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Abstract

Using theta correspondence, we classify the irreducible representations of Mp2n in terms
of the irreducible representations of SO2n+1 and determine many properties of this
classification. This is a local Shimura correspondence which extends the well-known
results of Waldspurger for n= 1.

1. Introduction

Let k be a non-Archimedean local field of characteristic zero and residual characteristic p. In this
section, we assume for simplicity that p is odd. Let (W, 〈−,−〉) be a symplectic vector space of
dimension 2n over k, with associated symplectic group Sp(W ). The group Sp(W ) has a unique
two-fold central extension Mp(W ), which is called the metaplectic group:

1 // {±1} // Mp(W ) // Sp(W ) // 1.

The purpose of this paper is to investigate the (genuine) representation theory of Mp(W ). More
precisely, we shall:

• obtain a local Langlands correspondence for Mp(W ) and establish some of its expected
properties;

• establish a result known as epsilon dichotomy, in which certain local root numbers are shown
to control the non-vanishing of certain theta lifts.

The prototype of our results is the work of Waldspurger, who considered the case
where dimW = 2. If Irr(G) denotes the set of isomorphism clases of irreducible (genuine)
representations of G, then Waldspurger showed that, with respect to any fixed additive character
ψ of k, there is a natural bijection

Irr(Mp(W ))←→
⊔
V

Irr(SO(V ))

where the (disjoint) union of the right-hand side runs over the 3-dimensional quadratic spaces
V of discriminant 1 (of which there are two) and SO(V ) denotes the associated special
orthogonal group. By combining these results with the local Langlands corespondence for
SO(V ) (with dim V = 3), one obtains a classification of Irr(Mp(W )) in terms of L-parameters.

Received 20 June 2011, accepted in final form 15 March 2012, published online 31 October 2012.
2010 Mathematics Subject Classification 11F27, 11F70 (primary), 22E50 (secondary).
Keywords: metaplectic groups, theta correspondence, epsilon dichotomy.
This journal is c© Foundation Compositio Mathematica 2012.

https://doi.org/10.1112/S0010437X12000486 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X12000486


W. T. Gan and G. Savin

This classification depends on the choice of ψ, but Waldspurger also determined how it changes
as one varies ψ. We shall recall these results more precisely in § 5. At this point, it suffices to note
that Waldspurger’s results were obtained from a detailed study of the local theta correspondence
associated to the dual pairs Mp(W )× SO(V ). Moreover, he was the first to realize the connection
between local root numbers and theta correspondence, establishing the aforementioned result on
epsilon dichotmy.

Subsequently, extensions of essentially all of Waldspurger’s results mentioned above to
the case of general W were obtained in the Archimedean case by Adams and Barbasch
[Ada95, AB95, AB98]. In this paper, we shall complete this (local) story by establishing the
analogous results for p-adic fields. We note that the method of proof used in the Archimedean
case relies crucially on detailed analysis of harmonic K-types and thus does not work in the
p-adic setting.

More precisely, one has the following theorem, whose proof was sketched in [GGP12] based
on a key result of Kudla and Rallis [KR05]. We shall give a detailed proof here.

Theorem 1.1. For each non-trivial additive character ψ : k→ C×, there is a bijection

Θψ : Irr(Mp(W ))←→ Irr(SO(V +)) t Irr(SO(V −))

where V + (respectively, V −) is the split (respectively, non-split) quadratic space of discriminant

1 and dimension 2n+ 1. This bijection is given by the theta correspondence (with respect to ψ)

for the group Mp(W )× SO(V ±).

Corollary 1.2. Assume the local Langlands correspondence for SO(V ±). Then one obtains a

local Langlands correspondence for Mp(W ), i.e. a bijection

Lψ : Irr(Mp(W ))←→ Φ(Mp(W ))

(depending on ψ) where Φ(Mp(W )) is the set of pairs (φ, η) such that:

• φ : WDk −→ Sp2n(C) is a 2n-dimensional symplectic representation of the Weil–Deligne

group WDk of k;

• η is an irreducible representation of the (finite) component group

Aφ = π0(ZSp2n(C)(φ)).

Since the local Langlands correspondence for SO(V ±) is known for dim V = 5 (from
[GT11, GT]), the statement of the corollary is unconditional in this case. The general case
should follow by combining the results of the recently released book [Art11] by Arthur and the
results of Jiang and Soudry [JS04].

One might ask if the local Langlands correspondence given in Corollary 1.2 satisfies certain
typical properties. For example, for a representation σ of Mp(W ) with L-parameter φ, one
would expect that σ is a discrete series representation if and only if φ does not factor through
any proper Levi subgroup. As another example, one would expect certain natural invariants, such
as L-factors and ε-factors, to be preserved under the correspondence. To a large extent,
such questions amount to asking whether the bijection Θψ satisfies the analogous properties.
We have the following result.

Theorem 1.3. Suppose that π ∈ Irr(SO(V )) and σ ∈ Irr(Mp(W )) correspond under Θψ. Then
the following hold.
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(i) π is a discrete series representation if and only if σ is a discrete series representation.

(ii) π is tempered if and only if σ is tempered. Moreover, suppose that

π ⊂ IQ(τ1, . . . , τr, π0),

where Q is a parabolic subgroup of SO(V ) with Levi subgroup GLn1 × · · · ×GLnr × SO(V0), the
τi are unitary discrete series representations of GLni , and π0 is a discrete series representation
of SO(V0). Then

σ ⊂ IP̃ (τ1, . . . , τr,Θψ(π0)),

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1 ×µ2 · · · ×µ2 G̃Lnr ×
Mp(W0). In particular, Θψ gives a bijection between the (isomorphism classes of) irreducible
constituents of IQ(τ1, . . . , τr, π0) and IP̃ (τ1, . . . , τr,Θψ(π0)).

(iii) In general, suppose that

π = JQ(τ1|det|s1 , . . . , τr|det|sr , π0) with s1 > s2 > · · ·> sr > 0

is a Langlands quotient of SO(V ), where Q is as in (ii), the τi are unitary tempered
representations of GLni , and π0 is a tempered representation of SO(V0). Then

σ = JP̃ (τ1|det|s1 , . . . , τr|det|sr ,Θψ(π0)),

where P̃ is as in (ii).

(iv) If π and σ are discrete series representations, then

deg(π) = deg(σ),

where deg denotes the formal degree with respect to the Haar measures giving:

– the Iwahori subgroup of SO(V +) volume 1;
– the Iwahori subgroup of SO(V −) volume 2(q + 1)/(q − 1) (with q being the size of the residue

field of k);
– the preimage in Mp(W ) of the Iwahori subgroup of Sp(W ) volume 1.

(v) If π is a generic representation of SO(V +), then σ is a ψ-generic representation of
Mp(W ). If σ is ψ-generic and tempered, then π is generic.

(vi) If π is an irreducible representation of SO(V ) and ρ is an irreducible representation of
GLr, then one has a Plancherel measure µ(s, π × ρ, ψ) associated to the induced representation
IP (s, π � ρ). If σ = Θψ(π), then one has

µ(s, π × ρ, ψ) = µ(s, σ × ρ, ψ).

(vii) If χ is a 1-dimensional character of GL1, then one has{
L(s, π × χ) = Lψ(s, σ × χ),
ε(s, π × χ, ψ) = ε(s, σ × χ, ψ),

where the local factors in question are those defined by Lapid and Rallis [LR05] using the
doubling method of Piatetski-Shapiro and Rallis [PR86].

(viii) Assume that π is generic, so that σ is ψ-generic. Then for any irreducible representation
ρ of GLr, one has the equalities{

L(s, π × ρ) = Lψ(s, σ × ρ),
ε(s, π × ρ, ψ) = ε(s, σ × ρ, ψ).
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Here the factors on the left-hand side are those defined by Shahidi [Sha90], and those on the
right-hand side are as defined by Szpruch [Szp09].

In the paper [GI] of the first author with Ichino, several of the results in Theorem 1.3 were
established for the local theta correspondences for general dual pairs of arbitrary sizes. In fact,
Theorem 1.3(iv) is one of the main results of [GI]; however, we do not make use of (iv) in this
paper, nor will we discuss its proof.

It is not difficult to see that the bijection Θψ (or Lψ) is determined by the properties of
the above theorem, at least on the level of L-packets. It has also come to our attention that
Moeglin [Moe11b] has given a definition of local L-packets (indeed local A-packets) of Mp(W )
using reducibilities of generalized principal series representations, extending her approach for the
linear classical groups. It follows from Theorem 1.3(i)–(vi) that our local L-packets agree with
Moeglin’s. Since we will not recall her intricate results, we do not elaborate on this point here.

Let us return to Theorem 1.1. The key steps in the proof of Theorem 1.1 are the following
two statements:

(a) given an irreducible representation π of SO(V ), exactly one extension of π to O(V ) =
SO(V )× {±1} has non-zero theta lift to Mp(W );

(b) given an irreducible representation σ of Mp(W ), σ has non-zero theta lift to O(V ) for
exactly one V .

Now one may ask whether it is possible to specify, in the context of (a), which of the extensions π±

of π participates in the theta correspondence with Mp(W ). Analogously, given a representation
σ in the context of (b), one might ask to which O(V ) is the theta lift of σ non-zero. To describe
the answers, we need to introduce some more notation.

First, let us write

ε(V ) =

{
+1 if V = V +,
−1 if V = V −.

Further, observe that the sign ε in πε simply encodes the central character of πε:

ε= πε(−1).

On the other hand, for an irreducible genuine representation σ of Mp(W ), one may consider its
central character ωσ, which is a genuine character of Z̃ (the preimage in Mp(W ) of the center
Z of Sp(W )). Now, using the additive character ψ, one can define a genuine character χψ of Z̃
(see § 2.4). We define the central sign zψ(σ) of σ by

zψ(σ) = ωσ(−1)/χψ(−1) ∈ {±1},

where we note that the quotient above is independent of the choice of the preimage in Z̃ of
−1 ∈ Z.

We then have the following result.

Theorem 1.4. (i) Let π be an irreducible representation of SO(V ). Then πε participates in
theta correspondence (with respect to ψ) with Mp(W ) if and only if

ε= ε(V ) · ε(1/2, π).

Here ε(s, π, ψ) is the standard epsilon factor defined by Lapid and Rallis [LR05] using the
doubling method; its value at s= 1/2 is independent of ψ.
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(ii) Let σ be an irreducible representation of Mp(W ). Then σ has non-zero theta lift (with
respect to ψ) to O(V ) if and only if the central character of σ satisfies

zψ(σ) = ε(V ) · ε(1/2, σ, ψ) = ε(V ) · ε(1/2,Θψ(σ)).

We should mention that the analogous theorem in the context of theta correspondence for
unitary groups was shown by Harris et al. [HKS96], at least for ‘most’ representations.

Finally, we investigate how the local Langlands correspondence Lψ depends on ψ. For this,
we shall of course assume the local Langlands correspondence for SO(V ±) so that Corollary 1.2
makes sense. In addition, we assume that the local Langlands correspondence for SO(V ±)
satisfies certain expected properties in relation to the theory of endoscopy; these are detailed in
§ 12. To state the result, we recall that φ : WDk −→ Sp2n(C) is a symplectic representation of
WDk, and if we write φ=

⊕
i ni · φi as a direct sum of irreducible representations φi with some

multiplicities ni, then the component group Aφ is given by

Aφ =
∏

i: φi symplectic

Z/2Zai,

so that Aφ is a vector space over Z/2Z with a canonical basis. Now we have the following theorem.

Theorem 1.5. For σ ∈ Irr(Mp(W )) and c ∈ k×, let

Lψ(σ) = (φ, η) and Lψc(σ) = (φc, ηc).

Then the following hold.

(i) φc = φ⊗ χc, where χc is the quadratic character associated to c ∈ k×/k×2.
It follows that we have the canonical identification of component groups

Aφ =Aφc =
⊕
i

Z/2Zai,

so that it makes sense to compare η and ηc.

(ii) The characters η and ηc are related by

ηc(ai)/η(ai) = ε(1/2, φi) · ε(1/2, φi ⊗ χc) · χc(−1)(dim φi)/2 ∈ {±}.

It is interesting to note that the proof of this last theorem makes use of the Gross–Prasad
conjecture for tempered representations of special orthogonal groups, which has recently been
demonstrated by Waldspurger in a remarkable series of articles [Wal10, Wal12a, Wal1, Wal2].

In a sequel to this paper, we shall investigate the relation between the representation theories
of SO(V ±) and Mp(W ) from the point of view of Hecke algebra isomorphisms.

2. Metaplectic and orthogonal groups

In this section, we establish some notation for the groups of interest in this paper. Recall that
k is a non-Archimedean local field of characteristic zero and residual characteristic p. Let Ok be
the ring of integers of k with residue field κ= Fq.

2.1 Symplectic group
Let W be a 2n-dimensional vector space over k equipped with a non-degenerate skew-symmetric
form 〈−,−〉W , and let Sp(W ) be the associated symplectic group. We may fix a Witt basis of W ,
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consisting of vectors
e1, . . . , en, e

∗
n, . . . , e

∗
1

satisfying
〈ei, ej〉W = 〈e∗i , e∗j 〉W = 0 and 〈ei, e∗j 〉W = δij .

For any 16 k 6 n, let

Xk = Span(e1, . . . , ek) and X∗k = Span(e∗1, . . . , e
∗
k),

so that W =Xn ⊕X∗n. We also set

Wn−k = Span(ek+1, . . . , en, e
∗
n, . . . , e

∗
k+1)

so that
W =Xk ⊕Wn−k ⊕X∗k .

2.2 Parabolic subgroups
We now describe the parabolic subgroups of Sp(W ) up to conjugacy. Consider the flag of isotropic
subspaces

Xk1 ⊂Xk1+k2 ⊂ · · · ⊂Xk1+···+kr ⊂W.
The stabilizer of such a flag is a parabolic subgroup P whose Levi factor M is given by

M ∼= GL(k1)× · · · ×GL(kr)× Sp(Wn−k1−···−kr),

where GL(ki) is the group of invertible linear maps on Span(eki+1, . . . eki+1
). In particular, the

maximal parabolic subgroups of Sp(W ) are simply the stabilizers P (Xk) of the isotropic spaces
Xk (16 k 6 n). For a given k, the choice of the complementary space X∗k gives a Levi subgroup
of P (Xk),

M(Xk) = GL(Xk)× Sp(Wn−k),
with GL(Xk) acting naturally on X∗k by functoriality. Moreover, the unipotent radical N(Xk)
sits in a short exact sequence

1 // Z(Xk) // N(Xk) // Hom(Wn−k, Xk) // 1

where Z(Xk)∼= Sym2Xk is isomorphic to the space of symmetric bilinear forms on Yk. When
k = n, N(Xk) = Z(Xk) is abelian and P (Xn) is called the Siegel parabolic subgroup.

2.3 Metaplectic group
The group Sp(W ) has a unique two-fold cover Mp(W ). As a set, we may write

Mp(W ) = Sp(W )× {±1}
with group law given by

(g1, ε1) · (g2, ε2) = (g1g2, ε1ε2 · c(g1, g2))

for some 2-cocycle c on Sp(W ) valued in {±1}. Without describing c explicitly, let us describe
the restriction of this double cover over a maximal parabolic subgroup P (Xk) of Sp(W ).

The covering splits uniquely over the unipotent radical N(Xk) of P (Xk). Thus, we may regard
N(Xk) canonically as a subgroup of Mp(W ), and one has a Levi decomposition

P̃ (Xk) = M̃(Xk) ·N(Xk).

We need to describe the covering over M(Xk)∼= GL(Xk)× Sp(Wn−k).

1660

https://doi.org/10.1112/S0010437X12000486 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000486


Metaplectic groups

Not surprisingly, the restriction of the covering to Sp(Wn−k) is nothing but the unique two-
fold cover Mp(Wn−k) of Sp(Wn−k). The covering over GL(Xk) can be described as follows.
Consider the set

GL(Xk)× {±1}
with multiplication law

(g1, ε1) · (g2, ε2) = (g1g2, ε1ε2 · (det g1, det g2)),

where (det g1, det g2) denotes the Hilbert symbol. Then G̃L(Xk) is precisely this double cover of
GL(Xk).

Hence we have

M̃(Xk) = (G̃L(Xk)×Mp(Wn−k))/∆µ2.

More generally, for any parabolic subgroup P , one has the Levi decomposition

P̃ = M̃ ·N

with

M̃ ∼= G̃L(k1)×µ2 · · · ×µ2 G̃L(kr)×µ2 Mp(Wn−k1−···−kr).

2.4 Representations of G̃L(Xk)

The (genuine) representation theory of G̃L(Xk) can be easily related to the representation theory
of GL(Xk). Indeed, the determinant map

det : GL(Xk)−→GL(1)

has a natural lifiting

d̃et : G̃L(Xk)−→ G̃L(1)

given by

d̃et(g, ε) = (det g, ε).

On the other hand, if we fix an additive character ψ of k, then there is a natural genuine character
of G̃L(1), defined by

(a, ε) 7→ ε · γ(a, ψ)−1

with

γ(a, ψ) = γ(ψa)/γ(ψ),

and the Weil index γ(ψ) is an eighth root of unity associated to ψ by Weil. Composing this
genuine character with d̃et gives a genuine character χψ of G̃L(Xk), which satisfies

χψ(g, ε)2 = (det g,−1).

Using the genuine character χψ, one obtains a bijection between Irr(GL(Xk)) and the set
Irr(G̃L(Xk)) of genuine irreducible representations of G̃L(Xk), via

τ 7→ τ̃ψ = τ ⊗ χψ.

We stress that this bijection depends on the choice of the additive character ψ.
Note that we could restrict the genuine character χψ to the center Z̃ of Mp(W ). We denote

this character of Z̃ by χψ as well. This character allows one to define a central sign for irreducible
representations σ of Mp(W ), as explained in § 1.
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2.5 Parabolic induction

After the above discussion, one sees that given an irreducible representation τ of GL(Xk) and
an irreducible representation π of Mp(Wn−k), one has an irreducible representation τ̃ψ � π of
M̃(Xk). Thus, one may consider the parabolically induced representation

IP (Xk),ψ(τ, π) = IndMp(W )

P̃ (Xk)
τ̃ψ � π (normalized induction).

More generally, for any parabolic subgroup P =M ·N and irreducible representations τi of
GL(ki) and π of Mp(Wn−k1−···−kr), one has the induced representation

IP,ψ(τ1, . . . , τr, π).

A particular case of this is where P =B is the Borel subgroup, so that each ki is 1. In that
case, given characters χ1, . . . , χn, one has the principal series representations

IB,ψ(χ1, . . . , χn).

If the χi are unramified, we shall call such a representation an unramified principal series
representation; note that this notion of ‘unramified representation’ depends on the choice of ψ.

Although Mp(W ) is not a linear group, many basic results concerning the induction and
Jacquet functors remain valid. For a justification of this, the reader can consult [HM10].

2.6 Maximal compact subgroup

Let Λ be the Ok-lattice generated by the vectors ei and e∗j . Then Λ is a self-dual lattice and the
stabilizer of Λ in Sp(W ) is a hyperspecial maximal compact subgroup K. Note that there are
two conjugacy classes of hyperspecial maximal compact subgroups in Sp(W ); the other class of
hyperspecial maximal compact subgroup is represented by the stabilizer K ′ of the lattice

Λ′ = 〈ei, e∗j/$〉.

The groups K and K ′ are conjugate by the similitude group GSp(W ).

When p 6= 2, the metaplectic covering is known to split uniquely over K and K ′. Thus, we
may regard K and K ′ as subgroups of Mp(W ). It is interesting to note that the K-spherical
irreducible representations of Mp(W ) are exactly the unique K-spherical constituents of the
unramified principal series representations IB,ψ(χ1, . . . , χn) precisely when the conductor of ψ
is of the form $2r. When the conductor of ψ is $2r+1, the analogous statement holds for the
group K ′. For more discussion of this, the reader can consult [GS12].

2.7 Orthogonal groups

Now we come to the orthogonal groups. Let V be a vector space of dimension 2n+ 1 over k
equipped with a non-degenerate quadratic form qV of discriminant 1. There is a symmetric
bilinear form bq associated to q,

bq(v1, v2) = q(v1 + v2)− q(v1)− q(v2).

Up to isomorphism, there are precisely two such quadratic spaces V . One of them, to be denoted
by V +, has maximal isotropic subspaces of dimension n, whereas the other has maximal isotropic
subspaces of dimension n− 1 and is denoted by V −. As such, we call the former the split quadratic
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space and the latter the non-split one. We shall write

ε(V ) =

{
+1 if V is split,
−1 if V is non-split.

Let O(V ) be the associated orthogonal group. Then observe that

O(V ) = SO(V )× {±1}

where SO(V ) is the special orthogonal group. The group SO(V ) is split precisely when V is the
split quadratic space.

Given any irreducible representation π of SO(V ), there are two extensions of π to O(V ),
depending on whether the element −1 ∈O(V ) acts as +1 or −1. We denote these two extensions
by π+ and π−, respectively.

2.8 Parabolic subgroups

The parabolic subgroups of O(V ) are stabilizers of flags of isotropic subspaces in V . More
precisely, if Yr = Span(v1, . . . , vr) is a maximal isotropic subspace of V , then we may write

V = Yr + V0 + Y ∗r ,

where V0 is anisotropic and Y ∗r = Span(v∗r , . . . , v
∗
1) is isotropic and satisfies

bq(vi, v∗j ) = δij .

For each 16 k 6 r, let Yk = Span(v1, . . . , vk) and Y ∗k = Span(v∗1, . . . , v
∗
k), and let Vn−k be such

that

V = Yk + Vn−k + Y ∗k .

Now, given a flag in Yr,

Yk1 ⊂ Yk1+k2 ⊂ · · · ⊂ Yk1+···+kr ,

the associated parabolic subgroup P has Levi subgroup

M = GL(k1)×GL(k2)× · · · ×GL(kr)×O(Vn−k1−···−kr)

where GL(ki) is the group of invertible linear maps on Span(vki−1+1, . . . , vki).

3. Weil representations and theta correspondences

In this section, we introduce the Weil representations for Mp(W )×O(V ) and recall the notion
of theta correspondence.

3.1 Weil representation

Fix an additive character ψ of k. Then the group Mp(W )×O(V ) has a natural representation
ΩV,W,ψ depending on ψ. This representation can be realized on the space S(X∗ ⊗ V ) of Schwarz–
Bruhat functions on X∗ ⊗ V = Hom(X, V ). The action of Mp(W )×O(V ) on S(X∗ ⊗ V )
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via ΩV,W,ψ is described as follows:

(Ωψ(h)φ)(A) = φ(h−1A) if h ∈O(V ),

(Ωψ(n)φ)(A) = ψ
(

1
2 · 〈n(A), A〉

)
· φ(A) if n ∈N(X) = Sym2X ⊂Hom(X∗, X),

(Ωψ(m, ε)φ)(A) = χψ(m, ε) · |det(m)|(dim V )/2 · φ(m−1 ·A) if (m, ε) ∈ M̃(X) = G̃L(X),

(Ωψ(w)φ)(A) = γ(ψ ◦ qV )n ·
∫
X∗⊗V

φ(B) · ψ(〈A, B〉) dB.

Here, in the last equation, w is a certain Weyl group element and γ(ψ ◦ qV ) is the Weil index
associated to the pair (ψ, qV ). Moreover, in the second equation, with A ∈X∗ ⊗ V , the element
n(A) lies in X ⊗ V , and the pairing between X ⊗ V and X∗ ⊗ V is the tensor product of
the natural pairing between X and X∗ and the symmetric bilinear form bV associated to the
quadratic form qV on V , namely

bV (v1, v2) = qV (v1 + v2)− qV (v1)− qV (v2).

3.2 Theta correspondence

Given an irreducible representation π of O(V ), the maximal π-isotypic quotient of ΩV,W,ψ has the
form π �ΘV,W,ψ(π) for some smooth representation ΘV,W,ψ(π) of Mp(W ) (called the big theta
lift of π). The maximal semisimple quotient of ΘV,W,ψ(π) is denoted by θV,W,ψ(π) and is called
the small theta lift of π.

Similarly, if σ is an irreducible genuine representation of Mp(W ), then one has its big theta
lift ΘW,V,ψ(σ) and its small theta lift θW,V,ψ(σ), which are smooth representations of O(V ).

The following theorem summarizes some basic results of Howe, Kudla [Kud86], Moeglin et al.
[MVW87] and Waldspurger [Wal90] about theta correspondence.

Theorem 3.1. (i) The representation ΘV,W,ψ(π) either is zero or has finite length.

(ii) If π is supercuspidal, then ΘV,W,ψ(π) is either zero or irreducible (and thus is equal
to θV,W,ψ(π)). Moreover, if π and π′ are supercuspidal representations such that ΘV,W,ψ(π)∼=
ΘV,W,ψ(π′), then π ∼= π′.

(iii) If p 6= 2, then ΘV,W,ψ(π) either is zero or has a unique irreducible quotient, so that
θV,W,ψ(π) is irreducible. Moreover, for any irreducible representations π and π′ of O(V ),

θV,W,ψ(π)∼= θV,W,ψ(π′) =⇒ π ∼= π′.

(iv) The analogous statements hold for ΘW,V,ψ(σ) and θW,V,ψ(σ) if σ is an irreducible genuine
representation of Mp(W ).

3.3 The doubling see-saw

Given an irreducible representation π of SO(V ), we are interested in whether ΘV,W,ψ(πε) is
non-zero. To address this question, it is useful to introduce the ‘doubled space’

V = V + (−V )

where −V is the quadratic space (V,−q). The quadratic space V has even dimension and is split,
with a maximal isotropic subspace given by

V ∆ = {(v, v) : v ∈ V } ⊂ V.
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Now consider the following see-saw diagram.

O(V)

SSSSSSSSSSSSSSSSS Mp(W )×µ2 Mp(W )

O(V )×O(V )

kkkkkkkkkkkkkk
Sp(W )

The see-saw identity says that

HomSp(W )(ΘV,W,ψ(π)⊗Θ−V,W,ψ(π∨), C)∼= HomO(V )×O(V )(ΘW,V,ψ(1), π ⊗ π∨).

Note that if c is an element of GSp(W ) with similitude factor −1, then

Θ−V,W,ψ(π∨) = ΘV,W,ψ(π)c,

and for an irreducible representation σ of Mp(W ), σc ∼= σ∨ (cf. [Kud]). From this, we deduce
the following lemma.

Lemma 3.2. Let π be an irreducible representation of O(V ). Then ΘV,W,ψ(π) 6= 0 if and only if

HomO(V )×O(V )(ΘW,V,ψ(1), π ⊗ π∨) 6= 0.

Similarly, starting from an irreducible representation σ of Mp(W ) and considering the see-saw
diagram

Mp(W)

SSSSSSSSSSSSSSS
O(V )×O(V )

Mp(W )×Mp(W )

kkkkkkkkkkkkkk
O(V )

with

W =W + (−W ),

we obtain the following result.

Lemma 3.3. Let σ be an irreducible representation of Mp(W ). Then ΘW,V,ψ(σ) 6= 0 if and only
if

HomMp(W )×Mp(W )(ΘV,W,ψ(1), σ ⊗ σ∨) 6= 0.

3.4 Degenerate principal series

In order for the non-vanishing criteria given in Lemmas 3.2 and 3.3 to be useful, we need to
understand the representations ΘW,V,ψ(1) of O(V) and ΘV,W,ψ(1) of Mp(W) more precisely. For
this, we need to describe some degenerate principal series representations of O(V) and Mp(W).

Recall that we have the Siegel parabolic subgroup P (V ∆) of O(V), with Levi subgroup
GL(V ∆). For s ∈ C, let

IP (V ∆)(s) := IndO(V)

P (V ∆)
|det|s (normalized induction).

Similarly, we have the Siegel parabolic subgroup P̃ (W∆) of Mp(W) with Levi subgroup GL(W∆),
and we set

IP̃ (W∆),ψ(s) := IndO(V)

P̃ (W∆)
χψ · |det|s (normalized induction).
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3.5 Theta lifts of trivial representation

We consider the Weil representation ΩW,V,ψ of O(V)× Sp(W ), which has a Schrödinger model
realized on S((V ∆)∗ ⊗W ). The action of Sp(W ) in this model is geometric:

(g · φ)(a) = φ(g−1 · a) for g ∈ Sp(W ).

There is a natural Sp(W )-invariant and O(V)-equivariant map

f : S((V ∆)∗ ⊗W )−→ IP (V ∆)(0)

which sends φ to the function

fφ(h) = (h · φ)(0).

Then we have the following proposition due to Kudla and Rallis.

Proposition 3.4. (i) The map f induces an injection

ΘW,V,ψ(1) ↪→ IP (V ∆)(0)

of O(V)-modules.

(ii) The representation ΘW,V,ψ(1) is irreducible.

(iii) One has

IP (V ∆)(0)∼= ΘW,V,ψ(1)⊕ΘW,V,ψ(1)⊗ detO(V).

Similarly, with the Weil representation ΩV,W,ψ of O(V )×Mp(W) realized on S((W∆)∗ ⊗ V ),
there is a natural O(V )-invariant and Mp(W)-equivariant map

f : S((W∆)∗ ⊗ V )−→ IP (W∆),ψ(0)

which sends φ to the function

fφ(g) = (ΩV,W,ψ(g)φ)(0).

Then we have the following proposition, which is due to Sweet [Swe95] (see also [GI, Zor11]).

Proposition 3.5. (i) The map f induces an injection

ΘV,W,ψ(1) ↪→ IP (W∆),ψ(0).

(ii) The representation ΘV,W,ψ(1) is irreducible.

(iii) One has

IP (W∆),ψ(0)∼= ΘV +,W,ψ(1)⊕ΘV −,W,ψ(1).

4. Doubling zeta integrals and epsilon factors

We keep the notation of the previous section. Propositions 3.4 and 3.5 imply that we need to
understand the spaces

HomO(V )×O(V )(IP (V ∆)(0), π ⊗ π∨) and HomMp(W )×Mp(W )(IP (W∆),ψ(0), σ ⊗ σ∨).

The doubling zeta integral allows one to write down a non-zero element in each of these two
spaces.
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4.1 Doubling zeta integral

More precisely, for fs ∈ IP (V ∆)(s), v ∈ π and v∨ ∈ π∨, we define the integral

Z(s, f, v, v∨) =
∫

O(V )
fs(g, 1) · 〈g · v∨, v〉 dg.

The following theorem [KR90, LR05] summarizes the properties of this family of zeta integrals.

Theorem 4.1. (i) There exists a constant c such that whenever Re(s)> c, the integral
Z(s, f, v, v∨) converges for all data fs, v and v∨. If π is tempered, then we may take c=−1.

(ii) If fs is a standard section of IP (V ∆)(s), then the function Z(s, f, v, v∨) is a rational
function (when Re(s)> c) and thus admits meromorphic continuation to C.

(iii) For each s0, there exist data f , v and v∨ such that Z(s0, f, v, v
∨) is finite and non-zero.

(iv) There is a non-negative integer k (depending on s0) such that (s− s0)k · Z(s, f, v, v∨) is
holomorphic at s= s0 and is non-zero there for some choice of data.

(v) Let Z∗(s0) denote the leading term in the Laurent expansion of Z(s) as a linear form, so
that

Z∗(s0, f, v, v
∨) = ((s− s0)k · Z(s, f, v, v∨))|s=s0 .

Then Z∗(s0) is a non-zero element of HomO(V )×O(V )(IP (V ∆)(0)⊗ π∨ ⊗ π, C). In particular, we
see that

HomO(V )×O(V )(IP (V ∆)(0)⊗ π∨ ⊗ π, C) 6= 0.

If π is supercuspidal, one can show that

dim HomO(V )×O(V )(IP (V ∆)(0)⊗ π∨ ⊗ π, C) = 1.

Indeed, this multiplicity-one result is known to hold for most representations, and is conjectured
to hold for all.

One has analogous statements for Mp(W ), which imply the following result.

Proposition 4.2. We have that

HomMp(W )×Mp(W )(IP (W∆),ψ(0)⊗ σ∨ ⊗ σ, C) 6= 0.

We omit the details.

4.2 Functional equation and standard epsilon factor

Another important property of doubling zeta integrals is that they satisfy a local functional
equation. To describe this, note that there is a standard intertwining operator

Mψ(s) : IP (V ∆)(s)−→ IP (V ∆)(−s).

This is defined for Re(s)� 0 by the integral

Mψ(s)(f)(h) =
∫
N(V ∆)

f(wnh) dnψ,

and by meromorphic continuation in general, with w = (1,−1) ∈O(V )×O(V ). In [LR05],
Lapid and Rallis defined a certain normalization M∗ψ(s) of Mψ(s) satisfying

M∗ψ(−s) ◦M∗ψ(s) = Id.
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This implies that M∗ψ(s) is holomorphic at s= 0 and satisfies

M∗ψ(0)2 = Id.

In particular, M∗ψ(0) acts as +1 or −1 on each of the two irreducible summands of IP (V ∆)(0).
We shall determine the precise action of M∗ψ(0) later on.

Refining the work of Piatetski-Shapiro and Rallis [PR86], Lapid and Rallis [LR05] showed
that the local zeta integral Z(s) satisfies a functional equation of the form

Z(−s, M∗ψ(s)(f), v, v∨) = ε(V ) · π(−1) · γ(s+ 1
2 , π, ψ) · Z(s, f, v, v∨),

for some rational function γ(s, π, ψ) (in q−s). Following Lapid and Rallis, we formulate the
definition below.

Definition. (i) The function γ(s, π, ψ) is called the standard γ-factor of π.
(ii) If π is tempered, we may write

γ(s, π, ψ) = ε(s, π, ψ) · L(1− s, π∨, ψ)
L(s, π)

where ε(s, π, ψ) is a monomial function of q−s and L(s, π)−1 is the numerator of the rational
function γ(s, π, ψ), normalized so that it is a polynomial in q−s with constant term 1.
The function ε(s, π, ψ) is called the standard epsilon factor of π, and L(s, π) the standard
L-factor of π.

(iii) If π is non-tempered, we realize π as a Langlands quotient of a standard module and
define ε(s, π, ψ) and L(s, π) by multiplicativity.

Lapid and Rallis showed that, with the above definitions, the local factors γ(s, π, ψ), ε(s, π, ψ)
and L(s, π) satisfy a number of expected properties which characterize them uniquely. In
particular,

ε(1/2, π, ψ) =±1

is independent of ψ. Hence, we shall simply denote it by ε(π).

4.3 Metaplectic case
The analogous theory of the doubling zeta integral for metaplectic groups is obtained in [Gan].
We record some of the relevant facts in this subsection.

There is a standard intertwining operator

Mψ(s) : IP (W∆),ψ(s)−→ IP (W∆),ψ(−s).

One may normalize this intertwining operator to obtain the normalized operator M∗ψ(s); this
normalization has been treated in [Swe95, Zor11], and satisfies

M∗ψ(−s) ◦M∗ψ(s) = Id.

Hence M∗ψ(s) is holomorphic at s= 0 and satisfies

M∗ψ(0)2 = Id.

In particular, M∗ψ(0) acts as +1 or −1 on each of the two irreducible summands of IP (W∆),ψ(0).
The local functional equation of the doubling zeta integral can now be written as

Z(−s, M∗ψ(s)(f), v, v∨) = zψ(σ) · γ(s+ 1
2 , σ, ψ) · Z(s, f, v, v∨)
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for some rational function γ(s, σ, ψ) (in q−s), where zψ(σ) =±1 is the central sign of σ. Following
[LR05], one can now make the following definition.

Definition. (i) The function γ(s, σ, ψ) is called the standard γ-factor of σ.
(ii) If σ is tempered, we may write

γ(s, σ, ψ) = ε(s, σ, ψ) · L(1− s, σ∨, ψ)
L(s, σ, ψ)

where ε(s, σ, ψ) is a monomial function of q−s and L(s, σ, ψ)−1 is the numerator of the
rational function γ(s, σ, ψ), normalized so that it is a polynomial in q−s with constant term 1.
The function ε(s, σ, ψ) is called the standard epsilon factor of σ, and L(s, σ, ψ) the standard
L-factor of σ relative to the choice of ψ.

(iii) If σ is non-tempered, we realize σ as a Langlands quotient of a standard module and
define ε(s, σ, ψ) and L(s, σ, ψ) by multiplicativity.

In [Gan], it was checked that the above definition of γ(s, σ, ψ) satisfies the analog of the ‘Ten
Commandments’ in [LR05, Theorem 4] and is uniquely determined by these.

5. Interlude: results of Waldspurger

Before coming to the main results of this paper, we take a short interlude to recall the results of
Waldspurger [Wal80, Wal91] in the case where dimW = 2 and dim V = 3.

By studying the theta correspondence for Mp(W )× SO(V ) in detail, Waldspurger showed
the following result.

Theorem 5.1. Fix an additive character ψ of k.

(i) Given any irreducible representation π of SO(V ), the theta lift θV,W,ψ(π) of π to Mp(W )
is irreducible and non-zero.

(ii) The construction in (i) gives a bijection

Θψ : Irr(SO(V +)) ∪ Irr(SO(V −))←→ Irr(Mp(W )).

(iii) π ∈ Irr(SO(V )) is a discrete series (respectively, tempered) representation if and only if
Θψ(π) is a discrete series (respectively, tempered) representation.

(iv) Via the local Langlands correspondence for SO(V ±), one then has a bijection

Lψ : Irr(Mp(W ))←→ Φ(Mp(W )).

The above theorem says that:

(a) given π ∈ Irr(SO(V )), exactly one extension πε of π to O(V ) participates in the theta
correspondence with Mp(W );

(b) given σ ∈ Irr(Mp(W )), σ participates in theta correspondence with exactly one of O(V +)
or O(V −).

As a refinement of the above two statements, Waldspurger established the following theorem.

Theorem 5.2. (i) Given π ∈ Irr(SO(V )), πε participates in theta correspondence with Mp(W )
if and only if

ε= ε(V ) · ε(1/2, π).
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(ii) Given σ ∈ Irr(Mp(W )), σ participates in theta correspondence with O(V ) if and only if

zψ(σ) = ε(V ) · ε(1/2,Θψ(σ)) = ε(V ) · ε(1/2, Lψ(σ)).

Indeed, the two statements in Theorem 5.2 are equivalent, and what Waldspurger showed
is statement (ii). Statement (ii) also has the following implication. If π ∈ Irr(SO(V +)) has
L-parameter φ and Jacquet–Langlands lift π′ ∈ Irr(SO(V −)) (if it exists), then the L-packet
associated to φ is

Lψ,φ = {Θψ(π),Θψ(JL(π))}.
Theorem 5.2(ii) implies that the elements in Lψ,φ have different central characters.

It is instructive to examine the following example.

Example. Let StV + be the Steinberg representation of SO(V +), so that its Jacquet–Langlands
lift is the trivial representation 1V − of SO(V −). In this case, one knows that

ε(1/2, StV +) = ε(1/2, 1V −) =−1.

Thus, the extensions St−
V + and 1+

V − participate in the theta correspondence with Mp(W ).
Moreover, one has

Θψ(StV +) = ωo
ψ and Θψ(1V −) = Stψ,

where ωo
ψ is the odd Weil representation of Mp(W ) associated to ψ and Stψ is the Steinberg

representation of Mp(W ) associated to ψ. The representation Stψ sits in a short exact sequence

0 // Stψ // IB,ψ(| − |1/2) // ωe
ψ

// 0,

with ωe
ψ denoting the even Weil representation associated to ψ.

The decomposition

Irr(Mp(W )) =
⊔
φ

Lψ,φ

is a canonical decomposition, in the sense that it is independent of ψ. However, the labelling of
the packets by L-parameters φ depends on ψ, and so does the labelling of the representations in
each packet by the characters of the component group A(φ). Finally, Waldspurger determined
how this dependence varies with ψ.

Theorem 5.3. For a ∈ k×, let ψa denote the additive character given by ψa(x) = ψ(ax) and let
χa be the quadratic character associated to the class of a ∈ k×/k×2. Suppose that

Lψ(σ) = (φ, η) and Lψa(σ) = (φa, ηa).

Then

φa = φ⊗ χa
and

ηa/η = ε(1/2, φ⊗ χa) · ε(1/2, φ) · χa(−1).

The purpose of this paper is to extend Theorems 5.1, 5.2 and 5.3 to the case of higher rank
(where dim V = 2n+ 1).
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6. The local Langlands correspondence for Mp2n

The goal of this section is to prove Theorem 1.1. The proof of this theorem was sketched in
[GGP12], with the key step being the following special case of more general results of Kudla and
Rallis [KR05].

Theorem 6.1. Let σ be an irreducible (genuine) representation of Mp(W ). Then at most one
of ΘW,V +,ψ(σ) or ΘW,V −,ψ(σ) is non-zero.

Corollary 6.2. For σ ∈ Irr(Mp(W )), exactly one of ΘW,V +,ψ(σ) or ΘW,V −,ψ(σ) is non-zero.

Proof. Given σ ∈ Irr(Mp(W )), Lemma 3.3, Proposition 3.5(iii) and Proposition 4.2 imply
that at least one of ΘW,V +,ψ(σ) or ΘW,V −,ψ(σ) is non-zero. Thus the corollary follows by
Theorem 6.1. 2

When p is odd, the small theta lift θW,V ε,ψ(σ) is irreducible or zero. Thus, the corollary
implies that one has an injective map

Irr(Mp(W ))−→ Irr(O(V +)) t Irr(O(V −)).

By restricting representations of O(V ) to SO(V ), one obtains a map

Θψ : Irr(Mp(W ))−→ Irr(SO(V +)) t Irr(SO(V −))

(not necessarily injective at this point). We need to show that the map Θψ is bijective. For this,
we note the following fact.

Proposition 6.3. Given π ∈ Irr(O(V )) with extensions π± to O(V ), at most one of ΘV,W,ψ(π±)
is non-zero.

Proof. Suppose to the contrary that π+ and π− both participate in theta correspondence with
Mp(W ), say

σ+ = θV,W,ψ(π+) and σ− = θV,W,ψ(π−).

Observe also that

π− = π+ ⊗ det .

Now consider the following doubling see-saw diagram.

Mp(W + (−W ))

JJJJJJJJJJJJJJJJJJJJ
O(V )×O(V )

Mp(W )×Mp(W )

tttttttttttttttttttt
O(V )

The see-saw identity implies that

HomMp(W )×Mp(W )(ΘV,W+(−W ),ψ(det), σ+ � (σ−)∨)⊃HomO(V )(π
+ ⊗ (π−)∨, det) 6= 0.

This implies that

ΘV,W+(−W ),ψ(det) 6= 0.

However, a classical result of Rallis [Ral84, Appendix] says that the determinant character of
O(V ) does not participate in the theta correspondence with Mp(4r) for r 6 n. This gives the
desired contradiction, and hence the proposition is proved. 2
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Corollary 6.4. Given π ∈ Irr(SO(V )) with extensions π± to O(V ), exactly one of ΘV,W,ψ(π±)
is non-zero.

Proof. By Lemma 3.2, Proposition 3.4(iii) and Theorem 4.1(iv), we see that at least one of
ΘV,W,ψ(π±) is non-zero. Thus the corollary follows from Proposition 6.3. 2

This corollary implies that the map Θψ is bijective (when p is odd). Therefore Theorem 1.1
is proved.

Remark. The only reason for assuming odd residue characteristic in Theorem 1.1 and its proof
is that Howe’s conjecture for local theta correspondence is only known under this assumption.

7. Theta dichotomy and epsilon factor

In this section we shall prove Theorem 1.4, which we restate here for ease of reference.

Theorem 7.1. (i) Let π be an irreducible representation of SO(V ). Then πε participates in
theta correspondence (with respect to ψ) with Mp(W ) if and only if

ε= ε(V ) · ε(1/2, π).

(ii) Let σ be an irreducible representation of Mp(W ). Then σ has non-zero theta lift (with
respect to ψ) to O(V ) if and only if the central sign of σ satisfies

zψ(σ) := ωσ(−1)/χψ(−1) = ε(V ) · ε(1/2, σ, ψ) = ε(V ) · ε(1/2,Θψ(σ)).

This theorem refines the results of Corollaries 6.2 and 6.4. Moreover, we do not need to
assume that p is odd here.

We first prove statement (i) in the theorem. Assume first that π ∈ Irr(SO(V )) is tempered.
Then the doubling zeta integral Z(s, f, v, v∨) is holomorphic at s= 0 for any v ∈ π and v∨ ∈ π∨,
and f ∈ IP (V ∆)(0). Moreover,

0 6= Z(0) ∈HomO(V )×O(V )(IP (V ∆)(0)⊗ πε ⊗ (πε)∨, C).

We need to determine whether Z(0) is non-zero when restricted to the irreducible submodule
ΘW,V,ψ(1). For this, we take note of the local functional equation

Z(−s, M∗ψ(s)(f), v, v∨) = ε(V ) · πε(−1) · γ(s+ 1
2 , π, ψ) · Z(s, f, v, v∨).

Specializing to s= 0 and noting that πε(−1) = ε, one obtains

Z(0) ◦M∗ψ(0) = ε(V ) · ε · γ(1/2, π, ψ) · Z(0).

Since the central L-value L(1/2, π) is finite when π is tempered, we see that γ(1/2, π, ψ) =
ε(1/2, π, ψ), so that the local functional equation reads:

Z(0) ◦M∗ψ(0) = ε(V ) · ε · ε(1/2, π, ψ) · Z(0).

Now we use the following crucial fact, Lemma 7.2, which implies that Z(0) is non-zero when
restricted to ΘW,V,ψ(1) if and only if

ε(V ) · ε · ε(1/2, π, ψ) = 1.

Hence, assuming Lemma 7.2 for the moment, we see that πε participates in theta correspondence
with Mp(W ) if and only if

ε= ε(V ) · ε(1/2, π).
This proves Theorem 7.1(i) for tempered representations π.
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We now state and prove the crucial lemma.

Lemma 7.2. The normalized intertwining operator M∗ψ(0) acts as +1 on ΘW,V,ψ(1) and as −1
on ΘW,V,ψ(1)⊗ detO(V).

Proof. We first claim that M∗ψ(0) acts by opposite signs on the two irreducible summands
ΘW,V,ψ(1) and ΘW,V,ψ(1)⊗ detO(V). Indeed, if f lies in ΘW,V,ψ(1), then the function
f ′ = f · detO(V) lies in ΘW,V,ψ(1)⊗ detO(V). Now, for Re(s)� 0, we have

Mψ(s)(f ′)(g) =
∫
N(V ∆)

f ′(wng) dnψ =
∫
N(V ∆)

f(wng) · detO(V)(wng) dnψ,

where
w = (−1, 1) ∈O(V )×O(V )⊂O(V).

Since det(w) =−1, we see that

Mψ(s)(f ′) =−Mψ(s)(f) · detO(V),

which proves our claim.
Now we can complete the proof of the lemma in two different ways. For the first proof, one

computes the effect of Mψ(s) on the spherical vector f0 by the Gindikin–Karpelevich formula.
Taking into account the normalizing factor in M∗ψ(s), one then sees that

M∗ψ(0)(f0) = f0,

so that M∗ψ(0) acts as +1 on ΘW,V,ψ(1) and as −1 on ΘW,V,ψ(1)⊗ detO(V).
For the second proof, we exploit the theta correspondence to come to the same conclusion.

More precisely, we will show that by Kudla’s cuspidal support theorem ([Kud86, Theorem 2.5]
and [Kud, Theorems 7.1 and 7.2]), almost all unramified tempered representations of O(V +)
participate in theta correspondence with Mp(W ). In other words, for almost all unramified
tempered representations π of SO(V +), the extension of π which has non-zero theta lift to
Mp(W ) is π+.

To see this, consider an unramified irreducible representation π = IB(χ1, . . . , χn) of SO(V +)
induced from an unramified character χ1 × · · · × χn of the Borel subgroup B. For its two
extensions πε to O(V +), the cuspidal support of the resulting representation πε is (ε, χ1, . . . , χn),
with ε=± regarded as a representation of O(1). By Kudla’s cuspidal support theorem ([Kud86,
Theorem 2.5] and [Kud, Theorems 7.1 and 7.2]), the theta lift of πε to Mp(W ) (if non-zero) has
cuspidal support depending on the first occurrence of the representation ε of O(1). If ε= +, then
its first occurrence is Mp(0) = {1} (by convention), and so if ΘV +,W,ψ(π+) 6= 0, it has cuspidal
support (χ1, . . . , χn). On the other hand, if ε=−, its first occurrence is Mp(2), where its theta
lift there is an odd Weil representation ωo

ψ, which is supercuspidal. If ΘV +,W,ψ(π−) 6= 0, then we
must have (without loss of generality) χ1 = χ| − |±1/2, with χ a quadratic character, and the
cuspidal support of ΘV +,W,ψ(π−) would be (ωo

ψ, χ2, . . . , χn). In particular, in this case, χ1 is not
unitary.

Now if the χi are unitary, the second option cannot happen. Moreover, for almost all
unramified unitary χi, π = IB(χ1, . . . , χn) is irreducible. Thus, for such unramified tempered
representations π, the first option must happen, i.e. ΘV +,W,ψ(π+) 6= 0, since we already know
that exactly one of π+ or π− has non-zero theta lift to Mp(W ).

Hence, if we consider the doubling zeta integral associated to such π+, the linear
functional Z(0) is non-zero when restricted to ΘW,V,ψ(1)⊗ π+ ⊗ (π+)∨. Now examine the local
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functional equation

Z(0) ◦M∗ψ(0) = ε(V +) · ε(1/2, π, ψ) · Z(0).

Since ε(V +) = 1 = ε(1/2, π) for unramified π, we conclude from the local functional equation
that M∗ψ(0) acts as +1 on ΘW,V,ψ(1). 2

When π is non-tempered, we may express π as the unique irreducible submodule of an induced
representation

IP (τ1|det|−s1 , τ2|det|−s2 , . . . , τr|det|−sr , π0),

where the τi are unitary discrete series representations of GL(ki), π0 is a tempered representation
of O(V0) (with n= k1 + · · ·+ kr +m), and the numbers si satisfy

s1 > s2 > · · ·> sr > 0.

Then, for ε=±, we have

πε ↪→ IP (τ1|det|−s1 , τ2|det|−s2 , . . . , τr|det|−sr , πε00 )

with

ε= ε0 ·
r∏
i=1

τi(−1).

Moreover, by multiplicativity of standard epsilon factors [LR05],

ε(1/2, π, ψ) = ε(1/2, π0, ψ) ·
r∏
i=1

τi(−1).

In view of the facts that ε(V ) = ε(V0) and that the theorem has been proven for π0, it remains
to show that

ΘV,W,ψ(πε) 6= 0 =⇒ ΘV0,W0,ψ(πε00 ) 6= 0,

where dim V0 = dimW0 + 1.
First, note that by induction in stages,

πε ↪→ IP (Yk)(τ |det|−s, πε11 )

where s > 0, τ is a unitary discrete series representation of GL(Yk), and πε11 is an irreducible
representation of O(Vn−k) with ε= ε1 · τ(−1). Now we have

0 6= ΘV,W,ψ(πε)∗ = HomO(V )(ΩV,W,ψ, π
ε) ↪→HomO(V )(ΩV,W,ψ, IP (Yk)(τ |det|−s, πε11 ))

= HomM(Yk)(RP (Yk)(ΩV,W,ψ), τ |det|−s � πε11 ),

where RP (Yk) denotes the normalized Jacquet functor with respect to the parabolic P (Yk) with
Levi subgroup M(Yk) = GL(Yk)×O(Vn−k).

The normalized Jacquet module RP (Yk)(ΩV,W,ψ) has been computed by Kudla [Kud86,
Theorem 2.8].

Proposition 7.3. The normalized Jacquet module RP (Yk)(ΩV,W,ψ) has a M(Yk)×Mp(W )-
invariant filtration

0⊂Rk ⊂ · · · ⊂R1 ⊂R0 =RP (Yk)(ΩV,W,ψ),

with successive quotient (for 06 r 6 k) given by

Jr :=Rr/Rr+1 ∼= IndGL(Yk)×O(Vn−k)×Mp(W )
Q(Yk−r,Yk)×O(Vn−k)×P (Xr)

S(Isom(Y ′r , Xr))⊗ ΩVn−k,Wn−r,ψ.
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Here, we have that:

(a) Q(Yk−r, Yk) is the maximal parabolic subgroup of GL(Yk) which stabilizes the flag

0⊂ Yk−r ⊂ Yk,

so that its Levi subgroup is GL(Yk−r)×GL(Y ′r ) with Y ′r = 〈vk−r+1, . . . , vk〉;
(b) Isom(Y ′r , Xr) is the set of invertible linear maps from Y ′r to Xr and S(Isom(Y ′r , Xr)) is the

space of locally constant compactly supported functions on Isom(Y ′r , Xr);

(c) the action of GL(Yk−r)×GL(Y ′r )×O(Vn−k)×GL(Xr)×Mp(Wn−r) on S(Isom(Y ′r , Xr))⊗
ΩVn−k,Wn−r,ψ is given as follows:

(i) GL(Yk−r) acts by the character |detYk−r |(k−r)/2;
(ii) (b, c) ∈GL(Y ′r )×GL(Xr) acts on S(Isom(Y ′r , Xr)) by

(b, c)ϕ(t) = ϕ(c−1tb),

so that if we identify GL(Y ′r ) and GL(Xr) with GL(r) by the given bases on Y ′r and Xr,
then this is simply the regular representation of GL(r)×GL(r) on S(GL(r));

(iii) O(Vn−k)×Mp(Wn−r) acts on ΩVn−k,Wn−r,ψ by the Weil representation associated to
these data.

In particular, the bottom piece of the filtration is:

Rk = IndGL(Yk)×O(Vn−k)×Mp(W )
GL(Yk)×O(Vn−k)×P (Xk) S(Isom(Y ′k, Xk))⊗ ΩVn−k,Wn−k,ψ.

Using the notation in the above proposition, we have the following lemma.

Lemma 7.4. Suppose that

HomM(Yk)(RP (Yk)(ΩV,W,ψ), τ |det|−s � πε11 ) 6= 0

with s> 0 and τ a unitary discrete series representation of GL(Yk). Then, for r < k,

HomM(Yk)(J
r, τ |det|−s � πε11 ) = 0

so that

HomM(Yk)(R
k, τ |det|−s � πε11 ) 6= 0.

In particular,

HomO(Vn−k)(ΩVn−k,Wn−k,ψ, π
ε1
1 ) 6= 0.

Proof. Assume that r < k and write Q=Q(Yk−r, Yk) for ease of notation. Then

HomM(Yk)(J
r, τ |det|−s � πε11 )

= HomGL(Yk−r)×GL(Y ′r )×O(Vn−k,Wn−r)(S(Isom(Y ′r , Xr))⊗ ΩVn−k,Wn−r , |detYk |
−s ·RQ(τ)� πε11 ).

Now, since τ is a unitary discrete series representation, RQ(τ) is an irreducible discrete series
representation |det|t1τ1 � |det|t2τ2, with τi unitary and ti ∈ R satisfying

t1 < t2 and t1 · (k − r) + t2 · r = 0.

In particular, we must have

t1 6 0.

Thus, on |detYk |−s ·RQ(τ), the center of GL(Yk−r) acts by the character |det|−s+t1 (up to a
unitary character), whereas on S(Isom(Y ′r , Xr))⊗ ΩVn−k,Wn−r , GL(Yk−r) acts by |det|(k−r)/2 by
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Proposition 7.3. Since
−s+ t1 6 0 and k − r > 0,

we deduce that the above Hom space must be 0. 2

Using this lemma, we deduce inductively that since

0 6= ΘV,W,ψ(πε)⊂HomO(V )(ΩV,W,ψ, IP (τ1|det|−s1 , τ2|det|−s2 , . . . , τr|det|−sr , π0)),

we have
HomO(V0)(ΩV0,W0,ψ, π

ε0
0 ) 6= 0,

so that ΘV0,W0,ψ(πε00 ) 6= 0 as desired.
We have thus completed the proof of Theorem 7.1(i). This also allows us to deduce one of

the equalities in Theorem 7.1(ii). Indeed, from the definition of the Weil representation given in
(3.1), one sees that the action of −1 ∈O(V ) on ΩV,W,ψ differs from that of the central element
(−1, 1) ∈Mp(W ) by χψ(−1). Thus, if Θψ(σ) = π ∈ Irr(SO(V )), then the result of (i) implies that
the central element (−1, 1) ∈Mp(W ) must act on σ by

χψ(−1) · ε(V ) · ε(1/2, π).

Hence, the central sign of σ is

zψ(σ) = ε(V ) · ε(1/2, π) = ε(V ) · ε(1/2,Θψ(σ)).

Thus we have established the analog of Theorem 5.2.
To complete the proof of Theorem 7.1(ii), we need to show that

zψ(σ) = ε(V ) · ε(1/2, σ, ψ).

This is equivalent to ε(1/2, σ, ψ) = ε(1/2,Θψ(σ)), which is itself a consequence of the identity
ε(s, σ, ψ) = ε(s,Θψ(σ), ψ), to be shown in § 11.

However, we could also give a proof of the desired displayed identity by an argument analogous
to that for (i). Such a proof of this result has been given by Zorn [Zor11], though the notion of
epsilon factors ε(s, σ, ψ) used in his paper differs from ours. More precisely, his definition of the
standard L-factors and epsilon factors for Mp(W ) is based on the approach of ‘good sections’.
The problem with such an approach is that one does not know how to show that these local
factors are multiplicative when they should be.

In any case, let us give a sketch of the proof of the remaining part of Theorem 7.1(ii) here:
it is merely a mirror reflection of the argument for (i). Assume first that σ is tempered. In this
case, the doubling zeta integral Z(s) for Mp(W )×µ2 Mp(W )⊂Mp(W + (−W )) is holomorphic
at s= 0, and so is the local L-factor L(s, σ, ψ). Moreover, we know that ΘW,V,ψ(σ) 6= 0 if and
only if the linear form

Z(0) : IP̃ (W∆)(0)⊗ σ∨ ⊗ σ −→ C
is non-zero when restricted to the submodule ΘV,W,ψ(1). On the other hand, the local functional
equation of the doubling zeta integral reads:

Z(0) ◦M∗ψ(0) = zψ(σ) · ε(1/2, σ, ψ) · Z(0).

Now suppose that M∗ψ(0) acts by the sign αε =±1 on the submodule ΘV ε,W,ψ(1) of IP̃ (W∆)(0).
Then the local functional equation shows that

ΘW,V ε,ψ(σ) 6= 0 ⇐⇒ αε = zψ(σ) · ε(1/2, σ, ψ).

Hence, it remains to show the following analog of Lemma 7.2.
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Lemma 7.5. The normalized intertwining operator Mψ(0)∗ acts by +1 on ΘV +,W,ψ(1) and by
−1 on ΘV −,W,ψ(1).

Proof. For odd p, this was shown by Zorn [Zor11], who proved a Gindikin–Karpelevich-type
formula by direct computation. However, one can give a proof which works for all p by making
use of information from the theta correspondence, based on our discussion before the lemma.

More precisely, to show that αε = ε, it suffices to find a representation σ of Mp(W ) which
participates in theta correspondence with O(V ε) and verify for this σ that

ε= zψ(σ) · ε(1/2, σ, ψ).

When ε= +1, one simply takes

σ = IB,ψ(χ1, . . . χn)

where B is a Borel subgroup of Mp(W ) and each χi is an unramified unitary character of k×. For
generic choices of χi, we know by Kudla’s cuspidal support theorem that such a σ participates
in theta correspondence with O(V +), and it follows by multiplicativity that

zψ(σ) = ε(1/2, σ, ψ) = 1.

When ε=−1, one takes

σ = IP,ψ(χ1, . . . , χn−1, Stψ)

where P is a parabolic subgroup with Levi factor (GL1)n−1 ×Mp2, each χi is an unramified
unitary character of k×, and Stψ is the Steinberg representation of Mp2(k) with respect to
ψ (see the example in § 5). For generic choices of χi, one knows by Kudla’s cuspidal support
theorem ([Kud86, Theorem 2.5] and [Kud, Theorems 7.1 and 7.2]) and the example in § 5 that
σ participates in theta correspondence with O(V −) and that

Θψ,V −,W (σ) = IQ(χ1, . . . , χn−1, 1O(V −1 )),

where Q is the parabolic subgroup of SO(V −) with Levi factor (GL1)n−1 × SO(V −1 ). Further, it
is easy to check that

zψ(σ) = 1 and ε(1/2, σ, ψ) =−1.

This proves the lemma. 2

Together with the local functional equation, the lemma implies immediately that Z(0) is
non-zero on ΘV,W,ψ(1) if and only if

ε(V ) = zψ(σ) · ε(1/2, σ, ψ),

thus proving (ii) when σ is tempered.
Suppose now that σ is non-tempered. Then, by [BJ, Theorem 4.1],

σ ↪→ IP̃ ,ψ(τ1| − |−s1 , . . . , τr| − |−sr ; σ0)

where each τi is a unitary discrete series representation of GL(ki), σ0 is a tempered representation
of Mp(W0), and

s1 > s2 > · · ·> sr > 0.

Moreover, the central signs of σ and σ0 are related by

zψ(σ) = zψ(σ0) ·
r∏
i=1

τi(−1).
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Similarly, by multiplicativity, the epsilon factor satisfies

ε(1/2, σ, ψ) = ε(1/2, σ0, ψ) ·
r∏
i=1

τi(−1).

Since we already know the desired result for the tempered representation σ0, it remains to show
that

ΘW,V,ψ(σ) 6= 0 =⇒ ΘW0,V0,ψ(σ0) 6= 0,

where dim V0 = dimW0 + 1. For this, the argument proceeds by a Jacquet module computation,
analogous to the proof of (i); we omit the details.

8. Discrete series and Langlands data

The purpose of this section is to prove Theorem 1.3(i)–(iii). We first show the following crucial
result about the theta correspondence, which holds for all primes p.

Theorem 8.1. Let π ∈ Irr(O(V )) and suppose that its big theta lift Θψ,V,W (π) on Mp(W ) is
non-zero.

(i) If π is a discrete series representation, then Θψ,V,W (π) is a direct sum of irreducible
discrete series representations of Mp(W ). In particular, when p 6= 2, Θψ,V,W (π) = θψ,V,W (π) is an
irreducible discrete series representation.

(ii) Let π ∈ Irr(O(V )) be tempered and suppose that

π ⊂ IQ(τ1, . . . , τr, π0),

where Q is a parabolic subgroup of O(V ) with Levi subgroup GLn1 × · · · ×GLnr ×O(V0), the
τi are unitary discrete series representations of GLni , and π0 is a discrete series representation
of O(V0). Then

Θψ,V,W (π)⊂ IP̃ (τ1, . . . , τr,Θψ,V0,W0(π0)),

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1 ×µ2 · · · ×µ2 G̃Lnr ×
Mp(W0). In particular, Θψ,V,W (π) is a direct sum of irreducible tempered representations, and
when p 6= 2, Θψ,V,W (π) = θψ,V,W (π) is irreducible.

(iii) More generally, suppose that

π = JQ(τ1|det|s1 , . . . , τr|det|sr , π0) with s1 > s2 > · · ·> sr > 0

is a Langlands quotient of O(V ), where Q is as in (ii), the τi are unitary tempered representations
of GLni , and π0 is a tempered representation of O(V0). Then

IP̃ (τ1|det|s1 , . . . , τr|det|sr ,Θψ,V0,W0(π0))�Θψ,V,W (π),

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1 ×µ2 · · · ×µ2 G̃Lnr ×
Mp(W0). In particular, when p 6= 2, θψ,V,W (π) is the unique Langlands quotient of the standard
module IP̃ (τ1|det|s1 , . . . , τr|det|sr , θψ,V0,W0(π0)).

Analogous assertions to (i), (ii) and (iii) hold if one starts with σ ∈ Irr(Mp(W )) and considers
its big theta lift Θψ,V,W (σ).

Proof. The proof of this theorem follows that of an analogous theorem of Muić [Mui08a,
Theorem 4.2], but with significant simplifications. Before proceeding with the proof, let us state
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a lemma that will be used frequently in the proof and which is a direct consequence of the
Casselman square-integrability criterion (see [BJ, Theorem 3.4] for the case of covering groups).

Lemma 8.2. Let π be a discrete series representation of O(V ) and let Q=Q(Yt) be a maximal
parabolic subgroup of O(V ) with Levi factor GL(Yt)×O(V0). On any irreducible constituent
of the normalized Jacquet module RQ(π), the center of GL(Yt) acts by a character of the form
χ · | − |α where χ is unitary and α > 0.

The analogous result holds for discrete series representations of Mp(W ).

(i) Pick any Mp(W )-equivariant filtration

0⊂ Σr ⊂ Σr−1 ⊂ · · · ⊂ Σ1 = Θψ,V,W (π)

whose successive quotients

Πi = Σi/Σi+1

are irreducible. We shall argue by contradiction that each of these successive quotients is square-
integrable. By Casselman’s square-integrability criterion [BJ, Theorem 3.4], this will show that
the representation Θψ,V,W (π) is itself square-integrable, and thus is semisimple. Indeed, it is a
basic result of Harish-Chandra that the irreducible discrete series representations are projective
objects in the category of admissible tempered representations.

Suppose then that k is the smallest index such that Πk = Σk/Σk+1 is non-square-
integrable. Then one has

Πk ↪→ IP̃ (Xt),ψ
(τ |detXt |−s, σ0)

where τ is a unitary discrete series representation of GL(Xt), s> 0, and σ0 is an irreducible
representation of Mp(W0). Here, dimW0 + 2t= dimW . To ease notation, let us write P in place
of P̃ (Xt). Then, by Frobenius reciprocity, one has

RP (Πk)� τ |det|−s � σ0.

Now, by the exactness of Jacquet modules, one has

0⊂RP (Σr)⊂ · · · ⊂RP (Σ1)

with

RP (Σi)/RP (Σi+1) =RP (Πi).

Thus one obtains a short exact sequence of representations of GL(Xt)×Mp(W0),

0 // τ |det|−s � σ0
// A // B // 0 ,

where A is a quotient of RP (Θψ,V,W (π)) and B is a finite-length representation equipped with a
filtration with successive quotients RP (Πi) for i < k. Now the key observation is that this short
exact sequence splits.

To see this, note that for i < k, each Πi is square-integrable by assumption. Lemma 8.2 implies
that on each irreducible constituent of RP (Πi) (i < k), the center of GL(Xt) acts by a character
of the form χ · | − |α with α > 0 and χ unitary. Since the center of GL(Xt) acts on τ |det|−s � σ0

by | − |−st (up to a unitary character), we conclude that the above short exact sequence splits,
so that one has a non-zero map

RP (Θψ,V,W (π))−→ τ |det|−s � σ0.
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By Frobenius reciprocity, one obtains a non-zero map

Ωψ,V,W � π �Θψ,V,W (π)−→ π � IP (τ |det|−s, σ0),

so that

π∗ ↪→HomMp(W )(Ωψ,V,W , IP (τ |det|−s, σ0)) = HomGL(Xt)×Mp(W0)(RP (Ωψ,V,W ), τ |det|−s � σ0),

where π∗ denotes the full linear dual of π. By the analogs of Proposition 7.3 and Lemma 7.4
(with the roles of O(V ) and Mp(W ) interchanged), one concludes that

HomGL(Xt)×Mp(W0)(RP (Ωψ,V,W ), τ |det|−s � σ0) = IQ(Yt)(τ
∨|detYt |s,Θψ,V0,W0(σ0))∗.

Thus one has

π∨ ↪→ IQ(Yt)(τ |detYt |−s,Θψ,V0,W0(σ0)∨),

so that there is a non-zero map

RQ(Yt)(π
∨)� τ |detYt |−s � π0

for some irreducible representation π0 of O(V0) and with s> 0. Since π and hence π∨ are square-
integrable by assumption, this contradicts Lemma 8.2. With this contradiction, (i) is proved.

(ii) Suppose that

π ⊂ IQ(τ1, . . . , τr, π0)

is tempered, as in the statement of (ii). Using Proposition 7.3 and Lemma 7.4 and arguing as in
(i), one sees that

IP̃ (τ1, . . . , τr,Θψ(πε00 ))�Θψ,V,W (πε).

By (i), Θψ(π0) is a direct sum of irreducible discrete series representations. This proves (ii).

(iii) This is similar to (ii). Suppose that

π = JQ(τ1|det|s1 , . . . , τr|det|sr , π0) with s1 > s2 > · · ·> sr > 0.

Then

π ↪→ IP (τ∨1 |det|−s1 , τ∨2 |det|−s2 , . . . , τ∨r |det|−sr , π0).

Using Proposition 7.3 and Lemma 7.4, one sees that

IP̃ (τ1|det|s1 , . . . , τr|det|sr ,Θψ(π0))�Θψ,V,W (πε).

This proves (iii). 2

The above theorem implies Theorem 1.3(i)–(iii). We recall that the equality of formal degrees
described in Theorem 1.3(iv) is one of the main results of [GI] (with an input from [GS12]), so
we do not prove (iv) in this paper.

Remarks. When p 6= 2, a different proof of the fact that π ∈ Irr(SO(V )) is a discrete series
representation if and only if σ = θψ,V,W (π) ∈ Irr(Mp(W )) is a discrete series representation can
be found in [GI]. However, the proof in [GI] does not show the equality

Θψ,V,W (π) = θψ,V,W (π)

for π a discrete series representation. This equality is necessary for establishing the results in
Theorem 8.1(ii) and (iii).
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We also note the following corollary.

Corollary 8.3. Suppose that τ1, . . . , τr are discrete series representations of GLni and that π0

and σ0 = Θψ(π0) are discrete series representations of SO(V0) and Mp(W0), respectively. Then,
when p 6= 2, the induced representations IQ(τ1, . . . , τr, π0) and IP,ψ(τ1, . . . , τr, σ0) have the same
number of irreducible summands (up to equivalence and ignoring multiplicities).

Proof. This is an immediate consequence of Theorem 8.1(ii). 2

9. Generic representations

In this section, we study how the bijection Θψ treats the subset of generic representations. In
particular, we prove Theorem 1.3(v).

Let U be the unipotent radical of a Borel subgroup B = T · U of SO(V +), and let λ be any
generic character of U . Any two such generic characters are in the same orbit under the adjoint
action of the maximal torus T , so the choice of λ is not important. By definition, a representation
π of SO(V +) is generic if HomU (π, λ) 6= 0.

Similarly, let U ′ be the unipotent radical of a Borel subgroup B̃′ = T̃ ′ · U ′ of Mp(W ). The
T ′-orbits of generic characters of U ′ are naturally indexed by non-trivial characters of k modulo
the action of k×2 (see [GGP12, § 12]). Thus, the additive character ψ of k gives rise to a T ′-
orbit of generic characters λ′ψ of U ′. A representation σ of Mp(W ) is said to be ψ-generic if
HomU ′(σ, λ′ψ) 6= 0.

The following is Theorem 1.3(v).

Theorem 9.1. If π is a generic representation of SO(V +), then σ = Θψ(π) is a ψ-generic
representation of Mp(W ). If σ is ψ-generic and tempered, then π is generic.

This theorem is a consequence of the computation of the Whittaker modules of the Weil
representation Ωψ,V,W .

Proposition 9.2. With the above notation, we have

(ΩV +,W,ψ)U,λ ∼= indMp(W )
U ′ λ′ψ.

Proof. See [Fur95, MS00a] for an analogous computation. We omit the details. 2

Note that the above proposition uniquely specifies the T ′-orbit of λ′ψ without recourse to
[GGP12, § 12]. The following corollary of Proposition 9.2 establishes Theorem 1.3(iv).

Corollary 9.3. Suppose that p is odd.

(i) Let π ∈ Irr(SO(V +) be generic. Then σ = Θψ(π) is ψ-generic.

(ii) Let σ ∈ Irr(Mp(W )) be ψ-generic. Then the big theta lift Θψ,V,W (σ) of σ to O(V +) has
a unique generic constituent. In particular, if σ is tempered, then π = Θψ(σ) is generic.

Remark. In (ii) above, it is not true that if σ ∈ Irr(Mp(W )) is ψ-generic, then π = Θψ(σ) is
generic. Indeed, a counterexample can already be found when n= 1. In that case, if σ = ωe

ψ

is the even Weil representation of Mp(W ) associated to ψ, then σ is ψ-generic but π = Θψ(σ) is
the trivial representation of SO(V +)∼= PGL2(k).

Consider now the dual pair
SO(V +

n )×Mp(Wn−1)
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and the associated Weil representation ΩV +
n ,Wn−1,ψ

. By a computation similar to the proof of
Proposition 9.2, one obtains the following proposition.

Proposition 9.4. As a representation of Mp(Wn−1),

(ΩV +
n ,Wn−1,ψ

)U,λ = 0.

Corollary 9.5. If π is a generic representation of SO(V +), then π does not participate in the
theta correspondence with Mp(Wn−1) = Mp2n−2. In particular, if π is generic and supercuspidal,
then ΘV +,W,ψ(π) is an irreducible supercuspidal ψ-generic representation of Mp(W ).

10. Plancherel measures

In this section we will show that the bijection Θψ respects a family of invariants, known as
the Plancherel measures, attached to representations of SO(V )×GLr and Mp(W )×GLr, thus
establishing Theorem 1.3(vi). We begin by recalling the definition of a Plancherel measure. For
the basic properties of Plancherel measures that will be used this section, we refer the reader to
[GI, Appendix B].

Suppose that π is an irreducible representation of SO(V ) and ρ is an irreducible representation
of GLr. Since Lr = SO(V )×GLr is a Levi subgroup of a parabolic Qr = Lr · Ur of SO(Vn+r),
one has the induced representation

IQr(s, π � ρ) = IQr(|detGLr
|s, π � ρ).

If Q̄r = Lr · Ūr is the opposite parabolic, then we similarly have the induced representation
IQ̄r(s, π � ρ). Then there is a standard intertwining operator

Aψ(s, π � ρ, Ur, Ūr) : IQr(s, π � ρ)−→ IQ̄r(s, π � ρ).

The composite Aψ(s, π � ρ, Ūr, Ur) ◦Aψ(s, π � ρ, Ur, Ūr) is a scalar operator on IQr(s, π � ρ),
and the Plancherel measure is the scalar-valued meromorphic function defined by

µ(s, π � ρ, ψ)−1 =Aψ(s, π � ρ, Ūr, Ur) ◦Aψ(s, π � ρ, Ur, Ūr).

Similarly, if σ is an irreducible representation of Mp(W ) and ρ is an irreducible representation
of GLr, then one can define the associated Plancherel measure µ(s, σ × ρ, ψ) as the composition
of two standard intertwining operators as above.

The factorization of the intertwining operators into the product of ‘rank 1’ operators
corresponding to simple reflections implies an inductive property of the Plancherel measures
known as multiplicativity. This is described in [GI, Appendix B], along with other properties of
the Plancherel measure.

The main result of this section is the following proposition.

Proposition 10.1. If π is an irreducible representation of SO(V ) with σ = Θψ(π) and ρ is an
irreducible representation of GLr, then one has

µ(s, π × ρ, ψ) = µ(s, σ × ρ, ψ).

Corollary 10.2. Suppose that both π and σ = Θψ(π) are supercuspidal. Then, for any
supercuspidal representation ρ of GLr, IQr(s, π � ρ) reduces if and only if IPr,ψ(s, σ � ρ) reduces.
In particular, when ρ∨ = ρ, IPr,ψ(s, σ � ρ) reduces for a unique s> 0.
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To infer this corollary, one only needs to take into account [GI, Proposition B.7]. In particular,
the corollary gives an alternative proof of a special case of the main results of [HM11]. In [GI,
Theorem 12.1 and Corollary 12.2], an identity of Plancherel measures as in Proposition 10.1 was
established for the theta correspondence associated to a general dual pair Mp(2m)× SO(2n+ 1),
which provides an alternative proof of the general results of [HM11].

The rest of this section is devoted to the proof of Proposition 10.1. We first deduce two
consequences of the property of multipicativity [GI, Propositions B.4 and B.5] and Kudla’s
cuspidal support theorem ([Kud86, Theorem 2.5] and [Kud, Theorems 7.1 and 7.2]).

(i) The desired identity of Plancherel measures in Proposition 10.1 holds when V = V + and π
and ρ have non-zero Iwahori-fixed vectors, where the Iwahori subgroup in question is the setwise
stabilizer of a fundamental chamber in the building of SO(V ). Indeed, such a π is contained in
a principal series representation induced from a Borel subgroup of SO(V ):

π ⊂ IB(µ1, . . . , µn).

Kudla’s cuspidal support theorem ([Kud86, Theorem 2.5] and [Kud, Theorems 7.1 and 7.2])
then implies that σ is a subquotient of the principal series representation IB′,ψ(µ1, . . . , µn) of
Mp(W ). Using [GI, Proposition B.6], which expresses the relevant Plancherel measures in terms
of Tate’s γ-factors, it is then easy to establish the desired identity in this case.

(ii) Proposition 10.1 is reduced to the case where π and ρ are both supercuspidal.
In the basic case where π and ρ are both supercuspidal, the proof is via a global-to-local

argument. More precisely, we can find the following data:

• F , a totally complex number field with two places v0 and v1 such that Fvi ∼= k;
• Ψ, an additive character of F\A (where A is the ring of adeles of F ) such that Ψv0 = Ψv1 = ψ;
• V, a quadratic space over F of dimension 2n+ 1 and discriminant 1 such that V⊗F Fvi ∼= V

for i= 0 or 1; moreover, we may assume that ε(V⊗ Fv) = + for all finite places v outside
v0 and v1.

Given the above data, one can find cuspidal representations Π of O(V) and Ξ of GLr(A) such
that:

• Πv0 = Πv1 = πε and Ξv0 = Ξv1 = ρ, where πε is the unique extension of π to O(V ) which
participates in the theta correspondence with Mp(W );

• for all finite v 6= v0, v1, Πv and Ξv are unramified.

The simplest way to find such a Π is to use a construction of Henniart [Hen84, Appendice 1]
via Poincaré series; in the proof of [Hen84, Appendice 1, Theorem], it suffices to pick the test
function fv to be the characteristic function of a hyperspecial maximal compact subgroup at
all finite places v 6= v0, v1 (and the test functions fv0 and fv1 to be matrix coefficients of π). In
the following, we shall write Πv to denote the restriction of the representation Πv of O(Vv) to
SO(Vv).

Now consider the global theta lift ΘV,Wk,Ψ(Π) of Π to the tower of metaplectic groups
Mp(Wk). Let k be the first index such that the global theta lift ΘV,Wk,Ψ(Π) is non-zero. Suppose
that Σ is an irreducible summand of ΘV,Wk,Ψ(Π). Then for all places v one can relate Σv with
Θψv(Πv). Indeed, for all finite v 6= v0, v1, since Πv is unramified, one knows how to compute the
theta lift of Πv to any Mp(Wk). Similarly, one understands the theta correspondence for complex
groups completely. At the places v0 and v1, where Πvi = πε is supercuspidal, one can appeal to
the cuspidal support theorem of Kudla [Kud86]. The following lemma summarizes these results.
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Lemma 10.3. Write k = n+ t with t ∈ Z.

(i) If k > n so that t > 0, then

Σv ⊂ I(| − |1/2 � | − |3/2 � · · ·� | − |(2t−1)/2 �Θψv(Πv)).

(ii) If k = n, then Σv = Θψv(Πv).

(iii) If k < n so that t < 0, then

Θψv(Πv)⊂ I(| − |1/2 � | − |3/2 � · · ·� | − |(2|t|−1)/2 � Σv).

As a consequence of the multiplicative property of the Plancherel measure [GI,
Propositions B.4 and B.5], we deduce that for all places v,

µ(s, Σv � Ξv,Ψv)
µ(s,Θψv(Πv)� Ξv,Ψv)

=



t∏
i=1

µ(s, Ξv � | − |(2i−1)/2) · µ(s, Ξv � | − |−(2i−1)/2)

1( |t|∏
i=1

µ(s, Ξv � | − |(2i−1)/2) · µ(s, Ξv � | − |−(2i−1)/2)
)−1

(10.4)

in the three respective cases of the lemma. Now, for v 6= v0, v1, we already know that

µ(s,Θψv(Πv)� Ξv,Ψv) = µ(s,Πv � Ξv,Ψv).

To prove this identity for the places v0 and v1, and thus complete the proof of Proposition 10.1,
it suffices to show that for v = v0 or v1, µ(s, Σv � Ξv,Ψv)/µ(s,Πv � ρv,Ψv) is given by the same
formulas as in (10.4).

For this, we appeal to the global functional equation for Plancherel measures [GI,
Proposition B.8] to the representation Σ� Ξ and Π� Ξ. We deduce that for any finite set S of
places of F containing v0 and v1, µS(s, Σv � Ξv,Ψv)/µS(s,Πv � Ξv,Ψv) is as given in (10.4).
Thus, we conclude that

µ(s, π � ρ, ψ)2 = µ(s,Θψv(π)� ρ, ψ)2.

Since the Plancherel measures are non-negative on the imaginary axis [GI, Proposition B.7], we
have

µ(s, π � ρ, ψ) = µ(s,Θψv(π)� ρ, ψ).

This completes the proof of Proposition 10.1.

11. Local factors

In this section, we show that the bijection Θψ respects γ-factors, L-factors and ε-factors
associated to representations of Mp(W ) and SO(V ). We assume the following working
hypotheses.

Working hypotheses:

(i) there is a theory of γ-factors γ(s, π × ρ, ψ) for irreducible representations π � ρ of SO(V )×
GLr;
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(ii) there is a theory of γ-factors γ(s, σ × ρ, ψ) for irreducible representations σ � ρ of Mp(W )×
GLr.

Moreover, the theories of γ-factors satisfy the following conditions.

(a) (Multiplicativity) If π = IndSO(V )
Q τ � π0, with τ being a representation of GLk and π0 a

representation of SO(V0), then

γ(s, π × ρ, ψ) = γ(s, τ × ρ, ψ) · γ(s, τ∨ × ρ, ψ) · γ(s, π0 × ρ, ψ),

where the first two γ-factors on the right-hand side are the Rankin–Selberg γ-factors of
GLk ×GLr. If ρ= IndRρ1 × ρ2, with ρi an irreducible representation of GLri , then

γ(s, π × ρ, ψ) = γ(s, ρ1 × ρ, ψ) · γ(s, ρ2 × ρ, ψ),

where the two γ-factors on the right-hand side are Rankin–Selberg γ-factors. Similar identities
hold for γ(s, σ × ρ, ψ).

(b) (Minimal case) Suppose that V = V −1 , the rank-3 non-split quadratic space of
discriminant 1. If 1 denotes the trivial representation of the compact group SO(V ) and χ denotes
any character of GL1, then

γ(s, 1× χ, ψ) = γ(s+ 1/2, χ, ψ) · γ(s− 1/2, χ, ψ),

where the γ-factors on the right-hand side are those of GL1.
(c) (Global functional equation) Suppose that F is a number field with ring of adeles A and

that V is a quadratic space over F of dimension 2n+ 1 and discriminant 1. Let Ψ =⊗vψv be
a non-trivial additive character of F\A, Π =⊗vπv a cuspidal representation of SO(V )(A) and
Ξ =⊗vξv a cuspidal representation of GLr(A). If S is a finite set of places of F containing all
Archimedean places and all finite places where Ψ, Π or Ξ is ramified, then one has a functional
equation

LS(s,Π× Ξ) =
∏
v∈S

γ(s, πv × ξv, ψv) · LS(1− s,Π∨ × Ξ∨).

Likewise, if W is a symplectic space over F and Σ is a cuspidal representation of Mp(W )(A),
then one has

LS(s, Σ× Ξ,Ψ) =
∏
v∈S

γ(s, σv × ξv, ψv) · LS(1− s, Σ∨ × Ξ∨).

Now we have the following result.

Proposition 11.1. Suppose one has the following:

(i) a theory of γ-factors γ(s, π × ρ, ψ) for irreducible representations π � ρ of SO(V )×GLr;
(ii) a theory of γ-factors γ(s, σ × ρ, ψ) for irreducible representations σ � ρ of Mp(W )×GLr

satisfying the above working hypothesis. Then, if σ = Θψ(π), we have

γ(s, π × ρ, ψ) = γ(s, σ × ρ, ψ).

Proof. The proof is similar but simpler than that of Proposition 10.1. By properties (a) and (b)
and Kudla’s cuspidal support theorem ([Kud86, Theorem 2.5] and [Kud, Theorems 7.1 and 7.2]),
one knows that the desired identity holds when π has non-zero Iwahori-fixed vectors. Further, one
is reduced to the case where the representations π and ρ are supercuspidal. For the supercuspidal
case, the proof is via a global argument similar to, but simpler than, that of Proposition 10.1
(see also [MS00a, Proposition 5.4]). More precisely, let V be as in the proof of Proposition 10.1,
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so that Vv0 = V for a finite place v0. By a construction of Henniart [Hen84, Appendice 1]
via Poincaré series, one can find cuspidal representations Π and Ξ of O(V) and GLr(A) such
that Πv0 = πε (where πε is the unique extension of π to O(V ) which participates in the theta
correspondence with Mp(W )) and Ξv0 = ρ, and such that for all other finite places v, Πv and
Ξv have non-zero Iwahori-fixed vectors. Indeed, in the proof of [Hen84, Appendice 1, Theorem],
one simply picks the test function fv to be a matrix coefficient of π at v = v0, the characteristic
function of a hyperspecial maximal compact subgroup at almost all v 6= v0, and the characteristic
function of an Iwahori subgroup at all other v 6= v0. Then the argument in Proposition 10.1, using
property (c) and our knowledge of the desired identity at all places outside v0, implies that

γ(s, π × ρ, ψ) = γ(s, σ × ρ, ψ). 2

Corollary 11.2. Assume the hypotheses of Proposition 11.1. If one defines the local L-factors
L(s, π × ρ) and L(s, σ × ρ, ψ) as well as local epsilon factors ε(s, π × ρ, ψ) and ε(s, σ × ρ, ψ)
following the approach of Shahidi (i.e. analogous to that in [LR05, § 10] or § 4.2), then one has{

L(s, π × ρ) = Lψ(s, σ × ρ),
ε(s, π × ρ, ψ) = ε(s, σ × ρ, ψ).

In particular, a theory of γ-factors satisfying the working hypotheses has been developed in
the following cases:

(a) for generic representations π � ρ of SO(V +)×GLr by Shahidi [Sha90] and Soudry [Sou93];

(b) for ψ-generic representations σ ⊗ ρ of Mp(W )×GLr by Szpruch [Szp09];

(c) for all irreducible representations π × χ of SO(V ±)×GL1 and σ � χ of Mp(W )×GL1 via
the doubling method (cf. [Gan, LR05, PR86]).

Thus we have the following corollary.

Corollary 11.3. (i) Suppose that σ = Θψ(π), with π ∈ Irr(SO(V +)) generic. Then the
equalities of L- and ε-factors in Corollary 11.2 hold.

(ii) The equalities of L- and ε-factors in Corollary 11.2 hold for representations of SO(V )×
GL1 and Mp(W )×GL1.

12. Variation of ψ

One remaining issue is the dependence of the bijection Lψ as ψ varies. More precisely, for c ∈ k×,
let ψc be the character ψc(x) = ψ(cx). Then we would like to know the relation between Lψ(σ)
and Lψc(σ). Here, recall that

Lψ(σ) = (φ, η),

where

φ : WDk −→ Sp2n(C)

and η is an irreducible character of the component group Aφ = π0(ZSp2n
(φ)). The component

group Aφ can be explicitly described as follows. If we decompose φ as a 2n-dimensional
representation,

φ=
⊕
i

niφi,
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then (cf. [GGP12])

Aφ =
⊕

i: φi is symplectic

Z/2Zai.

In [GGP12], a conjecture was stated for the relation between Lψ(σ) and Lψc(σ). The purpose
of this section is to verify that conjecture. Of course, to address the issue, one would need to
assume that the local Langlands correspondence for SO(V ±) is known. Hence, let us begin by
setting down the precise hypotheses we shall require.

Hypothesis LLC.

(a) We assume the local Langlands correspondence for the classical groups G= SO2n+1, SO2n

and Sp2n as supplied by the recently released book [Art11] and supplemented by the results of
Jiang and Soudry [JS04]. In particular, each irreducible representation of the group G is indexed
by a pair (φ, η) consisting of an L-parameter φ for the groupG and a character η of the component
group Aφ.

(b) Moreover, we suppose that the local Langlands correspondence satisfies the desiderata
in [Bor77] and preserves local L-factors and ε-factors as in Theorem 1.3(vii) and (viii).

(c) In addition, for representations π1 and π2 which have the same L-parameter, one has an
equality of Plancherel measures

µ(s, π1 × ρ, ψ) = µ(s, π2 × ρ, ψ).

In particular, by Shahidi’s results [Sha90], such Plancherel measures can be expressed in terms
of γ-factors of Artin type associated to the L-parameters.

Under the above hypothesis, one has the following highly non-trivial results.

• (GP) The Gross–Prasad conjecture [GP92] for tempered representations of special
orthogonal groups holds by the recent work of Waldspurger [Wal10, Wal12a, Wal1, Wal2,
Wal12b]. More precisely, suppose that π is an irreducible tempered representation of SO(V )
(with dim V = 2n+ 1) with Lψ(π) = (φ, η) as above, and that τ is an irreducible tempered
representation of SO(U) with U ⊂ V of codimension 1. Suppose further that

HomSO(U)(π ⊗ τ, C) 6= 0.

Then

η(ai) = ε(1/2, φi ⊗ φτ ) · χU (−1)(dim φi)/2,

where χU is the quadratic character of k× associated to disc(U). Similarly, if V ⊂ U with
codimension 1, then HomSO(V )(π ⊗ τ, C) 6= 0 implies that η(ai) is given by the above formula
as well.

• (Θ) Consider the theta correspondence for Sp(W )×O(U) with dimW = 2n and dim U =
2n+ 2 with discriminant χU . For an irreducible tempered representation τ of Sp(W ) which
participates in this theta correspondence, it was shown by Muić [Mui08a, Mui08b] that

ΘW,U,ψ(τ) = θW,U,ψ(τ) =: θ(τ).

Moreover, θ(τ) is irreducible when restricted to SO(U). Finally, it was shown by Muić
[Mui08a, Mui08b] and Moeglin [Moe11a] that the L-parameters φτ and φθ(τ) are related by

φθ(τ) = 1⊕ χU · φτ .
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Similarly, consider the theta correspondence for Sp(W )×O(U) with dim U = 2n and let τ
be an irreducible tempered representation of O(U). Then

ΘU,W,ψ(τ) = θU,W,ψ(τ) =: θ(τ).

Moreover, the L-parameters of τ and θ(τ) are related by

φθ(τ) = χU · (1⊕ φτ ).

Under Hypothesis LLC and with the above theorems (GP) and (Θ), one has the following
result.

Theorem 12.1. For σ ∈ Irr(Mp(W )) and c ∈ k×, let Lψ(σ) = (φ, η) and Lψc(σ) = (φc, ηc). Then
the following hold.

(i) φc = φ⊗ χc, where χc is the quadratic character associated to c ∈ k×/k×2.
It follows from (i) that we have the canonical identification of component groups

Aφ =Aφc =
⊕
i

Z/2Zai,

so that it makes sense to compare η and ηc.

(ii) The characters η and ηc are related by

ηc(ai)/η(ai) = ε(1/2, φi) · ε(1/2, φi ⊗ χc) · χc(−1)(dim φi)/2 ∈ {±1}.

When dimW = 2, this reduces to Waldspurger’s result, Theorem 5.3. The remainder of this
paper is devoted to the proof of Theorem 12.1. We first note the following reduction.

Proposition 12.2. If Theorem 12.1 holds for tempered representations of Mp(W ), then it
holds for all representations.

Proof. Suppose that σ = JP,ψ(τ1, . . . , τr, σ0). Write Lψ(σ) = (φ, η) and Lψc(σ) = (φc, ηc) as
in the conjecture, and similarly write Lψ(σ0) = (φ0, η0) and Lψc(σ0) = (φ0,c, η0,c). We are
assuming that the pairs (φ0, η0) and (φ0,c, η0,c) are related as in Theorem 12.1.

Now Theorem 1.3(iii) implies that

φ= φ1 ⊕ · · · ⊕ φr ⊕ φ0 ⊕ φ∨1 ⊕ · · · ⊕ φ∨r ,

where φi is the L-parameter of τi for i> 1. Moreover, there is a natural identification Aφ =Aφ0 ,
under which one has η = η0.

On the other hand, as genuine characters of G̃L(X), one has

χψc = χψ · (χc ◦ detX).

Thus, one also has
σ = JP,ψc(τ1 ⊗ χc, . . . , τr ⊗ χc, σ0).

By Theorem 1.3(iii) again, one has

φc ⊗ χc = φ1 ⊕ · · · ⊕ φr ⊕ (φ0,c ⊗ χc)⊕ φ∨1 ⊕ · · · ⊕ φ∨r
and ηc = η0,c. Since (φ0,c, η0,c) and (φ0, η0) are related as in Theorem 12.1, so are (φc, ηc) and
(φ, η). 2

Now suppose that σ ∈ Irr(Mp(W )) is tempered, and let

π = ΘW,V,ψ(σ) and πc = ΘW,V,ψc(σ).
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Note that π and πc are both irreducible by Theorem 8.1. To prove Theorem 12.1, we need to
show that their L-parameters φ and φc are related by

φ⊗ χc = φc.

By Theorem 1.3(ii), this identity for tempered representations follows from the case of discrete
series representations. Hence, we may assume that σ is a discrete series representation. Now, by
Proposition 10.1, one has the following identities of Plancherel measures:

µ(s, (π ⊗ χc)× ρ, ψ) = µ(s, π × (ρ⊗ χc), ψ) = µ(s, σ × (ρ⊗ χc), ψ)

and

µ(s, πc × ρ, ψc) = µ(s, σ × ρ, ψc),
where ρ is any supercuspidal representation of GLr (for any r).

On the other hand, it follows from [GI, §B.2] that

µ(s, σ × ρ, ψc) = |c|2nr+r(r+1)/2 · µ(s, σ × (ρ⊗ χc), ψ)

and

µ(s, πc × ρ, ψc) = |c|(2n+1)r+r(r−1)/2 · µ(s, πc × ρ, ψ).

Hence we deduce that

µ(s, πc × ρ, ψ) = µ(s, (π ⊗ χc)× ρ, ψ).

By Hypothesis LLC, we may express these Plancherel measures in terms of Shahidi’s γ-factors,
which can in turn be expressed as γ-factors of L-parameters. This gives the identity

γ(s, φc ⊗ φρ, ψ) · γ(−s, φc ⊗ φ∨ρ , ψ) = γ(s, (φ⊗ χc)⊗ φρ, ψ) · γ(−s, (φ⊗ χc)⊗ φ∨ρ , ψ).

The following lemma then allows one to conclude that

φc = φ⊗ χc.

Lemma 12.3. Suppose that φ1 and φ2 are 2n-dimensional semisimple representations of WDk,
each of which is a multiplicity-free sum of irreducible symplectic summands. If

γ(s, φ1 ⊗ φρ, ψ) · γ(−s, φ1 ⊗ φ∨ρ , ψ) = γ(s, φ2 ⊗ φρ, ψ) · γ(−s, φ2 ⊗ φ∨ρ , ψ) (12.4)

for every irreducible representation φρ of Wk, then

φ1
∼= φ2

as representations of WDk.

Proof. We shall proceed by induction on dim φi = 2n. Suppose that φ0 is an irreducible
representation of Wk such that φ0 � Sr is contained in φ1 for some r > 1. Here Sr is the
r-dimensional irreducible representation of SL2(C). Let r0 be the smallest such r. Taking φρ = φ0

and evaluating at s= (r0 − 1)/2> 0, one sees that the left-hand side of (12.4) has a zero
at s= (r0 − 1)/2, and hence so must the right-hand side. This implies that L(−s, φ2 ⊗ φ∨0 ) ·
L(s, φ2 ⊗ φ0) must have a pole at s= (r0 − 1)/2. It is not difficult to see that this can happen
only if φ2 contains φ0 � Sr0 as well. Thus, we may cancel φ0 � Sr from both φ1 and φ2 and still
have the analog of (12.4). The lemma then follows by induction. 2

Now let

Uc ⊂ V
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be a quadratic subspace of discriminant c and codimension 1. Then we have

V = Uc + Lc

where Lc is a non-degenerate line of discriminant c and SO(Uc)⊂ SO(V ). We have the following
lemma.

Lemma 12.5. Given an irreducible tempered representation π of SO(V ), there exists an
irreducible tempered representation ξc of SO(Uc) such that

HomSO(Uc)(π, ξc) 6= 0.

Proof. Let fπ be a matrix coefficient of π, which is a smooth function on SO(V ). By replacing
fπ with a SO(V )-translate if necessary, we may assume that fπ has non-zero restriction to the
subgroup SO(Uc). Then there is an element φ ∈ C∞c (SO(Uc)) such that∫

SO(Uc)
fπ(h) · φ(h) dh 6= 0.

By the Plancherel theorem for Schwarz–Harish-Chandra functions [Wal03, Theorem VIII.1.1],

φ=
⊕
M

φM

where M ranges over conjugacy classes of Levi subgroups of SO(Uc) and each φM is a finite
sum of ‘wave packets’ associated to discrete series representations of M . More precisely, a ‘wave
packet’ is a function on SO(Uc) of the form

h 7→
∫
X0(M)

β(s) · 〈I(s, τ)(h)F , F ′〉 µ(s) · ds

where:

• X0(M) denotes the compact torus of unramified unitary characters of M ;

• β is a smooth function on X0(M);

• τ is a discrete series representation (with unitary central character) of M ;

• I(s, τ) is the family of tempered representations of SO(Uc) parabolically induced from the
unramified twists τ ⊗ χs for s ∈X0(M), which are all realized on the same space I(τ) of
functions on a maximal compact subgroup K of SO(Uc);

• F and F ′ are elements of I(τ);

• 〈−,−〉 is the standard inner product on I(τ) induced by an inner product on τ and
integration over K;

• µ(s) ds is the Plancherel measure associated to (M, τ), with ds a Haar measure of X0(M)
and µ(s) a smooth function.

Hence, we conclude that∫
SO(Uc)

fπ(h) ·
∫
X0(M)

β(s) · 〈I(s, τ)(h)F , F ′〉 µ(s) · ds dh 6= 0 (12.6)

for some choice of (M, τ, F , F ′). We note also that the function

s 7→ 〈I(s, τ)(h)F , F ′〉

is continuous in s, as is easy to see from the definitions.
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Now, in [II10], it was shown that∫
SO(Uc)

fπ(h) · fξc(h) dh

is absolutely convergent for any tempered representation ξc of SO(Uc). Hence the double integral
in (12.6) is absolutely convergent. On exchanging the order of integration in (12.6), we deduce
that ∫

SO(Uc)
fπ(h) · 〈I(s, τ)(h)F , F ′〉 dh 6= 0

for some (τ, s, F , F ′). This implies that there is a tempered representation ξc of SO(Uc) and a
matrix coefficient fξc such that ∫

SO(Uc)
fπ(h) · fξc(h) dh 6= 0.

This proves the lemma. 2

By (GP), one has

η(ai) = ε(1/2, φi ⊗ φξc) · χc(−1)(dim φi)/2.

Let τ = ΘUc,W,ψ(ξc). By (Θ), τ is either zero or irreducible tempered. Now, by the see-saw identity
associated to the see-saw diagram

Sp(W )×Mp(W )

SSSSSSSSSSSSSSS
SO(V )

Mp(W )

kkkkkkkkkkkkkkkk
SO(Uc)× SO(Lc)

we deduce that

HomSp(W )(τ ⊗ ωW,ψc , σ) 6= 0.

In particular, τ must be non-zero and, by (Θ), its L-parameter is

φτ = χc · (1 + φξc).

Moreover, since the representations τ , σ and ωW,ψc are unitary, one sees by taking complex
conjugates that

HomSp(W )(τ
∨ ⊗ ωW,ψ−c , σ∨) 6= 0.

Since

HomSp(W )(τ
∨ ⊗ ωW,ψ−c , σ∨) = HomSp(W )(τ

∨ ⊗ ωW,ψ−c ⊗ σ, C) = HomSp(W )(ωW,ψ−c ⊗ σ, τ),

we conclude that

HomSp(W )(σ ⊗ ωW,ψ−c , τ) 6= 0.

Now consider the see-saw diagram

Mp(W )×Mp(W )

TTTTTTTTTTTTTTT
SO(V + L−1)

Sp(W )

jjjjjjjjjjjjjjjj
SO(V )× SO(L−1)
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where L−1 is a quadratic line of discriminant −1, and examine the theta correspondence with
respect to the additive character ψc. Set

ξ = ΘW,V+L−1,ψc(τ).

By (Θ) again, ξ is either zero or irreducible tempered, in which case its L-parameter is

φξ = 1 + φτ = 1 + χc + χc · φξc .

Now the see-saw identity tells us that

HomSO(V )(ξ,Θψc(σ)) = HomSp(W )(σ ⊗ ωW,ψ−c , τ) 6= 0.

Since Lψc(σ) = (φ⊗ χc, ηc), it follows by (GP) that

ηc(ai) = ε(1/2, φi ⊗ χc ⊗ φξ).

Thus,

ηc(ai)/η(ai) = ε(1/2, φi) · ε(1/2, φi ⊗ χc) · χc(−1)(dim φi)/2.

This completes the proof of Theorem 12.1.
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MS00a G. Muić and G. Savin, Symplectic-orthogonal theta lifts of generic discrete series, Duke Math.
J. 101 (2000), 317–333.
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