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Automorphisms of quantum and classical

Poisson algebras

J. Grabowski and N. Poncin

Abstract

We prove Pursell–Shanks type results for the Lie algebra D(M) of all linear differential
operators of a smooth manifold M , for its Lie subalgebra D1(M) of all linear first-order
differential operators of M and for the Poisson algebra S(M) = Pol(T ∗M) of all poly-
nomial functions on T ∗M, the symbols of the operators in D(M). Chiefly, however, we
provide explicit formulas completely describing the automorphisms of the Lie algebras
D1(M), S(M) and D(M).

1. Introduction

The classical result of Pursell and Shanks [PS54], which states that the Lie algebra of smooth vector
fields of a smooth manifold characterizes the smooth structure of the variety, is the starting point
of a multitude of papers.

There are similar results in particular geometric situations – for instance for Hamiltonian, contact
or group invariant vector fields – for which specific tools have been constructed [Omo76, Abe82,
AG90, HM93], in the case of Lie algebras of vector fields that are modules over the corresponding
rings of functions [Ame75, Gra78, Skr87], as well as for the Lie algebra of (not leaf but) foliation
preserving vector fields [Gra93].

The initial objective of the present paper was to prove that the Lie algebra D(M) of all linear
differential operators D : C∞(M) → C∞(M) of a smooth manifold M , determines the smooth
structure of M . Beyond this conclusion, we present a description of all automorphisms of the Lie
algebra D(M) and even of the Lie subalgebra D1(M) of all linear first-order differential operators
of M and of the Poisson algebra S(M) = Pol(T ∗M) of polynomial functions on the cotangent
bundle T ∗M (the symbols of the operators in D(M)), the automorphisms of the two last algebras
of course being canonically related with those of D(M). In each situation we obtain an explicit
formula, for instance – in the case of D(M) – in terms of the automorphism of D(M) implemented
by a diffeomorphism of M , the conjugation-automorphism of D(M) and the automorphism of D(M)
generated by the derivation of D(M) associated to a closed 1-form of M .

In the first part of our work, the approach is purely algebraic. In § 2, we heave D(M) and
S(M) on a general algebraic level and define the notions ‘quantum Poisson algebra’ D and ‘classical
Poisson algebra’ S, the classical limit of D. In § 3 we show that if two (quantum or classical)
Poisson algebras are isomorphic as Lie algebras, their ‘basic algebras of functions’ are isomorphic as
associative algebras – an algebraic Shanks–Pursell type result, which naturally implies our previously
described initial goal. The leading idea of the proof is the algebraic characterization, under a minimal
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condition, of functions as those D ∈ D (or P ∈ S) for which adD (respectively adP ) is locally
nilpotent.

In the second part of the paper, we switch to the concrete geometric context. In this introduction,
we have confined ourselves to a very rough description of the quite technical computations of § 7,
which give all the automorphisms of D(M), calculations based on the result in the S(M)-case (§ 6),
itself founded on the D1(M)-case (§ 5). The utilization – in addition to the algebra hierarchy just
mentioned – of the preliminarily detected conjugation- and derivation-automorphisms (§ 4) and the
suitable use of the normal ordering method (i.e. the local polynomial representation of differential
operators), allow the problem to be reduced to the determination of intertwining operators between
some modules of the Lie algebra of vector fields and to be concluded.

2. Definitions and tools

By a quantum Poisson algebra we mean an associative filtered algebra D =
⋃∞

i=0 Di, Di ⊂ Di+1,
Di·Dj ⊂ Di+j (where · denotes the multiplication of D), with unit 1 over a fieldK of characteristic 0,
such that [Di,Dj] ⊂ Di+j−1, where [·, ·] is the commutator bracket and where Di = {0} for i < 0,
by convention.

It is obvious that A = D0 is a commutative subalgebra of D (we call it the basic algebra of D)
and D1 a Lie subalgebra of D. We refer to elements k of K, naturally embedded in A or D by
k ∈ K → k1 ∈ A ⊂ D, as constants, to elements f of A as functions and to elements D of D as
differential operators. It is easily seen that every element D ∈ D1, i.e. every first-order differential
operator, induces a derivation D̂ ∈ Der(A) of A by D̂(f) = [D, f ].

By a classical Poisson algebra we mean a commutative associative algebra with an N-gradation
S =

⊕∞
i=0 Si, SiSj ⊂ Si+j, with unit 1 over a field K of characteristic 0, equipped with a Poisson

bracket {·, ·} such that {Si, Sj} ⊂ Si+j−1. Of course, we can think of S as of a Z-graded algebra
putting Si = {0} for i < 0 and as a filtered algebra putting Si =

⊕
k�i Sk. As in the case of the

quantum Poisson algebra, A = S0 is an associative and Lie-commutative subalgebra of S (the basic
algebra) and S1 is a Lie subalgebra of (S, {·, ·}) acting on A by derivations.

An operator φ ∈ HomK(V1, V2) between N-filtered vector spaces respects the filtration if φ(V i
1 ) ⊂

V i
2 and is lowering if φ(V i

1 ) ⊂ V i−1
2 .

Quantum Poisson algebras induce canonically classical Poisson algebras as follows. For a quan-
tum Poisson algebra D, consider the graded vector space S(D) =

⊕
i∈Z Si(D), Si(D) = Di/Di−1.

We have the obvious canonical surjective map σ : D → S, the principal-symbol map. Note that
σ(A) = A = S0. We denote the projection of σ(D) to Sj by σ(D)j .

Since for each non-zero differential operator D ∈ D, there is a single i = deg(D) ∈ Z such
that D ∈ Di \ Di−1, σ(D)j = 0 if j �= deg(D) and σ(D)deg(D) = σ(D). We set for Ḋ1 ∈ Si with
Ḋ1 = σ(D1) and Ḋ2 ∈ Sj with Ḋ2 = σ(D2),

Ḋ1Ḋ2 = σ(D1 ·D2)i+j , {Ḋ1, Ḋ2} = σ([D1,D2])i+j−1.

It is easy to see that these definitions do not depend on the choice of the representatives D1 and
D2 and that we get a classical Poisson algebra with the same basic algebra A. We call this classical
Poisson algebra the classical limit of the quantum Poisson algebra D. We can formulate this as
follows.

Theorem 1. For every quantum Poisson algebra D, there is a unique classical Poisson algebra
structure on the graded vector space S(D) such that

σ(D1)σ(D2) = σ(D1 ·D2)deg(D1)+deg(D2) (1)
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and

{σ(D1), σ(D2)} = σ([D1,D2])deg(D1)+deg(D2)−1 (2)
for each D1,D2 ∈ D. In particular,

{σ(D1), σ(D2)} = σ([D1,D2]) or {σ(D1), σ(D2)} = 0.

Corollary 1. For D1,D2, . . . ,Dn ∈ D, if

[D1, [D2, . . . , [Dn−1,Dn]]] = 0,

then

{σ(D1), {σ(D2), . . . , {σ(Dn−1), σ(Dn)}}} = 0.

Note that every linear map Φ : D1 → D2 between two quantum Poisson algebras, which respects
the filtration, canonically induces a linear map Φ̃ : S(D1) → S(D2), which respects the gradation,
by Φ̃(σ(D)) = σ(Φ(D)). In view of Theorem 1, it is easy to see that if such Φ is a homomorphism
of associative (respectively Lie) structure, then Φ̃ is a homomorphism of associative (respectively
Lie) structure.

A classical Poisson algebra S is said to be non-singular if {S1,A} = A. The Poisson algebra S
is called symplectic if constants are the only central elements of (S, {·, ·}) and distinguishing if for
any P ∈ S we have that

∀f ∈ A, ∃ n ∈ N : {P, {P, . . . , {P︸ ︷︷ ︸
n

, f}}} = 0 ⇒ P ∈ A.

A quantum Poisson algebra is called non-singular (respectively symplectic or distinguishing), if its
classical limit is a non-singular (respectively symplectic or distinguishing) classical Poisson algebra.

Proposition 1. For any quantum Poisson algebra D:

a) D is non-singular if and only if [D1,A] = A;

b) if D is symplectic, then the constants are the only central elements in D;

c) if D is distinguishing, then for any D ∈ D we have that

∀f ∈ A, ∃ n ∈ N : [D, [D, . . . , [D︸ ︷︷ ︸
n

, f ]]] = 0 ⇒ D ∈ A.

Proof. It is obvious that
[D1,A] = σ([D1,A]) = {S1(D),A},

which proves item a. To prove part b, it suffices to observe that the center of the Lie algebra S(D)
contains the image of the center of D by the map σ. Finally, in view of Corollary 1,

[D, [D, . . . , [D︸ ︷︷ ︸
n

, f ]]] = 0

implies
{σ(D), {σ(D), . . . , {σ(D)︸ ︷︷ ︸

n

, f}}} = 0

and part c follows.

Example 1. A standard example of a quantum Poisson algebra is the algebra D(M) of differential
operators D : C∞(M) → C∞(M) associated with a manifold M . Its classical limit S(M) is the
Poisson algebra Pol(T ∗M) of polynomials on the cotangent bundle T ∗M (i.e. of the smooth functions
on T ∗M that are polynomial along the fibers) with the standard symplectic Poisson bracket on T ∗M .
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We can also view S(M) as the algebra of symmetric contravariant tensors on M with the symmetric
Schouten bracket. We have a canonical splitting D(M) = A⊕Dc(M), where A = C∞(M) and where
Dc(M) is the algebra of differential operators vanishing on constants (D ∈ Dc(M) if and only if
D(1) = 0). If Di

c(M) = Di(M) ∩ Dc(M) (i � 0), we also have Di(M) = A ⊕ Di
c(M). It is clear

that D0
c (M) = 0 and that D1

c (M) is the Lie algebra Der(A) of derivations of A, i.e. the Lie algebra
Vect(M) of vector fields on M . Note that the Lie algebras D1(M) and S1(M) are both isomorphic
to Vect(M) ⊕ C∞(M) with the bracket [X + f, Y + g] = [X,Y ] + (X(g) − Y (f)).

The quantum Poisson algebra D(M) is easily seen to be non-singular and symplectic. In the
next section we show that it is distinguishing.

Example 2. The above example can be extended to the case of the quantum Poisson algebra of
differential operators on a given associative commutative algebra A with unit 1. The corresponding
differential calculus has been developed and extensively studied by Vinogradov [Vin72].

To investigate the algebra D(M) of differential operators we need some preparation. Let us look
at local representations of differential operators and the formal calculus (see, e.g., [DWL83, Pon01]).

Consider an open subset U of R
n, two real finite-dimensional vector spaces E and F and some

local operator
O ∈ L(C∞(U,E), C∞(U,F ))loc.

The operator is fully defined by its values on the products fe, f ∈ C∞(U), e ∈ E. A well known
theorem of Peetre (see [Pee59]) states that it has the form

O(fe) =
∑
α

Oα(∂α(fe)) =
∑
α

Oα(e)∂αf,

where ∂α
x = ∂α1

x1 · · · ∂αm

xm and Oα ∈ C∞(U,L(E,F )). Moreover, the coefficients Oα are well deter-
mined by O and the series is locally finite (it is finite if U is relatively compact).

We symbolize the partial derivative ∂αf by the monomial ξα = ξα1

1 · · · ξαm

m in the components
ξ1, . . . , ξm of some linear form ξ ∈ (Rn)∗, or – at least mentally – even by ξαf, if this is necessary
to avoid confusion. The operator O is thus represented by the polynomial

O(ξ; e) =
∑
α

Oα(e)ξα.

When identifying the space Pol((Rn)∗) of polynomials on (Rn)∗ with the space
∨

R
n of symmetric

contravariant tensors of R
n, we have O ∈ C∞(U,

∨
R

n ⊗ L(E,F )). Let us emphasize that the
form ξ symbolizes the derivatives in O that act on the argument fe ∈ C∞(U,E), while e ∈ E
represents this argument. In the following, we no longer use different notation for the operator O
and its representative polynomial O; in order to simplify notations, it is helpful to use the same
typographical sign even when referring to the argument fe and its representation e.

For instance, let us look for the local representation of the Lie derivative of a differential operator
(it is well known that LXD = [X,D] (X ∈ Vect(M), D ∈ Di(M) or D ∈ Di

c(M)) defines a module
structure over Vect(M) on Di(M) and Di

c(M), respectively). If D ∈ D(M), its restriction D|U
(or simply D, if no confusion is possible) to a domain U of local coordinates of M is a local operator
from C∞(U) into C∞(U) that is represented by D(f) � D(ξ; 1) = D(ξ), where f ∈ C∞(U) and
where ξ represents the derivatives acting on f . The Lie derivative of D(f) with respect to a vector
field X ∈ C∞(U,Rn), is then represented by LX(D(f)) � 〈X, η + ξ〉D(ξ). Here, η ∈ (Rn)∗ is
associated to D and 〈X, η+ ξ〉 denotes the evaluation of X ∈ R

n on η+ ξ. When associating ζ to X,
we get D(LXf) � 〈X, ξ〉D(ξ + ζ) and

(LXD)(f) � 〈X, η〉D(ξ) − 〈X, ξ〉τζD(ξ), (3)

where τζD(ξ) = D(ξ + ζ) −D(ξ).
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3. Algebraic characterization of a manifold

Theorem 2. The quantum Poisson algebra D(M) of differential operators on C∞(M) is distin-
guishing (i.e. the classical Poisson algebra S(M) is distinguishing).

Proof. Since for P,Q ∈ S = Pol(T ∗M), {P,Q} = HP .Q, where HP is the Hamiltonian vector field
of P , we have to prove that if P ∈ S \ A (A = C∞(M)), there is a function f ∈ A such that for
every integer n ∈ N, (HP )n · f �= 0.

If (U, (x1, . . . , xn)) is a chart of M , then HP has in the associated Darboux chart
(T ∗U, (x1, . . . , xn, ξ1, . . . , ξn)) the classical expression HP = ∂iP∂i − ∂iP∂i, where ∂i = ∂/∂ξi and
∂i = ∂/∂xi. It follows from the hypothesis P ∈ S \A that ∂iP∂i �= 0 for at least one chart U of M .
In order to simplify notation, we write in the associated Darboux chart T ∗U , HP = F i∂i + Gi∂i,
with F i∂i �= 0.

First note that, for an arbitrary neighborhood ]a, b[ of an arbitrary point x0 ∈ R, it is possible
to construct a sequence x1, x2, . . . ∈ ]a, b[ with limit x0 and a function h ∈ C∞(R) such that, if dk

xh
denotes the kth derivative of h,

(dk
xh)(xn)

{
= 0, for all k ∈ {0, . . . , n− 1}
�= 0, for k = n.

Indeed, set d = (b−x0)/2, xn = x0 +d/n (n ∈ N
∗), δn = xn−xn+1, and Vn = ]xn−δn/2, xn +δn/2[.

It is clear that the intersections Vn ∩ Vn+1 are empty. Now take smooth functions αn with value 1
around xn and compact support in Vn and define smooth functions hn by hn(x) = (x− xn)nαn(x).
We easily see that (dk

xhn)(xn) vanishes for all k ∈ {0, . . . , n − 1} and does not for k = n. Finally,
the function h defined by h(x) =

∑∞
n=1 hn(x) has all the desired properties.

When returning to the initial problem, remark that at least one F i does not vanish, say F 1. If
its value at some point (x0, ξ0) ∈ T ∗U is non-zero, the function F 1(·, ξ0) ∈ C∞(U) is non-zero on
some neighborhood V of x0.

In the following, the coordinates (x1, . . . , xn) of a point x ∈ U will be denoted by (x1, x′′) ∈
R×R

n−1. Consider now V as an open subset of R
n, introduce the section V 1 = {x1 : (x1, x′′0) ∈ V }

of V at the level x′′0 and construct the previously described sequence x1
n and function h in this

neighborhood V 1 of x1
0. The sequence defines a sequence xn in V with the limit x0 and the function

defines a function still denoted by h in C∞(V ).
When multiplying this h by a smooth α, which has the value 1 in a neighborhood of the points

xn and is compactly supported in V , we get the function f ∈ C∞(M) that we have to construct.
Indeed, for every n,

((HP )n.f)(xn, ξ0) = ((F i∂i +Gi∂i)nh)(xn, ξ0).
The function on the right-hand side is a sum of terms in the ∂ih, ∂i1∂i2h, . . . , ∂i1 · · · ∂inh and the
maximal order terms are F i1 · · ·F in∂i1 · · · ∂inh. All the terms of order less than n vanish, since
the derivatives with respect to xi (i �= 1) vanish and for k < n, (dk

x1h)(x1
n) = 0. The terms of

maximal order n also vanish, except (F 1)ndn
x1h that is non-zero at (xn, ξ0).

For any Lie algebra (L, [·, ·]), we denote the set of those D ∈ L for which adD is locally nilpotent
by Nil(L):

Nil(L) = {D ∈ L : ∀D′ ∈ L,∃n ∈ N : [D, [D, . . . , [D︸ ︷︷ ︸
n

,D′]]] = 0}.

Proposition 2. If a quantum or classical Poisson algebra L with the basic algebra A is distin-
guishing, then:

a) Nil(L) = A;
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b) {P ∈ S : {P,A} ⊂ Si} = Si+1 ⊕A (i � −1)

in the case L = S is classical; in particular,

{P ∈ S : {P,A} ⊂ Si} = Si+1 (i � −1);

c) {D ∈ D : [D,A] ⊂ Di} = Di+1 (i � −1)

in the case L = D is quantum.

Proof. a) This is obvious for classical and, in view of Proposition 1, also for quantum Poisson
algebras.

b) Since {P,A} ⊂ S � Si, for any P ∈ S � Si+1, the inclusion {P,A} ⊂ Si for such P implies
{P,A} = 0, so P ∈ A.

c) If D ∈ D \ Di+1 and [D,A] ⊂ Di (i � −1), then {σ(D),A} = 0 and σ(D) ∈ A, which is
contradictory. �

Now we start the studies on the properties of isomorphisms of quantum and classical Poisson
algebras. We concentrate on the quantum level, since on the classical level all the considerations are
analogous and even simpler.

Corollary 2. Every isomorphism Φ : D1 → D2 of the Lie algebras (Di, [·, ·]) for distinguishing
quantum Poisson algebras Di, i = 1, 2, respects the filtration and induces an isomorphism Φ̃ :
S(D1) → S(D2), Φ̃(σ(D)) = σ(Φ(D)), of the corresponding classical limit Lie algebras.

Proof. It is obvious that Φ(Nil(D1)) = Nil(D2), i.e. Φ(A1) = A2. Inductively, if Φ(Di
1) ⊂ Di

2, then,
for any D ∈ Di+1

1 ,

[Φ(D),A2] = Φ([D,A1]) ⊂ Di
2,

and Φ(D) ∈ Di+1
2 , by Proposition 2. Now, since Φ and Φ−1 respect the filtration, Φ̃ is a linear

isomorphism of S1 onto S2 which, as easily seen, is a Lie algebra isomorphism.

Denote by C(D) the centralizer of adA in HomK(D,D):

Ψ ∈ C(D) ⇔ [Ψ, adA] = 0.

Note that multiplications mf : D � D → f ·D ∈ D and m′
f : D � D → D ·f ∈ D by elements f ∈ A

belong to C(D).

Theorem 3. Assume that D is a non-singular and distinguishing quantum Poisson algebra. Then
any Ψ ∈ C(D) respects the filtration and there is an f ∈ A and a lowering Ψ1 ∈ C(D), such that

Ψ = mf + Ψ1.

Proof. [Ψ, adA] = 0 means that

[Ψ(D), f ] = Ψ([D, f ]), (4)

for all D ∈ D and all f ∈ A. For D ∈ A we get [Ψ(D), f ] = 0, so Ψ(D) ∈ A. Inductively, if
Ψ(Di) ⊂ Di, then (4) implies [Ψ(Di+1), f ] ⊂ Di and Ψ(Di+1) ⊂ Di+1.

Now let D ∈ D1: Ψ(D) ∈ D1. Since for any f ∈ A,

2Ψ(f [D, f ]) = Ψ([D, f2]) = [Ψ(D), f2] = 2f [Ψ(D), f ] = 2fΨ([D, f ]),

we have

Ψ(fD̂(f)) = fΨ(D̂(f)), (5)
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for any f ∈ A,D ∈ D1. Substituting D := gD (g ∈ A,D ∈ D1) and f := f + h (f, h ∈ A) in (5), we
get

Ψ(fgD̂(h)) + Ψ(ghD̂(f)) = fΨ(gD̂(h)) + hΨ(gD̂(f)). (6)

For g = D̂(h), Equation (6) reads

Ψ(f(D̂(h))2) + Ψ(hD̂(f)D̂(h)) = fΨ((D̂(h))2) + hΨ(D̂(f)D̂(h)),

where the last terms of the left-hand side and the right-hand side cancel in view of (5) applied to
D := D̂(f)D. Hence, for each f, h ∈ A and D ∈ D1,

Ψ(f(D̂(h))2) = fΨ((D̂(h))2).

The last equation shows that the radical rad(J) of the ideal J = {g ∈ A : Ψ(fg) = fΨ(g),∀f ∈ A}
of the associative commutative algebra A, contains [D1,A]. Since D is non-singular, this implies
that J = A, so that Ψ(f) = Ψ(1)f , for all f ∈ A. It is obvious that Ψ1 = Ψ−mΨ(1) belongs to C(D)
and respects the filtration, and we easily see that it is lowering. Indeed, since Ψ1(A) = 0, assume
inductively that Ψ1(Di) ⊂ Di−1. Then, [Ψ1(Di+1),A] = Ψ1([Di+1,A]) ⊂ Di−1 and Ψ1(Di+1) ⊂ Di.

Theorem 4. Let Di be distinguishing, non-singular and symplectic, i = 1, 2. Then every isomor-
phism Φ : D1 → D2 of the Lie algebras (Di, [·, ·]), i = 1, 2, respects the filtration and its restriction
Φ |A1 to A1 has the form

Φ |A1= κA,

where κ ∈ K,κ �= 0 and A : A1 → A2 is an isomorphism of the associative commutative algebras.
The same is true for any isomorphism Φ : D1

1 → D1
2 of the corresponding Lie algebras of first-order

differential operators.

Proof. By Corollary 2, Φ respects the filtration, so Φ(A1) = A2. Let

Φ∗ : HomK(D1,D1) → HomK(D2,D2)

be the induced isomorphism of the Lie algebras of linear homomorphisms, defined for
Ψ ∈ HomK(D1,D1) by

Φ∗(Ψ) = Φ ◦ Ψ ◦ Φ−1.

Since Φ(A1) = A2, Φ∗(C(D1)) = C(D2); in particular, Φ∗(mg) ∈ C(D2) for g ∈ A1. By Theorem 3,

Φ∗(mg)(f ′) = Φ∗(mg)(1) · f ′,
i.e.

Φ(g · Φ−1(f ′)) = Φ(g · Φ−1(1)) · f ′, (7)

for all f ′ ∈ A2. Observe that Φ−1(1) is central in D1 and is thus a non-vanishing constant κ−1.
Substituting Φ(f) (f ∈ A1) for f ′ in (7), we obtain Φ(f · g) = κ−1Φ(f) · Φ(g). For A defined by
A(f) = κ−1Φ(f), this reads A(f · g) = A(f) ·A(g), which completes the proof of Theorem 4.

We can prove in the same way – mutatis mutandis – that Theorem 4 is still valid for Di, i = 1, 2,
replaced by classical Poisson algebras Si, i = 1, 2.

Theorem 5. Let Si be a distinguishing, non-singular and symplectic classical Poisson algebra,
i = 1, 2. Then every isomorphism Φ : S1 → S2 of the Lie algebras (Si, {·, ·}), i = 1, 2, respects the
filtration and its restriction Φ |A1 to A1 has the form

Φ |A1= κA,

where κ ∈ K, κ �= 0 and A : A1 → A2 is an isomorphism of the associative commutative algebras.
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Corollary 3. If two distinguishing, non-singular and symplectic quantum (respectively classical)
Poisson algebras are isomorphic as Lie algebras, then their basic algebras are isomorphic as associa-
tive algebras. The same remains true for Lie subalgebras of the first-order operators of such Poisson
algebras: if they are isomorphic, then their basic algebras are isomorphic associative algebras.

Let us now return to the quantum Poisson algebra D = D(M) of differential operators of a
smooth, Hausdorff, second countable, connected manifold M . It is well known that every associative
algebra isomorphism A : A1 = C∞(M1) → A2 = C∞(M2) is of the form

A : A1 � f → f ◦ φ−1 ∈ A2,

where φ : M1 → M2 is a diffeomorphism. Thus, we can draw a conclusion of the same type as a
classical result of Pursell and Shanks [PS54] (see also [Gra78]).

Theorem 6. The Lie algebras D(M1) and D(M2) (respectively D1(M1) and D1(M2), or S(M1)
and S(M2)) of all differential operators (respectively all differential operators of order 1, or all
symmetric contravariant tensors) on two smooth manifolds M1 and M2 are isomorphic if and only
if the manifolds M1 and M2 are diffeomorphic.

Studying the isomorphisms mentioned in the above theorem reduces then to studying the auto-
morphisms of the Lie algebras D(M), D1(M) and S(M).

4. Particular automorphisms

In the following, D denotes the quantum algebra D(M) and S is its classical limit S(M).

4.1
Every automorphism A of the associative algebra A = C∞(M) (which is implemented by a diffeo-
morphism φ of M) induces an automorphism A∗ of the Lie algebra D:

A∗(D) = A ◦D ◦A−1 (D ∈ D).

It clearly restricts to an automorphism of D1. The automorphism A also induces an automorphism
A∗ of S. It is simply induced by the phase lift of the diffeomorphism φ to the cotangent bundle
T ∗M if we interpret elements of S as polynomial functions on T ∗M . If we interpret S as symmetric
contravariant tensors on M , then A∗ is simply the action of φ on such tensors.

Now let Φ ∈ Aut(D, [·, ·]) (respectively Φ ∈ Aut(D1, [·, ·]) or Φ ∈ Aut(S, {·, ·})). By Theorem 4,
there are A ∈ Aut(A, ·) and κ ∈ K,κ �= 0, such that Φ|A = κA∗|A. Then, Φ1 = (A∗)−1 ◦ Φ is an
automorphism of D (respectively D1 or S), which is κ · id (id is the identity map) on A. It is thus
sufficient to describe the automorphisms that are κ · id on functions.

4.2
Let ω ∈ Ω1(M) ∩ ker d be a closed 1-form on M and D ∈ Di. If U is an open subset of M and
ω|U = d(fU ) (fU ∈ C∞(U)), the operators [D|U , fU ] ∈ Di−1

U (Dk
U is defined as Dk but for M = U)

are of course the restrictions of a unique well-defined operator ω(D) ∈ Di−1:

ω(D)|U = [D|U , fU ],

since the above commutator does not depend on the choice of fU with ω|U = d(fU ) (constants
are central with respect to the bracket). It is clear that ω ∈ L(D,D) ∩ L(Di,Di−1), that ω(X) =
ω(X) for all X ∈ Vect(M), and that ω �→ ω is linear. Moreover, ω is a 1-cocycle of the ad-
joint Chevalley–Eilenberg cohomology of D, i.e. a derivation of D. Since ω is lowering, it is locally

518

https://doi.org/10.1112/S0010437X0300006X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0300006X


Automorphisms of quantum and classical Poisson algebras

nilpotent, so that

eω = id + ω +
1
2!
ω2 + · · ·

is well defined and is an automorphism of D (that is the identity on functions). In particular, for
ω = df , the automorphism eω is just the inner automorphism D � D �→ ef ·D · e−f ∈ D.

On the classical level, we have an analogous derivation of the classical Poisson algebra S:

ω(P )|U = {P |U , fU},
and the analogous automorphism eω. These automorphisms have a geometric description, if we
interpret S as the Lie algebra of polynomial functions on the cotangent bundle T ∗M with the
canonical Poisson bracket. Every closed 1-form ω on M induces a vertical locally Hamiltonian
vector field ωv on T ∗M which connects the 0-section of T ∗M with another Lagrangian submanifold
which is the image of the section ω. If, locally, ω = df , then ωv is, locally, the Hamiltonian vector
field of the pull-back of f to T ∗M . In the pure vector bundle language, ωv is simply the vertical lift
of the section ω of T ∗M . Since this vector field is vertical and constant on fibers, it is complete and
determines a one-parameter group Exp(ωv) of symplectomorphisms of T ∗M . The automorphism eω

is just the action of Exp(ωv) on polynomial functions on T ∗M . The symplectomorphism Exp(ωv)
translates every covector ηp to ηp + ω(p).

4.3

The following remark concerns the divergence operator on an arbitrary manifold M . For further
details the reader is referred to [Lec02].

Denote by Fλ(TM) (λ ∈ R) the vector bundle (of rank 1) of λ-densities and by Fλ(M) the
Vect(M)-module of λ-density fields (or simply λ-densities) on M (i.e. the space of smooth sections
of Fλ(TM), endowed with the natural Lie derivative LX , X ∈ Vect(M)). The result stating that
these modules Fλ(M) are not isomorphic, implies the existence of a non-trivial 1-cocycle of the Lie
algebra Vect(M) canonically represented on C∞(M). It appears if Fλ(M) is viewed as a deformation
of F0(M) = C∞(M).

Let us be somewhat more precise. In the proof of triviality of the bundles Fλ(TM), we construct
a section that is everywhere non-zero (and even, which has at each point only strictly positive
values). Let ρ0 ∈ F1(M) be such a section. Then ρλ

0 ∈ Fλ(M) also vanishes nowhere and τλ
0 : f ∈

C∞(M) −→ fρλ
0 ∈ Fλ(M) is a bijection. We have the subsequent results:

• there is a 1-cocycle γ : Vect(M) −→ C∞(M), which depends on ρ0 but not on λ, such that,
for any X ∈ Vect(M),

(τλ
0 )−1 ◦ LX ◦ τλ

0 : f ∈ C∞(M) −→ X(f) + λγ(X)f ∈ C∞(M);

• the cocycle γ is a differential operator with symbol σ(γ)(ζ;X) = 〈X, ζ〉, where 〈X, ζ〉 denotes
the evaluation of ζ ∈ T ∗

xM upon X ∈ TxM ;

• the cohomology class of γ is independent of ρ0.

This class divM is the class of the divergence. Each cocycle cohomologous to γ will be called a
divergence. Finally, the following propositions hold.

• The first cohomology space of Vect(M) represented upon C∞(M) is given by

H1(Vect(M), C∞(M)) = R divM ⊕H1
DR(M), (8)

where H1
DR(M) denotes the first space of the de Rham cohomology of M .
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• For any divergence γ on M , there is an atlas of M , such that in every chart,

γ(X) =
∑

i

∂xiXi, for all X ∈ Vect(M), (9)

with self-explaining notation.

The preceding results have a simple explanation. Remember that if the manifold M is orientable
and if Ω is a fixed volume form, the divergence of X ∈ Vect(M) with respect to Ω is defined as
the smooth function divΩX of M that verifies LXΩ = (divΩX)Ω. One easily sees that div−ΩX =
divΩX. However, this means that the divergence of a vector field can even be defined on a non-
orientable manifold with respect to a pseudo-volume form.

The divergence operator associated to a 1-density ρ0, will be denoted by divρ0 or simply div, if
no confusion is possible. Let us fix a divergence on Vect(M).

Lemma 1. There is a unique C ∈ Aut(D, [·, ·]), such that C(f) = −f, C(X) = X + divX,

C(D ◦ f) = f ◦ C(D),

and

C(D ◦X) = −C(X) ◦ C(D),

for all f ∈ A, X ∈ D1
c , and D ∈ D.

Proof. Consider an atlas of M, such that the divergence has the form (9) in any chart. Then, in
every chart (U, (x1, . . . , xn)), C which is given by C(η;Pk)(ξ) = (−1)k+1Pk(ξ+η), where Pk ∈ ∨k

R
n

is a homogeneous polynomial of degree k, defines an operator CU : DU −→ DU that (maps Di
U into

Di
U and) verifies the above characteristic properties. Let us explain for instance the fourth property;

the third is analogous and the first and second are obvious. Use the previously mentioned simplifi-
cations of notations, identify the space Di

U of differential operators to the space C∞(U,
∨�i

R
n) of

polynomial representations, set X = gX and D = hPk (on the left-hand side X ∈ C∞(U,Rn) and
D ∈ C∞(U,

∨�i
R

n), on the right-hand side g, h ∈ C∞(U), X ∈ R
n, and Pk ∈ ∨k

R
n (k � i))

and symbolize the derivatives acting on g, h and the argument f ∈ C∞(U) of D ◦ X, CU (D ◦ X)
and CU(X) ◦ CU (D), by ζ, η and ξ, respectively. Since

(D ◦X)(f) = D(X(f)) � 〈X, ξ〉Pk(ξ + ζ) = 〈X, ξ〉
∑

�

1
�!

(ζ∂ξ)�Pk(ξ)

(ζ∂ξ is the derivative with respect to ξ in the direction of ζ), we have

(CU (D ◦X))(f) �
∑

�

1
�!
C(η + ζ;X(ζ∂ξ)�Pk)(ξ)

= (−1)k〈X, ξ + η + ζ〉
(∑

�

1
�!

((−ζ)∂ξ)�Pk

)
(ξ + η + ζ)

= (−1)k〈X, ξ + η + ζ〉Pk(ξ + η)
� −(CU (X) ◦ CU (D))(f).

It is well known that any differential operator D ∈ D has a global (not necessarily unique)
decomposition as a finite sum of terms of the type fXk ◦ · · · ◦X1 (f ∈ C∞(M), X� ∈ Vect(M)).
If we set L1

X = X+divX (X ∈ Vect(M)), we have CU (X|U ) = L1
X |U and CU(D|U ) = ((−1)k+1L1

X1
◦

· · · ◦ L1
Xk

◦ f)|U . This means that the CU are the restrictions of a unique well-defined operator

C : D � D = fXk ◦ · · · ◦X1 −→ C(D) = (−1)k+1L1
X1

◦ · · · ◦ L1
Xk

◦ f ∈ D,
which inherits the characteristic properties.
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The homomorphism property, C[D,∆] = [CD, C∆] (D,∆ ∈ D), is a direct consequence of the
characteristic properties and the definition of C. Noting that C2(X) = X and, from the preceding
verification, that C(D ◦ ∆) = −C(∆) ◦ C(D), we immediately see that C2 = id, so C ∈ Aut(D).

Remark 1. We easily convince ourselves that, if Ω is a volume form of M, C is the opposite of the
conjugation ∗ : D � D −→ D∗ ∈ D of differential operators, defined by∫

M
D(f) · g|Ω| =

∫
M
f ·D∗(g)|Ω|,

for all compactly supported f, g ∈ C∞(M).

4.4
On S, as on every graded algebra, there is a canonical one-parameter family of automorphisms Uκ,
κ �= 0, namely Uκ(P ) = κ1−iP for P ∈ Si. It is easy to see that Uκ is an automorphism of the Lie
algebra S. For positive κ, this is the one-parameter group of automorphisms induced by the canonical
derivation Deg : S → S of the Poisson bracket, Deg(P ) = (i − 1)P for P ∈ Si, namely Uκ =
e− log(κ)Deg. Since Uκ|A = κ · id|A, we can now reduce every automorphism Φ of the Lie algebra S
to the case when Φ|A = id|A.

5. Automorphisms of the Lie algebra D1(M)

When using the decomposition D = A⊕Dc, we denote by π0 and πc the projections onto A and Dc,
respectively. Furthermore, if D ∈ D, we set D0 = π0D = D(1) and Dc = πcD = D −D(1) and if
Φ ∈ L(D), we set Φ0 = π0 ◦ Φ ∈ L(D,A) and Φc = πc ◦ Φ ∈ L(D,Dc). Note also that for f, g ∈ A,
we have [Dc, f ]0 = Dc(f) and [Dc, f ]c(g) = Dc(f · g)−Dc(f) · g− f ·Dc(g), so that [Dc, f ]0 = 0, for
all f ∈ A if and only if Dc = 0 and [Dc, f ]c(g) = 0, for all f, g ∈ A if and only if Dc ∈ D1

c .
Let us now return to the problem of the determination of all automorphisms Φ of D (respec-

tively D1) that coincide with κ · id on functions.
The projection of the homomorphism property, written for Dc ∈ Dc and f ∈ A, leads to the

equations
(ΦcDc)(f) = κ−1Φ0[Dc, f ] = Dc(f) + κ−1Φ0[Dc, f ]c (10)

and
[ΦcDc, f ]c = κ−1Φc[Dc, f ]c, (11)

and its projection, if it is written for Dc,∆c ∈ Dc, gives

Φ0[Dc,∆c] = (ΦcDc)(Φ0∆c) − (Φc∆c)(Φ0Dc) (12)

and
Φc[Dc,∆c] = [ΦcDc,Φ0∆c]c + [Φ0Dc,Φc∆c]c + [ΦcDc,Φc∆c]. (13)

If we write these equations for Dc and ∆c in the Lie subalgebra D1
c of Dc, (10) means that

Φc|D1
c

= id, (11) and (13) are trivial and (12) tells us that α := Φ0|D1
c

is a 1-cocycle of the Lie
algebra of vector fields canonically represented on functions by the Lie derivative. As, in view of (8),

α = λdiv +ω (λ ∈ R, ω ∈ Ω1(M) ∩ ker d),

we have the following.

Theorem 7. The automorphisms Φ1 of D1(M) that verify Φ1|C∞(M) = κ · id (κ ∈ R, κ �= 0) are
the mappings

Φ1 = κπ0 + (id + λdiv +ω) ◦ πc,

where λ ∈ R and ω ∈ Ω1(M) ∩ ker d.
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Indeed, one easily sees that these homomorphisms of D1 are bijective. We can now summarize
all facts and give the complete description of automorphisms of D1.

Theorem 8. A linear map Φ : D1(M) → D1(M) is an automorphism of the Lie algebra D1(M) =
Vect(M) ⊕ C∞(M) of linear first-order differential operators on C∞(M) if and only if it can be
written in the form

Φ(X + f) = φ∗(X) + (κf + λdivX + ω(X)) ◦ φ−1, (14)

where φ is a diffeomorphism of M , λ, κ are constants, κ �= 0, ω is a closed 1-form on M and φ∗ is
defined by

(φ∗(X))(f) = (X(f ◦ φ)) ◦ φ−1.

All the objects φ, λ, κ, ω are uniquely determined by Φ.

6. Automorphisms of the Lie algebra S(M)

We now finish the description of automorphisms of the Lie algebra S(M). We have already reduced
the problem to automorphisms which are identity on A = C∞(M). Such an automorphism, respect-
ing the filtration, restricts to an automorphism of D1(M) = S1(M), where, in view of Theorem 8,
it is of the form Φ(X + f) = X + (f + λdivX +ω(X)). Using the automorphism eω, we can reduce
to the case when ω = 0. We show that in this case λ = 0 and Φ = id.

Consider an automorphism Φ of S which is identical on functions and of the form Φ(X) =
X + λ divX on vector fields. It is easy to see that this implies that Φ = idS + ψ, where ψ : S → S
is lowering. The automorphism property yields ψ({P, f}) = {ψ(P ), f}, for all P ∈ S, f ∈ A. Let us
take P ∈ S2. Then {P, f} is a vector field (linear function on T ∗M) and we get λdiv{P, f} =
{ψ(P ), f}. However, for λ �= 0, the left-hand side is a second-order differential operator with respect
to f (e.g. for P = X2, the principal symbol is 2λX2), while the right-hand side is of first order – a
contradiction. Thus λ = 0 and Φ is identity on first-order operators (polynomials).

Now we can proceed inductively, showing that ψ|Si = 0 also for i > 1. For any P ∈ S, we have

{ψ(P ), f} = ψ({P, f}) and {ψ(P ),X} = ψ({P,X}), (15)

for any function f and any vector field X. Then, ψ|Si−1 = 0 and (15) imply that, for P ∈ Si, we
have ψ(P ) ∈ A and that ψ is an intertwining operator for the action of vector fields on Si and A.
However, following the methods of [Pon02] or [BHMP02], one can easily see that such operators are
trivial, so ψ|Si = 0. Thus we get ψ = 0, i.e. Φ = idS , and we can formulate the following final result.

Theorem 9. A linear map Φ : S(M) → S(M) is an automorphism of the Lie algebra S(M) of
polynomial functions on T ∗M with respect to the canonical symplectic bracket if and only if it can
be written in the form

Φ(P ) = Uκ(P ) ◦ φ∗ ◦ Exp(ωv), (16)
where κ is a non-zero constant, Uκ(P ) = κ1−iP for P ∈ Si, φ

∗ is the phase lift of a diffeomorphism
φ of M and Exp(ωv) is the vertical symplectic diffeomorphism of T ∗M being the translation by a
closed 1-form ω on M . All the objects κ, φ, ω are uniquely determined by Φ.

The automorphisms of the whole Poisson algebra C∞(N) on a symplectic (or even a Poisson)
manifold N , have been described in [AG90, Gra00]. Our symplectic manifold is particular here (e.g.
N = T ∗M is non-compact and the symplectic form is exact), so the result of [AG90] states that
automorphisms of the Poisson algebra C∞(T ∗M) are of the form P �→ sP ◦ φ̃, where s is a non-zero
constant and φ̃ is a conformal symplectomorphism with the conformal constant s. In our case, we
deal with a subalgebra of polynomial functions which is only preserved by two types of conformal
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symplectomorphisms: phase lifts of diffeomorphisms of M and vertical symplectomorphisms asso-
ciated with closed 1-forms on M . In both cases we have symplectomorphisms, so s = 1. So far
so good, the pictures coincide, but for S we get an additional family of automorphisms Uκ. These
automorphisms simply do not extend to automorphisms of the whole algebra C∞(T ∗M).

7. Automorphisms of the Lie algebra D(M)

Let us go back to the general problem of the determination of the automorphisms Φ1 of D = D(M),
with restriction κ · id (κ ∈ R, κ �= 0) on A = C∞(M).

The restriction Φ1|D1 has the form given by Theorem 7. When setting

Φ2 = Φ1 ◦ e−κ−1ω, (17)

we obtain – as easily verified – an automorphism of D, whose restriction to D1 is

Φ2|D1 = (κπ0 + (id + β) ◦ πc)|D1 , where β = λdiv.

In the following, we write Φ instead of Φ2 (if no confusion is possible). Using (11), we find that

[[[ΦcD
i
c, f1]c, f2]c, . . . , fi−1]c = κ1−i[[[Di

c, f1]c, f2]c, . . . , fi−1]c,

since Φc|D1
c

= id. So ΦcD
i
c − κ1−iDi

c ∈ Di−1
c and

Φ|Di = κ1−iid + ψi, (18)

with ψi ∈ L(Di,Di−1). Note that ψ0 = 0, ψ1 = ((κ− 1)π0 + β ◦ πc)|D1 and ψif = κ(1 − κ−i)f .

Remark 2. Assertion (18) is equivalent to saying that the automorphism Φ̃ of the Poisson algebra
S induced by Φ is Uκ (cf. Theorem 9).

Now apply (18), observe that the homomorphism property then reads

ψi+j−1[Di,∆j ] = κ1−j [ψiD
i,∆j ] + κ1−i[Di, ψj∆j ] + [ψiD

i, ψj∆j], (19)

for all Di ∈ Di, ∆j ∈ Dj and project (19), written for Di
c and f (i � 2) and forDi

c and ∆j
c (i+j � 3),

on A:

(ψi,cD
i
c)(f) = κ−1ψi−1,0[Di

c, f ] = (1 − κ1−i)Di
c(f) + κ−1ψi−1,0[Di

c, f ]c (20)

and

ψi+j−1,0[Di
c,∆

j
c] = ((κ1−iid + ψi,c)Di

c)(ψj,0∆j
c) − ((κ1−j id + ψj,c)∆j

c)(ψi,0D
i
c). (21)

When writing (20) for i = 2, we get

ψ2,cD
2
c = (1 − κ−1)D2

c + κ−1β[D2
c , ·]c.

Given that ψ2,cD
2
c ∈ D1

c , we have

(1 − κ)[D2
c , f ]c(g) = [β[D2

c , ·]c, f ]c(g).

Since πc, [·, ·] and β are local, the same equation holds locally. If D2
c = D1

c + Dij∂ij , an easy
computation shows that

(1 − κ)[D2
c , f ]c(g) = (1 − κ)(Dij +Dji)∂if∂jg,

β[D2
c , f ]c = λ(Dij +Dji)∂ijf + . . . , where . . . are terms of the first order in f and

[β[D2
c , ·]c, f ]c(g) = 2λ(Dij +Dji)∂if∂jg,
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so that

1 − κ = 2λ. (22)

Equation (21), written for i = 1 and j = 2, reads

ψ2,0(LX∆) = X(ψ2,0∆) − ∆(βX) − κ−1β[∆, βX]c, (23)

for all X ∈ Vect(M) and all ∆ ∈ D2
c .

In order to show that ψ2,0 ∈ L(D2
c ,A) is local, note that it follows for instance from [Pon02]

(see § 3) that, if D ∈ D2
c vanishes on an open U ⊂ M and if x0 ∈ U , we have D =

∑
k LXk

Dk

(Xk ∈ Vect(M), Dk ∈ D2
c ), with Xk|V = Dk|V = 0, for some neighborhood V ⊂ U of x0. It then

suffices to combine this decomposition of D and Equation (23) to find that (ψ2,0D)(x0) = 0.
Let U be a connected, relatively compact domain of local coordinates of M , in which the diver-

gence of a vector field has the form (9). Recall that if ∆ ∈ D2
c,U , its representation is a polynomial

∆ ∈ C∞(U,Rn ⊕∨2
R

n). Therefore, ψ2,0|U ∈ L(C∞(U,Rn ⊕∨2
R

n), C∞(U))loc, with the represen-
tation ψ(η;∆)(η ∈ (Rn)∗,∆ ∈ R

n ⊕ ∨2
R

n). As is easily checked, Equation (23) locally reads

(X.ψ)(η;∆) − 〈X, η〉τζψ(η;∆) + ψ(η + ζ;Xτζ∆)

− λ〈X, ζ〉∆(ζ) − κ−1λ2〈X, ζ〉(∆(η + 2ζ) − ∆(η + ζ) − ∆(ζ)) = 0, (24)

where ζ ∈ (Rn)∗ once more represents the derivatives acting on X and where X.ψ is obtained by
derivation of the coefficients of ψ in the direction of X.

Take in (24) the terms of degree zero in ζ: (X.ψ)(η;∆) = 0. This means that the coefficients of
ψ are constant.

The terms of degree one lead to the equation 〈X, η〉(ζ∂η)ψ(η;∆)−ψ(η;X(ζ∂ξ )∆) = 0, which, if
ρ denotes the natural action of gl(n,R), may be written ρ(X⊗ζ) (ψ(η;∆)) = 0. Note that ψ(η;∆) is
completely characterized by ψ(η;Y k) (Y ∈ Rn, k ∈ {1, 2}). This last expression is a polynomial in η
and Y (remark that it is homogeneous of degree k in Y ). It follows from the description of invariant
polynomials under the action of gl(n,R) (see [Wey46]), that it is a polynomial in the evaluation
〈Y, η〉. Finally,

ψ(η;Y k) = ck〈Y, η〉k, (25)

where ck ∈ R.
Seeking the terms of degree two in ζ, we find

1
2 〈X, η〉(ζ∂η)2ψ(η;∆) − (ζ∂η)ψ(η;X(ζ∂ξ)∆) − 1

2ψ(η;X(ζ∂ξ)2∆)

= −λ〈X, ζ〉∆1(ζ) − κ−1λ2〈X, ζ〉((ζ∂η)∆(η) − ∆1(ζ)), (26)

where ∆1(ζ) denotes the terms of degree one in ∆(ζ). Substitute now Y k (k ∈ {1, 2}) to ∆ and
observe that X(ζ∂ξ)Y k = 〈Y, ζ〉(X∂Y )Y k and X(ζ∂ξ)2Y k = k〈Y, ζ〉2(X∂Y )Y k−1. The left-hand side
of (26) then reads

1
2
〈X, η〉(ζ∂η)2ψ(η;Y k) − 〈Y, ζ〉(ζ∂η)(X∂Y )ψ(η;Y k) − k

2
〈Y, ζ〉2(X∂Y )ψ(η;Y k−1).

When setting k = 1, then k = 2, when using (25) (if k = 1, the last term of the left-hand side
vanishes) and noting that the evaluations 〈X, η〉, 〈X, ζ〉, 〈Y, η〉, and 〈Y, ζ〉 can be viewed, if n > 1
as independent variables, we get from Equation (26)

c1 = λ, c1 + c2 = 0, c2 = κ−1λ2. (27)

If n = 1, we only find c1 = λ and c1 + 3c2 = 2κ−1λ2, but when selecting in (24) the terms of degree
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three in ζ, we get c1 + 2c2 = λ+ 2κ−1λ2, so that (27) still holds. The solutions of the system (22),
(27) are κ = 1, λ = 0, c1 = c2 = 0 and κ = −1, λ = 1, c1 = 1, c2 = −1.

Let us first examine the case κ = 1. Equation (21), written – more generally – for i = 1 and
j � 2, reads

ψj,0(LX∆j) = LX(ψj,0∆j), for all X ∈ Vect(M) and all ∆j ∈ Dj,

since ψj|A = 0, so that ψj,0 is an intertwining operator from (Dj , L) into (D0, L). The results of
[Pon02] or [BHMP02] show that ψj,0 = λjπ0|Dj (λj ∈ R), for all j � 2 (and all n � 1, indeed
a straightforward adaptation of the method of [Pon02] immediately shows that this particular
result is also valid in dimension n = 1). It is now easy to verify that Φ2 (see (17)) is id and that
Φ1 = eω.

If κ = −1, we have ψ1,0|D1
c

= C0|D1
c
, where C is the automorphism introduced in Lemma 1.

Inductively, if ψj−1,0|Dj−1
c

= C0|Dj−1
c

(j � 2), the same relation holds for j. Indeed, we obtain
from (20) and (21),

ψj,0(LX∆) = LX(ψj,0∆) − ∆(C0X) + C0[∆, C0X]c, (28)

for all X ∈ Vect(M) and all ∆ ∈ Dj
c . Straightforward computations, using the properties of C, show

that

C0[∆, ·]c = ∆ − Cc∆ = ∆ − C∆ + C0∆ (29)

on A as [∆, f ]c = [∆, f ] − ∆(f) (f ∈ A) and that

C0(LX∆) = LX(C0∆) − (Cc∆)(C0X). (30)

It follows from (28), (29) and (30), that

ψj,0(LX∆) − LX(ψj,0∆) = C0(LX∆) − LX(C0∆).

This last equation is still valid for ∆ ∈ Dj and signifies that ψj,0 −C0|Dj is an intertwining operator
from (Dj , L) into (D0, L). Thus, applying once more the results of [Pon02] or [BHMP02], we see
that

ψj,0|Dj
c

= C0|Dj
c
. (31)

It is now again easy to prove (use (18) on Dj
c , (31), (20) and (29)) that Φ2 = C and that Φ1 = C ◦eω.

Hence, the only automorphisms of D that coincide with κ·id (κ ∈ R, κ �= 0) on functions, are Φ1 = eω

(here κ = 1) and Φ1 = C ◦ eω (here κ = −1), where ω is a closed 1-form on M . Summarizing, we
get the following characterization.

Theorem 10. A linear map Φ : D(M) → D(M) is an automorphism of the Lie algebra D(M) of
linear differential operators on C∞(M) if and only if it can be written in the form

Φ = φ∗ ◦ Ca ◦ eω, (32)

where φ is a diffeomorphism of M , a = 0, 1, C0 = id, C1 = C and ω is a closed 1-form on M . All the
objects φ, a, ω are uniquely determined by Φ.

Let us finally note that the above theorem states once more that all automorphisms of D(M)
respect the filtration and thus shows that one-parameter groups of automorphisms of the Lie algebra
D(M) (for any reasonable topology on D(M)) cannot have as generators the inner derivations adD

for D not being of first order. An analogous fact holds for the Lie algebra S(M). Thus we have the
following.
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Corollary 4. The Lie algebras D(M) and S(M) of linear differential operators on C∞(M), and of
the principal symbols of these operators, are not integrable, i.e. there are no (infinite-dimensional)
Lie groups for which they are the Lie algebras.
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