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Abstract. In an earlier work, the authors described a mechanism for lifting monomial ideals to
reduced unions of linear varieties. When the monomial ideal is Cohen–Macaulay (including

Artinian), the corresponding union of linear varieties is arithmetically Cohen–Macaulay.
The first main result of this paper is that if the monomial ideal is Artinian then the correspond-
ing union is in the Gorenstein linkage class of a complete intersection (glicci). This technique

has some interesting consequences. For instance, given any ðdþ 1Þ-times differentiable O-
sequence H, there is a nondegenerate arithmetically Cohen–Macaulay reduced union of linear
varieties with Hilbert function H which is glicci. In other words, any Hilbert function that
occurs for arithmetically Cohen–Macaulay schemes in fact occurs among the glicci schemes.

This is not true for licci schemes. Modifying our technique, the second main result is that
any Cohen–Macaulay Borel-fixed monomial ideal is glicci. As a consequence, all arithmeti-
cally Cohen–Macaulay subschemes of projective space are glicci up to flat deformation.

Mathematics Subject Classifications (2000). 13C40, 13D40, 14M06, 14M05, 13E10.
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1. Introduction

Liaison theory has reached a very satisfying state in codimension two, but in higher

codimension there are still many open problems. Much of the theory has been built

around linking with complete intersections, called CI-liaison theory. However, it has

long been known that more generally it is also possible to link using arithmetically

Gorenstein schemes (cf. [17] for example). Indeed, a development of G-liaison theory

is possible (cf. [10, 13, 16]). In practice, however, this has been studied less because it

is not so easy to find arithmetically Gorenstein schemes other than complete inter-

sections, especially containing a given scheme. Note that in codimension two all

arithmetically Gorenstein schemes are complete intersections, so both theories

include the codimension two case.

Nevertheless, there has been recent work in the direction of G-liaison theory, most

notably in [10] where a very geometric approach is taken and where this theory is
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compared and contrasted with the more classical CI-liaison theory. See also [13] for

extensive background and comparisons.

In the codimension two case, one of the first important results was the theorem of

Gaeta that every arithmetically Cohen–Macaulay, codimension two scheme is in the

liaison class of a complete intersection (i.e. is licci, a term introduced in [9]). In [10]

the authors introduced the notion of glicci schemes, i.e. those which are in the Gor-

enstein liaison class of a complete intersection. They generalized Gaeta’s theorem by

showing that every scheme which arises as the maximal minors of a homogeneous

matrix (and which have the right codimension depending on the size of the matrix)

is glicci. (Note that arithmetically Cohen–Macaulay schemes of codimension two

satisfy this property, thanks to the Hilbert–Burch theorem.) However, the authors

of [10] asked if a more general result might hold:

QUESTION 1.1 ([10]). Is it true that all arithmetically Cohen–Macaulay subschemes

of Pn are glicci?

Some evidence of this was provided by showing that on a smooth rational arith-

metically Cohen–Macaulay surface in P4 all arithmetically Cohen–Macaulay curves

(i.e. divisors) are glicci. Casanellas and Miró-Roig [3] extended this by finding a large

class of smooth surfaces in P4 where the same conclusion holds, and in a more recent

paper [4] they extend this to a large class of smooth schemes of any codimension.

In this paper we make some further progress in this direction. We prove the glic-

ciness of two different kinds of Cohen–Macaulay ideals. First we recall that if J is

any Artinian monomial ideal then it is shown in [14] how to produce the ideal I

of a nondegenerate arithmetically Cohen–Macaulay reduced union of linear varieties

of any dimension whose Artinian reduction is precisely J. The first main result of this

paper is that any such I is glicci. As a corollary we get that given any numerical func-

tion which occurs as the Hilbert function of some nondegenerate arithmetically

Cohen–Macaulay subscheme of Pn of any codimension, there is a reduced, glicci

subscheme with precisely that Hilbert function. Example 3.3 shows that this is not

true if we replace Gorenstein links by complete intersection links.

Our second main result is that any Cohen–Macaulay Borel-fixed monomial ideal

(Artinian or not) is glicci. This result is of a rather general nature. Indeed, it is well

known that every generic initial ideal of an arithmetically Cohen–Macaulay sub-

scheme is a Cohen–Macaulay Borel-fixed ideal which defines a deformation of the

original scheme. Thus our result says that every arithmetically Cohen–Macaulay

subscheme admits a flat deformation which is glicci. In other words, we have found

an affirmative answer to Question 1.1 ‘up to flat deformation’.

2. Preliminaries

Let K be an infinite field and let S ¼ K½x1; . . . ; xn� and R ¼ K½x1; . . . ; xn; u1; . . . ; ut�,

t5 0. We first recall the set-up and one of the main results of [14].
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DEFINITION 2.1. Let I � R and J � S be homogeneous ideals. Then we say I is a t-

lifting of J to R (or when R is understood, simply a t-lifting of J) if ðu1; . . . ; utÞ is a

regular sequence on R=I and ðI; u1; . . . ; utÞ=ðu1; . . . ; utÞ ffi J.

The definition of a t-lifting can be extended to modules, but Definition 2.1 suffices

for our purposes. Consider now a matrix of linear forms

A ¼

L1;1 L1;2 L1;3 � � �

L2;1 L2;2 L2;3 � � �

..

. ..
. ..

.

Ln;1 Ln;2 Ln;3 � � �

2
6664

3
7775

where the Lj;i are in R. A will be called the lifting matrix, for reasons that will be

apparent shortly. For now we assume that there are infinitely many columns, but

in practice when we have a specific ideal J � S that we want to lift we can assume

that the number of columns is finite, for instance equal to the regularity of J (or less).

Assume that the polynomials Fj ¼
QN

i¼1 Lj;i, 14 j4 n, define a complete intersec-

tion, X. Note that Fj is the product of the entries of the jth row, and that the height

of the complete intersection is n, the number of variables in S.

Let m ¼
Qn

j¼1 x
aj
j � S be a monomial. We associate to m the homogeneous poly-

nomial

�m ¼
Yn
j¼1

Yaj
i¼1

Lj;i

 !
2 R:

Let J ¼ ðm1; . . . ;mrÞ � S be a monomial ideal. Associated to J we define the ideal

I ¼ ð �m1; . . . ; �mrÞ � R.

THEOREM 2.2 ([14]). ðiÞ The ideal I is saturated.

ðiiÞ S=J is Cohen–Macaulay ðincluding the case where it is ArtinianÞ if and only if

R=I is Cohen–Macaulay. In fact, I ðas an R-moduleÞ and J ðas an S-moduleÞ have

the same graded Betti numbers.

ðiiiÞ If, for each j and i, we have Lj;i 2 K½xj; u1; . . . ; ut� then I is a t-lifting of J. Other-

wise we say that I is a pseudo-lifting of J.

If the entries of A are chosen sufficiently generally then I in fact defines a reduced

union of linear varieties with good intersection properties.

We now recall the notion of Basic Double G-linkage introduced in [10], so-called

because of part (iv) and the notion of Basic Double Linkage ([2, 8, 11]).

THEOREM 2.3 ([10] Lemma 4.8, Remark 4.10 and Proposition 5.10). Let J 
 I be

homogeneous ideals of R0 ¼ K½x0; . . . ; xn� , defining schemes W � V � Pn such that

codimW ¼ codimVþ 1. We also allow the possibility that J is Artinian and V is a

zeroscheme. Let A 2 R0 be an element of degree d such that I : A ¼ I. Then we have
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ðiÞ degðIþ A � JÞ ¼ d � deg Iþ deg J.

ðiiÞ If I is perfect and J is unmixed then Iþ A � J is unmixed.

ðiiiÞ J=I ffi ½ðIþ A � JÞ=I�ðdÞ:

ðivÞ If V is arithmetically Cohen–Macaulay and generically Gorenstein and J is

unmixed then J and Iþ A � J are linked in two steps using Gorenstein ideals.

ðvÞ The Hilbert functions are related by

hR0=ðIþA�JÞðtÞ ¼ hR0=ðIþðAÞÞðtÞ þ hR0=Jðt dÞ

¼ hR0=IðtÞ  hR0=Iðt dÞ þ hR0=Jðt dÞ:

Theorem 2.3 should be interpreted as viewing the scheme W defined by J as a divi-

sor on the scheme V defined by I, and adding to it a hypersurface section HA of V

defined by the polynomial A. Note that IHA
¼ IV þ ðAÞ. If V and W are arithmeti-

cally Cohen–Macaulay then the divisor WþHA is again arithmetically Cohen–

Macaulay (by part (iv)). As an immediate application we have the following by suc-

cessively applying Theorem 2.3.

COROLLARY 2.4 ([15]). Let V1 � V2 � � � � � Vr � Pn be arithmetically Cohen–

Macaulay schemes of the same dimension, all generically Gorenstein. Let H1; . . . ;Hr

be hypersurfaces, defined by forms F1; . . . ;Fr, such that for each i, Hi contains no

component of Vj for any j4 i. Let Wi be the arithmetically Cohen–Macaulay schemes

defined by the corresponding hypersurface sections: IWi
¼ IVi

þ ðFiÞ. Then we have the

following.

(i) Viewed as divisors on Vr, the sum Z of the Wi ðwhich is just the union if the hyper-

surfaces are general enoughÞ is in the same Gorenstein liaison class as W1.

(ii) In particular, Z is arithmetically Cohen–Macaulay.

(iii) As ideals we have

IZ ¼ IVr
þ Fr � IVr1

þ FrFr1IVr2
þ � � � þ FrFr1 � � �F2IV1

þ ðFrFr1 � � �F1Þ:

(iv) Let di ¼ degFi. The Hilbert functions are related by the formula

hZðtÞ ¼ hWr
ðtÞ þ hWr1

ðt drÞ þ hWr2
ðt dr  dr1Þ þ � � �

þ hW1
ðt dr  dr1  � � �  d2Þ:

COROLLARY 2.5. We keep the notation of Corollary 2.4. If V1 is glicci then so is Z.

Proof. This follows from part (iv) of Theorem 2.3, and from the fact that Gor-

enstein liaison is preserved under hypersurface sections ([13] Proposition 5.2.17).

Note that the reverse direction is not necessarily true (or in any case is not known to

be true): if W1 is glicci, it does not necessarily (or at least immediately) hold that V1

is. See [13] Example 5.2.26 for some discussion. &

We now discuss the decomposition of a monomial ideal, which we will use in the

remaining sections.
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DEFINITION 2.6. Let > denote the degree-lexicographic order on monomial ideals,

i.e. xa11 � � � xann > xb11 � � � xbnn if the first nonzero coordinate of the vector

Xn
i¼1

ðai  biÞ; a1  b1; . . . ; an  bn

 !

is positive. Let J be a monomial ideal. Let m1;m2 be monomials in S of the same

degree such that m1 > m2. Then J is a lex-segment ideal if m2 2 J implies m1 2 J.

When charðKÞ ¼ 0, we say that J is a Borel-fixed ideal if

m ¼ xa11 � � � xann 2 J; ai > 0; implies
xj
xi

�m 2 J

for all 14 j < i4 n.

Remark 2.7. Definition 2.6 says that if J is Borel-fixed andm 2 J is amonomial then

one can reduce any power of a variable occurring inm by one and increase the power of

a larger variable by one, and the result is again in J. Note that this is not the same as lex-

segment. For example, in the ring K½x1; x2; x3� consider the ideal J ¼ hx31; x
2
1x2; x1x

2
2i.

This is Borel-fixed but not lex-segment, since x21x3 =2 J. The two notions are not even

equivalent in the Artinian case, as the same example shows if we adjoin to J all

monomials of degree 4. However, a lex-segment ideal is always Borel-fixed.

LEMMA 2.8. Let J � S ¼ K½x1; . . . ; xn� be a monomial ideal. Let a be the highest

power of x1 occurring in a minimal generator of J. Then there is a uniquely determined

decomposition

J ¼
Xa
j¼0

x j
1 � ðIj � SÞ;

where I0 � I1 � � � � � Ia1 � Ia are monomial ideals in T ¼ K½x2; . . . ; xn�. Further-

more,

ðiÞ Ij ¼ ðJ : x j
1Þ \ K½x2; . . . ; xn�.

ðiiÞ If J is Artinian, then so is each Ij and Ia ¼ ð1Þ.

ðiiiÞ Assume charðKÞ ¼ 0. If J is a Borel-fixed ideal ðe.g. a lex-segment idealÞ then a is

the initial degree of J, Ia ¼ ð1Þ; and each Ij is again Borel-fixed.

Proof. The case of Artinian lex-segment ideals was observed in [15].

The existence of the decomposition is clear if we choose the ideals Ij as described in

(i). Conversely, if we have the decomposition, then we get in case 04 j4a:

J : xj1 ¼
Xj
k¼0

Ik � Sþ
Xa
k¼jþ1

xkj
1 � ðIk � SÞ

¼ Ij � Sþ
Xa
k¼jþ1

xkj
1 � ðIk � SÞ;
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thus

ðJ : x j
1Þ \ T ¼ ðIj � SÞ \ T ¼ Ij

proving (i) and the uniqueness of the decomposition.

For (ii), since J is Artinian then it contains pure powers of x2; . . . ; xn, so these are

automatically in I0, making I0 Artinian. Then the inclusions imply that the other Ij
are also Artinian. Furthermore, xa1 is a minimal generator of J, so Ia ¼ ð1Þ as

claimed. For part (iii), the hypothesis implies that xa1 is a minimal generator of J.

The fact that Ij is Borel-fixed follows immediately from the definition of Borel-fixed

and the description of Ij in the statement of the Lemma. &

LEMMA 2.9. Keeping the notation of Lemma 2.8, for any s5 0, we have

hS=JðsÞ ¼
Xa1

j¼0

hT=Ijðs jÞ þ hS=Ia�Sðs aÞ:

Proof. If a ¼ 0 then J ¼ I0 � S and the claim is clear. If a > 0 then multiplication

by x1 provides the exact sequence

0 ! S=
Xa
j¼1

x j1
1 ðIj � SÞð1Þ !

�x1
S=J ! T=I0 ! 0:

Hence, the claim follows by induction on a. &

Remark 2.10. If J is Artinian or Borel-fixed then the Hilbert function formula of

Lemma 2.9 simplifies to

hS=JðsÞ ¼
Xa1

j¼0

hT=Ijðs jÞ

since in either of these cases Ia ¼ ð1Þ by Lemma 2.8.

3. Glicci Ideals

Let J be an Artinian monomial ideal in S ¼ K½x1; . . . ; xn�. Let A be a lifting matrix

for J and assume that the entries of A are sufficiently general so that the lifted ideal is

a reduced union of linear varieties. The number of columns of A only has to be as

large as the largest degree of a minimal generator of J; if J is lex-segment, then this

degree is ¼ regðJÞ. Applying the pseudo-lifting procedure described in Section 2, we

get an ideal I � R ¼ K½x1; . . . ; xn; u1; . . . ; ut� which, by Theorem 2.2, is the

saturated ideal of an arithmetically Cohen–Macaulay subscheme Z of Pnþt1 of

codimension n.

THEOREM 3.1. Z is glicci.

Proof. The proof is by induction on n, the codimension. For codimension two it is

known that any arithmetically Cohen–Macaulay subscheme of projective space is

licci, so there is nothing to prove. Hence, we assume n5 3.

30 J. MIGLIORE AND U. NAGEL

https://doi.org/10.1023/A:1016358116986 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016358116986


By Lemma 2.8 we have

J ¼
Xa
j¼0

x j
1 � Ij ð3:1Þ

where I0 � I1 � � � � � Ia1�6 Ia ¼ S and for each j, Ij is an Artinian ideal in

K½x2; . . . ; xn�. Notice that the lifting matrix A has n rows, and if we remove the first

row then the remaining matrix A0 can be used to lift the ideals Ij.

Let �Ij be the ideal obtained by lifting Ij using A0. Let Yj be the arithmetically

Cohen–Macaulay subscheme of Pnþt1 defined by �Ij. Note that Yj has codimension

n 1, but the projective space does not change since the linear forms which are the

entries of A were taken from the ring R. Note also that Ya1 � � � � � Y1 � Y0 are

arithmetically Cohen–Macaulay schemes of the same dimension. Furthermore, they

are generically Gorenstein since they are reduced, thanks to the generality condition

on the matrix A (hence also A0 ) imposed at the beginning of this section. Hence, the

first sentence of the hypothesis of Corollary 2.4 holds in this case. Furthermore, since

the polynomials Fj ¼
QN

i¼1 Lj;i, 14 j4 n, define a complete intersection, it follows

that any L1;i cuts any Yj properly. Hence the second sentence of the hypothesis of

Corollary 2.4 holds. Therefore we can apply Corollary 2.4.

Thanks to (3.1) we have

I ¼ �I0 þ L1;1 � �I1 þ L1;1L1;2 � �I2 þ � � � þ L1;1L1;2 � � � þ L1;a1 � �Ia1þ

þ ðL1;1L1;2 � � �L1;a1L1;aÞ

Hence, by Corollary 2.4 (iii), the scheme Z obtained from lifting is in fact also

obtained by taking the union of the successive hypersurface sections of the Yj. By

induction, Ya1 is glicci. By Corollary 2.5, then, Z is also glicci. &

As a corollary of Theorem 3.1 we would like to show that given ‘any’ Hilbert func-

tion we can find a glicci subscheme with that Hilbert function. Recall from [7] that the

Hilbert functions which can occur for arithmetically Cohen–Macaulay subschemes of

a given dimension d have been completely characterized. Indeed, for a function

f : Z ! Z we define the first difference Df by DfðnÞ ¼ fðnÞ  fðn 1Þ and the kth dif-

ference Dkf by iteration. An O-sequence is one that satisfies Macaulay’s growth con-

dition [12]. A k-times differentiable O-sequence is one for which also the first k

differences are O-sequences. Then a function f : N ! N occurs as the Hilbert function

of some d-dimensional arithmetically Cohen–Macaulay scheme (in fact it can always

be chosen reduced) if and only if f is a ðdþ 1Þ-times differentiable O-sequence.

We immediately get the following somewhat surprising conclusion.

COROLLARY 3.2. Let H be any ðdþ 1Þ-times differentiable O-sequence. Then H

occurs as the Hilbert function of some non-degenerate glicci subscheme of projective

space.

Proof. Let h be the ðdþ 1Þ-st difference of H. Let J be the Artinian lex-segment

ideal with Hilbert function h. If J � K½x1; . . . ; xn� then choose a lifting matrix with
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entries Lj;i 2 K½xj; u1; . . . ; udþ1�. The lifted ideal I defines a glicci subscheme of Pnþd1

by Theorem 3.1, and it has Hilbert function H since it is a ðdþ 1Þ-lifting. The

nondegenerate property comes directly from the lifting, cf. [14]. &

EXAMPLE 3.3. We remark that Corollary 3.2 is false for complete intersection

liaison. Indeed, the h-vector ð1; 3Þ cannot occur for any codimension 3 licci sub-

scheme of projective space. To see this, note that the minimal free resolution of any

arithmetically Cohen–Macaulay subscheme with this h-vector is linear, and [9],

Corollary 5.13, then guarantees that it is not licci. (Note that degenerate subschemes

of projective space, of codimension > 3, could also have this h-vector, and we do not

know if the ‘extra room’ makes a difference in the nonlicciness.)

From the proof of Corollary 3.2 one would be very tempted to conclude that

we have proved that any Artinian monomial ideal is glicci, since liaison is pre-

served under general hyperplane sections, even for the Artinian reduction

(cf. [13] Remark 5.2.18). However, the proofs above use bilinks, so even if a vari-

able ui is a nonzero-divisor for the scheme Z (and hence any of its components),

it is not necessarily true that the same is true for the linked schemes. However,

we can obtain an important case of this result, and in fact more, by modifying

the above approach slightly.

From now on we assume charðKÞ ¼ 0. We begin with a lemma.

LEMMA 3.4. Let J be a Borel-fixed monomial ideal of codimension c. The following

are equivalent.

ðiÞ J is Cohen–Macaulay.

ðiiÞ J is unmixed.

ðiiiÞ J contains a pure power of xc, and the variables xcþ1; . . . ; xn do not occur in any of

the minimal generators.

ðivÞ J is a cone over an Artinian Borel-fixed ideal in K½x1; . . . ; xc�.

Proof. The implications (i) ) (ii) and (iv) ) (i) are always true. Note that

condition (iii) implies that J in fact contains pure powers of each of the variables

x1; . . . ; xc, by the Borel-fixed property. Then the implication (iii)) (iv) is immediate,

since Borel-fixed is already assumed.

So we have only to prove (ii) ) (iii). Since J has codimension c, it contains a reg-

ular sequence of length c. By the Borel-fixed property we may take this regular

sequence to consist of pure powers of variables, and again by the Borel-fixed pro-

perty we can take it to be powers of x1; . . . ; xc. Suppose that one of the other vari-

ables, say xcþ1, occurs in one of the minimal generators of J to some power a5 1. By

a standard trick on monomial ideals (cf. for instance [5] Exercise 3.8) we can then

decompose J as J ¼ A \ ðJþ ðxacþ1ÞÞ where A is again a monomial ideal. But this

shows that the primary decomposition of J has at least one component of height

cþ 1, contradicting the hypothesis that J is equidimensional. &
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THEOREM 3.5. Any Cohen–Macaulay Borel-fixed monomial ideal is glicci.

Proof. Let J be a Cohen–Macaulay Borel-fixed monomial ideal in S ¼

K½x1; . . . ; xn� of height c. By Lemma 3.4, we may view J as a cone over an Artinian

Borel-fixed ideal in K½x1; . . . ; xc�. By Lemma 2.8,

J ¼ I0 þ x1I1 þ x21I2 þ � � � þ xa1Ia

¼ I0 þ x1I
0

where I0 ¼ I1 þ x1I2 þ � � � þ xa1
1 Ia, a is the initial degree of J, the Ij are cones over

Artinian Borel-fixed ideals in K½x2; . . . ; xc� satisfying I0 � I1 � . . . and Ia ¼ ð1Þ. In

particular, I0 is a cone over an Artinian Borel-fixed ideal in K½x2; . . . ; xc� � S, and

I0 is a Borel-fixed monomial ideal in S whose initial degree is one less than that of J.

Following Theorem 2.2, we can lift I0 to an ideal �I0 in K½x1; . . . ; xc� \ S; that is, we

choose a lifting matrix A whose entries are linear forms Lj;i 2 K½xj; x1�, 24 j4 n.

For example, take

A ¼

x2 x2 þ x1 x2 þ 2x1 x2 þ 3x1 . . .
x3 x3 þ x1 x3 þ 2x1 x3 þ 3x1 . . .

..

. ..
. ..

. ..
.

xn xn þ x1 xn þ 2x1 xn þ 3x1 . . .

2
664

3
775:

We now make some observations.

(1) I0 is also Cohen–Macaulay by Lemma 3.4, and it has the same height c as J,

since it contains a complete intersection consisting of powers of x1; . . . ; xc.

(2) I0 � I0, since I0 � I1 � I0 from above.

(3) �I0 � I0. This follows immediately. For instance, suppose that x32x
4
3 2 I0. Then

x2ðx2 þ x1Þðx2 þ 2x1Þðx3Þðx3 þ x1Þðx3 þ 2x1Þðx3 þ 3x1Þ 2 �I0:

By the Borel-fixed property of J and the fact that I0 � I0, it follows immediately

that each term of this polynomial is in I0.

(4) I0 and �I0 are both Cohen–Macaulay, and htð �I0Þ ¼ htðI0Þ ¼ c 1. This follows

from the fact that I0 is Cohen–Macaulay by Lemma 3.4 and that the Cohen–

Macaulay property and the codimension are preserved under lifting.

Let �J ¼ �I0 þ x1 � I
0. An analysis similar to observation (3) above shows quickly

that �J � J. But both are Cohen–Macaulay of the same height in S, and they have

the same Hilbert function (since the Hilbert function of K½x2; . . . ; xc�=I0 is the first

difference of that of K½x1; . . . ; xc�= �I0). Hence we obtain that �J ¼ J.

Although I0 is not necessarily generically Gorenstein, the lifting results guarantee

that �I0 is, and we have noted that �I0 is Cohen–Macaulay. Hence, Theorem 2.3(iv)

says that J ¼ �J is G-bilinked to I0, and in particular I0 is Cohen–Macaulay. We have

noted that the initial degree of I0 is one less than that of J. Hence, in a finite (even)

number of steps we obtain that J ¼ �J is linked to the hyperplane section
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�I0 þ ðx1Þ ¼ I0 þ ðx1Þ. Thus it is enough to show that I0 is glicci. Let J0 denote the

ideal I0 \ T in T :¼ K½x2; . . . ; xn�. Then I0 is just a cone over J0. By induction on

the height, J0 is glicci in T. Then taking cones we get that also I0 is glicci. Hence

we have shown that J ¼ �J is glicci, as claimed. &

Remark 3.6. Theorem 3.5 is of a rather general nature. It is well-known that every

generic initial ideal of an arithmetically Cohen–Macaulay subscheme is a Cohen–

Macaulay Borel-fixed ideal which defines a deformation of the original scheme.

Indeed, the fact that it is Borel-fixed is due to Galligo [6]; that it gives a flat defor-

mation is due to Bayer [1]; that it is again Cohen–Macaulay follows from a result of

Bayer and Stillman (cf. [5] Theorem 15.13). Thus our result says that every arithme-

tically Cohen–Macaulay subscheme admits a flat deformation which is glicci. In other

words, we have found an affirmative answer to Question 1.1 ‘up to flat deformation’.

EXAMPLE 3.7. We illustrate the above ideas by finding a glicci subscheme Z � P3

with h-vector

h ¼ ð1; 3; 6; 10; 4; 2Þ:

Note that using complete intersections it does not seem promising that a licci sub-

scheme with this h-vector can be found since the smallest complete intersection con-

taining it would be the complete intersection of three quartics, and the residual

would have even larger degree and will not lie in a smaller complete intersection.

Instead we consider the ring S ¼ K½x1; x2; x3� and let J be the Artinian lex-segment

ideal with Hilbert function h. We have the decomposition

J ¼ I0 þ x1 � I1 þ x21 � I2 þ x31 � I3 þ ðx41Þ;

where the Ij are Artinian lex-segment ideals in T ¼ K½x2; x3� whose Hilbert functions

are given as follows (note the shifting for I1, I2 and I3 to apply Lemma 2.9):

degree:
0 1 2 3 4 5 6

I0 1 2 3 4 4 2
I1 1 2 3
I2 1 2
I3 1

1 3 6 10 4 2

If

A ¼

L1;1 L1;2 L1;3 . . .
L2;1 L2;2 L2;3 . . .
L3;1 L3;2 L3;3 . . .

2
4

3
5

is a lifting matrix with 3 rows and at least 6 columns then the lifted ideal I is the satu-

rated ideal of a zeroscheme Z in P3 which
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(i) is reduced if A is sufficiently general,

(ii) is glicci, by Theorem 3.1, and

(iii) has h-vector h.

The proof of Theorem 3.1 shows that Z can in fact be obtained as the union of

successive hyperplane sections (denoting hyperplanes with the same notation as

the corresponding linear forms)

Z ¼ ðL1;1 \ V0Þ [ ðL1;2 \ V1Þ [ ðL1;3 \ V2Þ [ ðL1;4 \ V3Þ

where V3 � V2 � V1 � V0 are reduced arithmetically Cohen–Macaulay configura-

tions of lines in P3 obtained by lifting I0; . . . ; I3 using the submatrix

A0 ¼
L2;1 L2;2 L2;3 . . .
L3;1 L3;2 L3;3 . . .

� 

and the h-vectors of the Vj are given by the rows of the table above.

4. Further Comments

We end with some comments and questions raised by this paper. The results in this

paper, as well as those in [10], [3] and [4], suggest strongly to us that the answer to

Question 1.1 is ‘yes.’ The following ideas may help to ultimately give a final answer

to this question.

(1) We have seen that Cohen–Macaulay Borel-fixed monomial ideals are glicci. Is it

in fact true that every Cohen–Macaulay monomial ideal is glicci? Or is it at least

true that every Artinian monomial ideal is glicci?

(2) Given a Hilbert function, our lifting gives the ‘worst’ arithmetically Cohen–

Macaulay scheme with that Hilbert function. As a result, this scheme should

be the most difficult to find ‘good’ arithmetically Gorenstein schemes contain-

ing it. Since we can find suitable ones for this ‘worst case’, can this suggest how

to link a different arithmetically Cohen–Macaulay scheme with that same Hil-

bert function down to a complete intersection?
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6. Galligo, A.: A propos du théor�eme de préparation de Weierstrass, In Fonctions des plu-
sieurs variables complexes, Lecture Notes in Math 409, Springer, New York, 1974,
pp. 543–579.

7. Geramita, A. V., Maroscia, P. and Roberts, L.: The Hilbert function of a reduced

k-Algebra, J. London Math. Soc. 28 (1983), 443–452.
8. Geramita, A. V. and Migliore, J.: A generalized liaison addition, J. Algebra 163 (1994),

139–164.

9. Huneke, C. and Ulrich, B.: The structure of linkage, Ann. of Math. 126 (1987), 277–334.
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