

$$
e=(v+w)+x
$$

where $x=e-v-w, v_{1}-w=w_{1}-v$. Since v_{1} is in F^{\perp} and w is in G then x is in F^{\perp}. Similarly, x is in G^{\perp}. Thus e is in

$$
(F+G)+\left(F^{\perp} \cap G^{\perp}\right)=(F+G)+(F+G)^{\perp}
$$

Hence $E=(F+G)+(F+G)^{\perp}$
We now come to the main result.
Theorem 7. Let (E, \perp) be a linear orthogonality space. Then $P_{s}(E, \perp)$ is an orthomodular poset.

Proof. We have already that $P_{s}(E, \perp)$ is an orthocomplemented poset with zero (0) and unit E under the involution $F \mapsto F^{\perp}$. Orthogonal joins are just orthogonal direct sums. It suffices then to show the orthomodular identity. Let F and G be spliting subspaces with $F \subseteq G$. Then $G^{\perp} \leqq F^{\perp}$ so F is orthogonal to G^{\perp} so $F \vee G^{\perp}=F+G^{\perp}$. Thus

$$
\left(F \vee G^{\perp}\right)^{\perp}=\left(F+G^{\perp}\right)^{\perp}=F^{\perp} \cap G
$$

Now $\quad G=G \cap E=G \cap\left(F+F^{\perp}\right)=F+\left(G \cap F^{\perp}\right)=F \vee\left(F \vee G^{\perp}\right)^{\perp}$ which completes the proof.

Note if E is finite dimensional, $P_{s}(E, \perp)$ is necessarily an atomic orthomodular poset. Also note that linear orthogonality relations exist in great abundance. Let E be any vector space. Let Φ be a θ-sesquilinear nondegenrate orthosymmetric from on E. For x and y in E, define $x \perp y$ by $\Phi(x, y)=0$. Then $(E, \perp)=(E, \Phi)$ is a linear orthogonality space. Call such a quadratic space. We have characterized which linear orthogonality spaces are quadratic spaces elsewhere. For a quadratic space (E, Φ) it can also be shown that $P_{s}(E, \Phi)$ is an ample atomic orthomodular poset with the ortho-covering and ortho-exchange properties.

A crucial problem is to determine when $P_{s}(E, \Phi)$ is a lattice. The next theorem provides and important partial answer. We are indebted to H. R. Fischer for the proof.

Theorem 8. Let (E, Φ) be a quadratic space of dimension at least 4 over a field of characteristic different from two. Suppose not every vector of E is isotropic. If $P_{s}(E, \Phi)$ is a lattice then Φ admits no non-zero isotropic vectors.

Proof.

Suppose on the contrary that Φ admits a nonzero isotropic vector. Since every nondegenerate space of dimension at least 4 contains a four dimensional semisimple subspace, it suffices to consider the case where the dimension of E equals 4 and show that E contains two distinct three dimensional semisimple subspaces whose intersection is a degenerate plane, but not totally isotropic (i.e. with radical properly contained in this plane, thus of dimension one).

The proof proceeds as follows: we shall construct in E a plane $[x, y]$ such that $x \perp x, y \not \perp y$, and $x \perp y$. Then we shall find two distinct three dimensional semisimple spaces F and G in E such that $F \cap G=[x, y]$. Once this is done, it is clear that F and G do not possess any infimum in $P_{s}(E, \Phi) ;[y]$ and $[x+y]$ are distinct noncomparable lower bounds of F and G in $P_{s}(E, \Phi)$.

The construction is as follows. Choose any nonzero x in E such that $x \perp x$. Then $[x]^{\perp}$ is a subspace of dimension three. Therefore it cannot be totally isotropic. Now choose anisotropic y in $[x]^{\perp}$. Then $[x, y]$ is the required plane. It is degenerate with $\operatorname{rad}([x, y])=[x]$.

Next $[y]^{\perp}$ is three dimensional and semisimple. Since x is in $[y]^{\perp}$ there exists a in $[y]$ such that $x \not \perp a$. If a is anisotropic, let $z=a$. If a is isotropic, let $z=a+x$. This will be anisotropic and still not orthogonal to x. In either case we have an anisotropic z in $[y]^{\perp}$ such that $x \not \perp z$. From this it follows that $[x, y, z]$ is semisimple; its radical is properly contained in $[x]$ whence is (0).

The three dimensional space $F=[x, y, z]$ is also spanned by $x, x+y$, and z.

Since $x+y$ is anisotropic $[x+y]^{\perp}$ is semisimple. Hence, x being in $[x+y]$ there is an anisotropic u in $[x+y]^{\perp}$ such that $x \not \perp u$. Then $[x, x+y, u]=[x, y, u]$ is again semisimple and of dimension three.

We now have two cases:
case $a: u$ is not in $[x, y, z]$. Then we put $G=[x, y, u]$ and get $F \cap G=[x, y]$.
case $b: u$ is in $[x, y, z]$. By construction, $\{x, x+y, u\}$ is a linearly ind $\epsilon \in \epsilon \operatorname{ld} \in \mathrm{nt}$ subset of F and hence is a basis of F. In particular, $[x, x+y, u]^{\perp}=$ $[u]^{\perp} \cap[x]^{\perp}=[x+y]^{\perp}$ is one dimensional semisimple, i.e. is spanned by an anisotropic vector a. Now u is in $[x+y]^{\perp}=[u] \oplus M, M$ of dimension two and semisimple. Note that $M=[u]^{\perp} \cap[x+y]^{\perp}$. Also $[a]=[u]^{\perp} \cap[x]^{\perp} \cap[x+y]^{\perp}$ $=[x]^{\perp} \cap M$. Thus there exists an anisotropic vector w in M such that $a \perp w$. Clearly then w is not in $[x]^{\perp}$ but w is in $[x+y]^{\perp}$. In this case we put G $=[x, x+y, w]=[x, y, w]$. Again we have $F \cap G=[x, y]$ both F and G semisimple of dimension three. This completes the proof.

We remark that if the dimension of E does not exceed 3 , then $P_{s}(E, \Phi)$ is a lattice simply because there is not enough height for things to go wreng. If in the above theorem, the dimension of E is finite and Φ admits no nonzero isotropic vectors, then $P_{s}(E, \Phi)=P_{s s}(E, \Phi)$ is the lattice of all subspaces of E. Also in particular we note that if Φ is the Minkowski metric fo space-time, then $P_{s}\left(\mathbb{R}^{4}, \Phi\right)$ is an orthomodular poset that is not an orthomodular lattice.

We close with some open questions:
QUESTION 1. What about the converse of Theorem 8 ?
Question 2. What is the cut completion of $P_{s}(E, \perp)$?

Acknowledgement

The author wishes to express his thanks to D. J. Foulis for his help.

References

[1] N. Bourbaki, Livre II Algèbre, Chapître IX, Forme Sesquilinéaire et Formes Quadratiques (Hermann, Paris, VI, 1959),
[2] O. T. O'Maera, Introduction to Quadratic Forms (Springer Verlag, Band 117, (1963)).
[3] J. C. T. Pool, Simultaneous Observability and the Logic of Quantum Mechanics, (Ph. D. Thesis, Iowa University, 1963).
[4] R. Piziak, An Algebraic Generalization of Hilbert Space Geometry (Ph. D. Thesis, Massachusetts 1969).
[5] A. Ramsay, 'A Theorem on Two Commuting Observables' J. Math. and Mech. 15 (1966). 227-234.

Department of Mathematics
University of Florida
205 Walker Hall, Gainesville
Florida 32601 U. S. A.

