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In place of a real valued differentiable (C2) function on a closed
n-dimensional differentiable manifold M, we may more generally consider
a differentiable section s in any line bundle L on 3, assumed to have struc-
tural group Z,, the group of integers modulo two. Since the usual definitions
of a critical point and of a non-degenerate critical point are local in nature,
and since composing a differentiable real valued function with the function
t — —t does not change its set of critical points or its set of non-degenerate
critical points, it is clear that we may speak of critical points and non-
degenerate critical points of the section s. Unless the bundle has a fixed
trivialization however, the index of a non-degenerate critical point must be
thought of as a set of two numbers {&, n—*k}, corresponding to the two
indices arising from the two trivializations possible for L restricted to a
small enough neighborhood of the point, i.e. corresponding to the two
possible ways of reading the index. With this understanding we extend the
usual definitions, and call a differentiable (C?) section s of L a Morse section
if each of its critical points is non-degenerate. Then non-degenerate critical
points are isolated, and one again has:

THEOREM 1. The set of Morse sections of L forms a dense open subset
of the set of sections in the C? topology. :

Proor. The lemmas of the proof in [4] for the case in which L is trivial
are all local in nature, so that using a non-trivial L introduces no further
complications.

Theorem 1 has an application which is reminiscent of how the projective
plane is constructed from the 2-dimensional disk. In order to give it, we
will introduce some notation which will be used in all that follows: Let L
be the line bundle with structural group Z, determined by a non-zero
element w of H'(M; Z,), and let s be a Morse section of L whose existence
is assured by Theorem 1. Further, let W be the two-fold covering of M
determined by w and having projection map p : W — M. Lifting L to a
bundle on W through p produces a trivial bundle W x R. Now lifting s and
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regarding the resulting section as a real valued function produces a Morse
function f: W — R.

COROLLARY. Suppose that M is connected and that H*(M; Z,) # 0. Then
there exists a conmected manifold-with-boundary N whose boundary N is
connected, non-empty, and has a differentiable involution T with the following
property: Points of ON corresponding under T to each other may be identified
in such a way that the resulting manifold is diffeomorphic to M.

Proor. Let w € H'(M; Z,) be non-zero, let L be the line bundle deter-
mined by it, and assume that W, p and f are as above. Now by means of
an alteration procedure of a local nature, see for example the proof of
Lemma 2.8 of [4], it may be supposed that s and hence f do not assume zero
as a critical value. To complete the proof, take N = f1{t € R|t < 0}, and
ON = f~1{0}. The last assumption ensures that f~1{0} is a manifold, while
showing the connectedness of N is easy. The involution T interchanges
every two points of 0N mapping under p into the same point of M.

What we plan to do next is to combine the standard Morse relations
for f on W with Smith theory to study the homology of M. This way one
gets some ‘Morse relations’ even though s does not give a cell decomposition
of M (the way f gives one for W).

For this purpose fix a field F. Let Z, consist of ¢ and 7" with the relation
T? = ¢, and let A = F(Z,) be the group ring of Z, with coefficients from
the field F. Let F_ denote F considered as a A-module through the action
Tz = —z, and use F also to denote F as a A-module in a trivial way.
The fact that W is a regular two-fold covering of M implies that Z, acts
properly on W, so that — see [1] of [2] — the F-chain complex C,(W; F)
of W may be regarded as a free A-module with the further property that
Cy(M; F) is isomorphic to Cy (W; F) ® 4 F. Likewise,

H2(M) = Hy(CL(W) @, F_),

is the twisted homology of M determined by the element w e H'(M; Z,)
defining W and L.

We shall also need the following facts from the Smith theory of covering
spaces.

One has two exact sequences of A-modules:

0> F —i/l—':F_»O
and s
0>F_L%A5F >0

where the maps are determined by:

a(l) = 14T, .3(1) =1, ﬂ(T) = —1,
y(1) = 1—T, 8(1) =1, &(T) =1,
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After tensoring these exact sequences by the A-free chain complex C, (W; F),
we may proceed in a standard way to obtain the two long exact sequences:

> Hy (M) 5 H (W) 5 He2OM) S H (M) —~
and ,
c> HO(M) 5 H (W) > H (M) S H2 (M) —

with doax =2, Boy=2, yof=1-T and xod=14+7. Here for
instance 0 is a collection of maps 0, : H*(M) — H,_;(M), while the degrees
of &, §, ¥ and ¢ are zero.

In order to state the theorem, let C (A, n-2} equal the number of critical
points of s of index {4, n—A1}, and set

C,\ == Cn—A - C{A,‘n——/\} if l ¢ n—‘}n,
and
C,\ = 2C{A,A} if A=n—A

Note that C, is also equal to the number of critical points of f having index
A. Finally, set R,(X) and R?(X) equal respectively to the dimensions as
vector spaces over F of H,(X; F) and HY(X; F).

Then we have:

THEOREM 2. Let L be a line bundle on M determined by a nonzero element
w of HY(M; Z,), and suppose that s is a Morse section of L. Then regarding
the critical points of s the following relations hold:

(a) If the characteristic of F is not two, then
A

(—I} 3 (—1)R(M)+RE(L)] < (—12 S (=

i=0 =

<

(b) If the characteristic of F is not two and if w is the Stiefel class w (M)
so that W is the two-fold orientable covering of the non-orientable manifold M,

then
A A
(-1):20 (=1 [R;(M)+R,_(M)] = (—1)‘20 (—1)*C;

(c) If F is of characteristic two, then

Ra0)+(— 13 2(— 1) RO < (—1} 3 (—1)*

=0 i=0

In any case, D7_o (—1)'C, is equal to twice the Euler characteristic of M.

Proor. Since f can be viewed as an equivariant function on W, it is
easy to see that to each critical point « of s of index {4, n—A4} there will
correspond two critical points of f, namely those in p~1(x), one of which
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has index 4 and the other has index #—A4. Thus the usual Morse inequalitie.
for f, see [3] or [5], imply that
A 2
(—1} 3 (1)R() = (=11 3 (~1)°C..

To arrive at the form of the theorem consider first the case in which
the characteristic of F is not two. Then the formula é o « = 2 shows that
« is an injection. Thus, considered as a sequence of vector spaces over F,
the long exact sequence displayed preceding the theorem may be written
as a short exact sequence

0—>H,(M)—>H,(W)—>HyM)—>0.

Hence R,(W) = R,(M)+R¥(M). Then part (a) follows upon making this
substitution in the above inequality. Part (b) follows upon noting that W
is the orientation covering of M, whence by Poincaré duality we have
HY (M) = H,_,(M).

Next assume that the characteristic of F is two. Then F = F_, and
HY(M) = H,(M), so that from the long exact sequence we have dimension
kernel 0,,-dimension cokernel @,, = R,,(M)—R,,_, (M) which we shall write
as:

ker 9,,—coker 8,, = R,,(M)-—R,,_,(M).
Also we have

H, (W) ~ kernel ¢,, ® cokernel 9,,,,
which upon taking dimensions over F we shall write as:

R,.(W) = ker 9,,-coker 0,,4,.
Using these relations, the rest of the proof runs as follows:

R (W) =Ry 1 (W)+ Ry o(W)— Ry (W) - -
= ker 9,,-+coker 9,,,;—ker 8,,_,—coker 0,
~+ker 0,,_,-coker 0,,_,— - - -
= coker @,,,,+ (ker d,,—coker d,,)— (ker 0,,_,—coker 0,,_,)
+ (ker 0,,_p—coker 9, _o)— "+
= coker am+l+ (Rm(M) _—Rm—l(M)) - (Rm—l(M) _Rm—2(M))
+(Rp—g(M) =Ry _s(M))— -+ -
— coker &1+ Ry (M) —~2Rp_y (M) +2R,p_o(M)—2Rp_y(M)+ - - .
The equation consisting of the end terms of this chain of equalities
implies part (c) upon using the above inequality.
The last statement in the theorem follows from part (b) upon examining
the inequalities for A = » and 4 = »n+1, keeping in mind that C,,, equals

https://doi.org/10.1017/51446788700006625 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006625

264 Samir Khabbaz [5]

zero. It may also be deduced from the corresponding equality for f upon
making use of the fact that the Euler characteristic of W is twice that of M.
Note that for w = 0, the set of inequalities in part (a) includes the usual
ones. This concludes the proof.

We have stated Theorem 2 for the case when the coefficient domain
is a field. As is well known, see [5], the corresponding results when the
coefficient domain is the group of integers may be deduced from the universal
coefficient theorem and the result for a field. Another comment is of interest.
It is of course important to know how good are the estimates of Theorem 2.
The following example, suggested by the referee, is one for which the
inequalities yield the best possible estimate. It is not hard to see that the
twisted line bundle over projective n-space has a Morse section with only
one critical point of index {0, #n}. That there must be at least one follows
upon setting 4 = 0 in any part of the theorem. We also leave it to the
interested reader to formulate relative versions of the above theorems, and
remark only that this can be done following the above lines.

In conclusion, the author would like to thank Everett Pitcher and
C.T.C. Wall for relevant and useful conversations.
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