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ABSTRACT. The structural evolution of snow under metamorphism is one of the key challenges in snow
modeling. The main driving forces for metamorphism are curvature differences and temperature gradi-
ents, inducing water vapor transport and corresponding crystal growth, which is detectable by the
motion of the ice/air interface. To provide quantitative means for a microscopic validation of meta-
morphism models, a VTK-based image analysis method is developed to track the ice/air interface in
time-lapse μCT experiments to measure local interface velocities under both, isothermal and tempera-
ture gradient conditions. Using estimates of local temperatures from microstructure-based finite
element simulations, a quantitative comparison of measured interface velocities with theoretical expres-
sions is facilitated. For isothermal metamorphism, the data are compared with a kinetics and a diffusion
limited growth law. In both cases the data are largely scattered but consistently show a mean curvature
dependency of the interface velocity. For temperature gradient metamorphism, we confirm that the
main contribution stems from the temperature gradient induced vapor flux, accompanied by effects
of mean curvature as a secondary process. The scatter and uncertainties are discussed in view of the
present theoretical understanding, the experimental setup and complications such as mechanical
deformations.

KEYWORDS: crystal growth, interface tracking, isothermal metamorphism, snow, temperature gradient
metamorphism, X-ray tomography

1. INTRODUCTION
Ice crystal growth is not only of fundamental interest related
to the fascinating morphologies of isolated crystals (Nakaya,
1954); there is also a practical demand for understanding the
collective growth of crystals in snow due to the relevance of
metamorphism for environmental modeling (Fierz and
Lehning, 2001; Vionnet and others, 2012), avalanche forma-
tion (Schweizer and others, 2003) and remote sensing
(Wiesmann and Mätzler, 1999). Common phenomenologic-
al starting points to model crystal growth are variants of the
Stefan problem (Kaempfer and Plapp, 2009), i.e. the
coupled treatment of heat and mass diffusion in the presence
of the growing crystal as a moving boundary. Heat and mass
transport are coupled at the interface via boundary condi-
tions, which typically comprise two components, mass con-
servation and a so called growth law. Both involve the
normal velocity vn of the growing interface, which is the
key determinant of crystal growth. The growth law is not a
consequence of basic conservation laws, and thus requires
additional input.

The simplest law for growth from the vapor phase is the
Hertz–Knudsen law vn∼ σ in which the interface velocity is
proportional to the supersaturation σ (Saito, 1996). This has
been used for example by Libbrecht (2005) to estimate vel-
ocities of growing snow crystals. The growth law must be
understood as a microscopic constitutive equation for model-
ing crystal growth via ambient vapor diffusion. If surface pro-
cesses like step dynamics and surface diffusion play a role
(cf. discussion in Libbrecht, 2005) the growth law must be
understood as an empirical closure relation, which potential-
ly contains non-local elements of surface kinetics. The

relevance of the growth law for snow modeling stems from
the direct coupling to the upscaled thermodynamic fields
(Calonne and others, 2014b), since the net mass change _ρ
of the ice matrix per unit volume V and unit time is given
by _ρ∼ρi

R
A vnda=V . As long as snow metamorphism models

are derived from pore scale diffusion models, it is necessary
to validate growth laws for vn from measurements.

From a theoretical viewpoint, an appealing example of
crystal growth modeling is the migration of vapor bubbles
in ice under a temperature gradient (Shreve, 1967) which is
caused by vapor transport and subsequent growth. The mi-
gration and interface velocities in Shreve (1967) are based
on purely diffusion limited growth where the interface
kinetics are assumed to be infinitely fast. This model was
used, for example, to analyze experiments for bubble migra-
tion in Antarctic ice in a study of the albedo of blue ice fields
(Dadic and others, 2010). It predicts growth rates that depend
mainly on local temperature gradients that are realistic for
spherical geometries. It thus provides a reasonable starting
point also for snow, if limitations due to geometry can be
overcome. The opposite extreme are so called geometrical
models for crystal growth (Taylor and others, 1992), which
completely neglect diffusion effects. An anisotropic geomet-
rical growth law in two-dimensional (2-D) (Wettlaufer and
others, 1994) is e.g. able to correctly predict out-of-exist-
ence-growth of rough crystal orientations during kinetic facet-
ing of spherical initial shapes. This so called kinetic faceting is
also observed if anisotropic kinetics is coupled to diffusion in
2-D (Yokoyama and Kuroda, 1990). Only recently it was
however claimed that 3-D faceted growth of snow crystals
instead requires the mechanism of equilibrium faceting, i.e.
an anisotropy in the surface energy (Barrett and others, 2012).

Aggregated snow inherits properties of the single ice crys-
tals it consists of, but even for single crystals it is tricky to
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measure the prefactors in the growth law (Libbrecht, 2003).
In addition, the evolution of snow is complicated by the com-
plexity of the microstructure. Time lapse tomography (Pinzer
and others, 2012; Schleef and Löwe, 2013; Calonne and
others, 2015) has become a powerful tool to monitor the evo-
lution of snow microstructure under driving conditions of
temperature and mechanical stress. In principle, these tech-
niques, which have gained interest only recently, are perfect-
ly suited to track the growing interface and measure
variations of the local normal velocity vn(x).

The aim of this paper is to present a method for the ana-
lysis and validation of local growth laws in snow. We
present estimates of the local ice/air interface velocity
obtained from the analysis of time lapse experiments of
snow subject to constant temperature gradient and isother-
mal conditions. From the 3-D structures obtained by micro-
computed tomography, we track the ice/air interface of
snow by means of image analysis. For a quantitative com-
parison, we derive three simple growth laws. For temperature
gradient conditions we follow the classical approach by
Shreve (1967) used for vapor bubbles. For isothermal condi-
tions we compared a diffusion limited growth law, which
includes the Gibbs–Thomson effect, with a kinetics limited
growth law. All three approaches are applicable to bicontin-
uous microstructures and involve closed form expression that
are solely determined by local temperature, temperature gra-
dients and geometrical characteristics of the interface such as
mean and Gaussian curvatures. Local temperatures are com-
puted by pore scale finite element simulations and the geo-
metrical features are estimated from the reconstructed
interface. The order of magnitude of measured interface vel-
ocities is similar to that for the theoretical models. However,
we observe large scatter, which we discuss in view of experi-
mental uncertainties, limitations of image analysis and
missing theoretical insight.

In Section 2 we present the necessary theoretical back-
ground and governing equations for coupled heat and mass
transport and the implications on interface dynamics. In
Section 3 we provide a summary of the image analysis
tools and develop an interface tracking method based on
VTK algorithms. The results are presented in Section 4 and
discussed in Section 5.

2. THEORETICAL BACKGROUND
Snow metamorphism is driven by coupled transport of heat
and mass. A common starting point for modeling is a descrip-
tion in terms of stationary, coupled diffusion equations at the
pore scale with appropriate boundary conditions at the ice–
vapor interface. In the following description we essentially
follow Kaempfer and Plapp (2009) and Calonne and others
(2014b).

The (gravimetric) water vapor density ρv in the pore space
is governed by the stationary diffusion equation

∇∇∇∇∇2ρv ¼ 0; ð1Þ

which must be equipped with boundary conditions at the
ice/air interface. The first boundary condition is given by
mass conservation at the interface. The diffusive vapor flux
must balance the flux caused by the solid–vapor interface,
which advances (by growth) with normal velocity vn, viz

ðρv � ρiÞvn ¼ Dv∇∇∇∇∇ρv � njþ; ð2Þ

where ρi denotes the ice density,Dv the diffusion constant for
water vapor, and |+ the limit of approaching the interface
from the vapor phase. The orientation of the normal vector
field n on the interface is chosen to be directed from ice to
vapor. Besides mass conservation, the water vapor concen-
tration satisfies a non-equilibrium ‘growth law’ at the inter-
face which is a local constitutive equation relating vn to
deviations from the saturation (equilibrium) density ρv,s.
The growth law must be understood as an Onsager relation,
which relates a flux to a thermodynamic force. Including the
Gibbs–Thomson effect, the growth law can be written as

ρv ¼ ρv;sðTÞ 1þ d0Hþ 1
αvkin

vn

� �
: ð3Þ

It includes the influence of the curvature H on the equilib-
rium vapor density over a flat surface, ρv,s(T), which
depends on local temperature T. The capillary length d0=
γa3/kBT is related to the surface energy γ, the Boltzmann con-
stant kB, temperature and the mean intermolecular spacing a
of water molecules in solid ice. The product αvkin describes
the attachment kinetics at the interface in terms of the
condensation coefficient α and the velocity scale vkin
(Libbrecht, 2005). The magnitude of αvkin discerns
between diffusion and kinetics limited growth. The diffusion
limited case corresponds to αvkin≫ vn where the Robin
boundary condition, Eqns (2) and (3) reduces to a Dirichlet
condition.

The equilibrium vapor density ρv,s, as the primary driver
for crystal growth from vapor, depends on temperature T.
Therefore, the vapor field is coupled to the temperature
field, which is governed by the static heat equation,

∇∇∇∇∇2T ¼ 0: ð4Þ

To solve this, a boundary condition at the interface is
required. It describes the continuity of the heat flux through
two conducting media with different conductivities κa for
vapor and κi for ice (Carslaw and Jaeger, 1986). Neglecting
the latent heat contribution due to phase changes (Calonne
and others, 2014b) the boundary conditions reduce to

κi∇∇∇∇∇T � nj� ¼ κa∇∇∇∇∇T � njþ;Ta ¼ Ti: ð5Þ

The approach of using stationary diffusion Eqns (1) and (4) is
commonly justified by a time scale analysis of the diffusion
and growth processes (Libbrecht, 2003). The relevant time
scale of variations in the vapor density can be roughly esti-
mated by the diffusion time τdiff= ‘2/Dv, with ‘ being a char-
acteristic size of the microstructure. This has to be compared
with the time it takes to grow the ice crystal of size ‘, which is
τgrowth= ‘/vn. The ratio of these two scales is called the Peclet
number, and is given by p= τdiff/τgrowth ≈ 10−7. Here we
used vn≈ 10−9 m s−1 and ‘ ≈ 10�3m as typical values,
which are rough estimates from the data in this work and
similar to the values used by Kaempfer and Plapp (2009).
Thus the vapor density adjusts itself by diffusion much
faster than the crystal growth, justifying the assumption of
stationarity.

In practice, the coupled Eqns (1) and (4) in the presence of
a moving interface can be solved only numerically for
complex geometries, for example via the phase field ap-
proach (Kaempfer and Plapp, 2009). Even such a computa-
tionally demanding approach still does not take into
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account the anisotropy in kinetic coefficient and surface
energy as a generalization of Eqn (3). The anisotropy gives
rise to faceting and branching, which are key to obtain real-
istic, 3-D growth morphologies of single ice crystals (Barrett
and others, 2012). This will be likewise relevant for aggre-
gated ice crystals in snow. Due to these complexities, we
re-derive simple approximations for the local growth veloci-
ties in the next section to provide quantitative means for the
comparison with the developed image analysis method.

2.1. Temperature gradient dominated growth
To obtain an estimate for the local interface velocity in the
presence of a steady, macroscopic temperature gradient we
follow the classical example of air bubble migration in ice
(Shreve, 1967). This can be readily generalized to arbitrary
geometries to address crystal growth in snow. Therein, it is
assumed that the diffusion of water vapor in the pore space
is predominantly caused by temperature differences, which
affect the equilibrium concentration ρv,s and in turn cause
vapor fluxes across the pores. The dependence of curvatures
is neglected by setting d0= 0 in Eqn (3). In this setting, it
remains only a one-way coupling between the heat and
mass equations: first the temperature equation can be
solved for a given microstructure, and afterwards the vapor
field can be obtained for a given temperature field.

More precisely, if the temperature gradient is not too large,
it is reasonable to linearize the dependence of the saturated
vapor density on temperature

ρv;sðTÞ ¼ ρv;sðT0Þ þ ρ0v;sðT0ÞðT � T0Þ; ð6Þ

around a reference temperature T0 where ρ0v;sðT0Þ ¼
dρv;sðTÞ=dTjT¼T0 . Shreve (1967) has implicitly considered
αvkin≫ vn in Eqn (3). This corresponds to ρv −ρv,s→ 0, i.e.
the interface is in quasi–equilibrium with the ambient
vapor. This setting is also used by Pinzer and others (2012)
and Brzoska and others (2008) and is equivalent to a
Dirichlet boundary conditions at the ice–vapor interface,

ρv ¼ ρv;sðTÞ: ð7Þ

This boundary condition implies that the interface velocity is
solely determined by the mass conservation condition Eqn (2)
yielding

ðρi � ρvÞvn ¼ Dv∇∇∇∇∇ρv;s � n
��
þ ¼ Dvρ

0
v;s∇∇∇∇∇T � n��þ: ð8Þ

This corresponds to a diffusion-limited problem where inter-
facial kinetics are ignored. As an advantage, a minimal de-
scription for an effective growth law at the interface is
obtained, which is determined by the local temperature gra-
dient,

vn ¼ A∇∇∇∇∇T � n; ð9Þ

where the rate coefficient, A depends on temperature and is
given by

AðTÞ ¼ Dvρ0v;sðTÞ
ρi � ρv

≈
Dvρ0v;sðTÞ

ρi
: ð10Þ

The temperature dependence of ρ′ can be parametrized as
for example, given by Kaempfer and Plapp (2009). In

writing Eqn (9), growth velocities vary throughout a sample
because they are determined by local temperatures and tem-
perature gradients. This is the generalization to migration of a
single bubble, where the temperature gradient is uniform
across the bubble (Shreve, 1967) due to the simplicity of
the spherical microstructure. The analysis of Eqn (9) only
requires a numerical solution of the temperature field,
which can be obtained by the finite element method as for
example, described by Pinzer and others (2012).

2.2. Curvature dominated growth: diffusion limited
case
For isothermal conditions, T= T0 is a solution of Eqns (4) and
(5). Curvature differences remain as the only driving force for
vapor gradients and the evolution of the interface. For a
system of spherical particles, Eqns (1)–(3) are equivalent to
the classical problem of Ostwald ripening, which has been
studied by Lifshitz and Slyozov (1961) and Wagner (1961),
commonly referred to as LSW theory. It provides an analytic-
al solution for the evolution of the interface of spherical par-
ticles that mutually interact via a mean-field background
concentration determined by the averaged mean curvature
H. If αvkin is assumed to be much larger than vn, the boundary
condition Eqn (3) reduces to a Dirichlet condition

ρv ¼ ρv;sðTÞð1þ d0HÞ: ð11Þ

The application of LSW to snow has been addressed by
Legagneux and Dominé (2005), subject to the limitation of
microstructures comprising spheres. Some progress for arbi-
trary microstructures can be made by exploiting the growth
problem defined by Eqns (1), (8) and (11), equivalent to a
Cahn–Hilliard phase-field model in its sharp interface limit
(Garcke, 2013), which is therefore considered as an equiva-
lent approach to derive properties of LSW-type growth
(Wang, 2008). A mean field approximation for the interface
velocity of a bicontinuous system derived from the Cahn–
Hilliard equation has been put forward by Tomita (2000),
suggesting an explicit expression for the normal velocity,

vn ¼ B
λ
ðH�HÞ: ð12Þ

Here λ is a characteristic cutoff length scale for the diffusion
field in the vicinity of an arbitrary interface. This length scale
can be defined by the mean and Gaussian curvatureH and K

to be λ ¼ ð2H2 � KÞ�1
2. H is the averaged mean curvature.

Equation (12) is the lowest order approximation for the inter-
face velocity when surface diffusion is neglected. The rate
coefficient B is related to the other parameters by

BðTÞ ¼ Dvd0ρv;sðTÞ
ρi

ð13Þ

and also depends on temperature mainly via ρv,s(T). Note that
Eqn (12) is not exact. It was however used recently also by
Fife and others (2014) to study local growth velocities of
Al-Cu microstructures in liquid-solid systems. The coeffi-
cients in Eqn (13) are chosen to be consistent with physical
parameters in the latter work. In general, the identification
of phase field parameters and sharp interface parameters
requires some caution (Kaempfer and Plapp, 2009).
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2.3. Curvature dominated growth: kinetics limited
case
If the growth is dominated by the kinetics at the interface
αvkin≪ vn (Libbrecht, 2005), the vapor diffusion field
adjusts reasonably fast and diffusion can therefore be
neglected. In this case the ambient vapor density ρv in the
boundary condition, Eqn (3) can be approximated by the spa-
tially averaged equilibrium density, ρv ¼ ρv;sð1þ d0HÞ. This
approach was used by Flin and others (2003) to predict the
evolution of the specific surface area and the mean curvature
in snow for isothermal metamorphism. It follows immediate-
ly, that the interface velocity is given by

vn ¼ CðH�HÞ; ð14Þ

with a rate constant C, which is related to the coefficients in
Eqn (3) via

CðTÞ ¼ αvkind0 : ð15Þ

For the kinetics limited case, an alternative justification for
Eqn (14) can again be motivated by the mapping on a
phase field formulation. The kinetics limited case of LSW
growth is often alternatively addressed within an Allen–
Cahn phase field description (Wang, 2008). If subject to a
global conservation constraint (mass conservation), the
normal velocity in the sharp interface limit has the form of
Eqn (14), cf. for example (Garcke, 2013). The same form
was obtained by Tomita (2000).

The value for the condensation coefficient α in Eqn (15) is
believed to be in the range 10−3<α<10−1 (Kaempfer and
Plapp, 2009), though its experimental determination is diffi-
cult cf. (Libbrecht, 2003). For comparison below, of the mea-
sured C with the theoretical value we will chose α= 10−2.

3. METHODS
In the following section we summarize the methods to
measure local crystal growth from experimental time lapse
data obtained from μCT. An assessment of the local growth
laws, Eqn (12), (9) requires a simultaneous evaluation of cur-
vatures, normal velocities and temperature gradients. Our
image analysis is based on the open source library VTK
(http://www.vtk.org).

3.1. Curvatures and normal vectors
After reconstruction via μCT, the 3-D images are available as
binary voxel data. On the binary images, the VTK contour
filter is applied to obtain a triangulated mesh, which repre-
sents the ice/air interface. The pseudo normal vectors of the
interface are created at every point x on the mesh by aver-
aging face normals of adjacent triangles by angle weighting.
A smoothing filter, vtkSmoothPolyDataFilter(), is used to
obtain a smooth distribution of the normal vectors. The
smoothing is iterated (controlled by the filter parameter
number of iterations) until the original voxel structure disap-
pears. Since the smoothing is controlled locally, it neither
preserves the volume nor the surface area of a closed
surface and too much smoothing leads to a continuous de-
crease of the volume and surface area. As a tradeoff, for the
analysis of the experiments below the numbers of iterations
were subjetively chosen to be 400 and 200 for the isothermal
and temperature gradient cases, respectively.

Local curvatures are obtained by standard VTK filter acting
on the triangulated interface on input. For a discrete, triangu-
lated surface, local curvatures at a point x can be obtained by
standard means as for example, described by Sullivan (2008).
The local mean curvature is calculated by

HðxÞ ¼ 3
AΔn

Xn
i¼1

lðeiÞαðeiÞ; ð16Þ

where ei are the adjacent triangle edges, ν is the number of
edges, l(ei) the length of the edges, AΔ is the sum of the
areas of adjacent triangles and α(ei) the dihedral angles of
the edges. Note that the documentation of the algorithms
(http://www.vtk.org) omits the normalization AΔ. The local
Gaussian curvature is calculated from

KðxÞ ¼ 3
AΔ

2π �
Xn
i¼1

θi

 !
; ð17Þ

where θi are the angles between the two normal vectors of
the neighboring faces of corresponding edges.

3.2. Interface tracking
Measuring local crystal growth is related to the evolution of
the ice–vapor interface. Normal velocities are estimated
from normal distances between points on the interfaces
from consecutive time steps. Such a method is not directly
available in VTK and hence the following method is therefore
developed.

We represent the interface by a discretized, time depend-
ent triangular mesh Γt, which comprises a collection of a
finite number of points evolving from x ∈ Γi to y ∈ Γf by a
normal distance dnðxÞ :

y :¼ xþ dnnðxÞ; ð18Þ

The triangulation is obtained by applying the VTK contour
filter to the μCT voxel data.

VTK provides a method to estimate the minimal distance
between two surfaces, this distance is not necessarily normal
to the reference surface, as required by Eqn (9). To this end an
iterative procedure is used to estimate the normal distances. It
is based on the vtkDistancePolyDataFilter() implemented by
Quammen and others (2011), which computes the signed
distance measure as proposed by Baerentzen and Aanaes
(2005). The filter measures the minimal distance dmin between
two polygonal meshes that represent two consecutive ice/air
interfaces. More precisely, for all points x on interface Γi
the minimal distance to the next interface Γf is calculated via

rðx; yÞ ¼ x� y; ð19Þ

dminðxÞ ¼ ±min
y

rðx; yÞj j: ð20Þ

The sign of the dmin is determined by the sign of r � nðxÞ. If the
time difference between two interfaces is chosen to be very
small, the minimal distance approximates the distance in
the normal direction. However, experimental data are avail-
able only at finite temporal resolution Δt in the order of hours,
which leads to a loss of information and a decorrelation of
the two consecutive interfaces and thus to a failure of the
method. Instead, an iterative process is suggested, in which
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the configurations of the interface between two time steps are
guessed by a number N of interfaces Γj. A measure for the
normal distance dn is then retrieved using the simulated inter-
mediate interfaces. We start with two interfaces Γi at time t=
0 and Γf a time step Δt later, which are specified by their
points x and normal vectors nðxÞ. For all points on Γi the
minimal distances dmin to Γf are calculated as described
above. Then the interface is moved along the normal
vectors by a given fraction 1/m1, of dmin, depending on the
choice of number of simulated interfaces and the relative dis-
tances between them, yielding a new interface Γ1. This is
done by using the VTK filter WarpByVector(), which moves
the surface along the normal vectors with a given measure
that can be defined locally. From the newly created interface
the procedure is repeated. The simulated interfaces Γj are
defined by

xj ¼ x j�1 þ n j�1dminðxjÞ=mj; ð21Þ

where nj−1 are the normal vectors of interface Γj−1 and Γ0:=
Γi. Finally the distances between the two interfaces are esti-
mated by

dn ≈ dg ¼
XNþ1

j¼1

dminðxjÞ=mj; ð22Þ

with N the number of simulated interfaces andmN+1:= 1. The
procedure can be envisaged as guessing the sequence of two
(real) consecutive interfaces Γi and Γf by intermediate auxiliary
interfaces to obtain an improved estimate of the normal dis-
tance. Choosing the values formj is a trade off between compu-
tation time and fraction of points that represent topological
inconsistent simulated surfaces. Taking small values for mj is
computationally favorable but increases the number of points
that have their relative position changed with respect to their
nearest neighbors. This results in negative normal vectors
with respect to Γi and consequently diverging values for dg.
The points with diverging distances are filtered out by setting
a threshold for the distances. The difference between dmin, dg
and dn is illustrated in Figure 1.

3.2.1. Test case
To test the previously described method a known growth law
is applied to a reference interface and the method must
recover the prescribed normal distances. To this end a real
snow sample has been used with a prescribed growth law

dn= cn · ez, which represents a local, uniaxial field in the
z-direction where c determines the amplitude.

A scatter plot of the prescribed and measured distances
dmeas is shown in Figure 2. The error of the algorithm is
now calculated as the average difference between prescribed
and measured distances:

E ¼ 1
M

X
x

jdmeas � dnj; ð23Þ

where M denotes the number of interface points. The error
has dimensions of length and must be compared with the
typical size of the structure. To compare the performance
for different structural sizes we introduce a dimensionless
quantity

ε ¼ 1
A

Z
jHdnjda; ð24Þ

which is the average prescribed distance dn weighted by the
local mean curvature H. For illustration, increasing c in the
prescribed growth law mimics the influence of an increasing
time step, which leads to increasing values for ε.

To asses the errors we varied the local growth law dn by
varying the amplitude c, with corresponding ε, and measured
the local distances dmeas with the minimal distance dmin. The
errors as a function of ε are shown in Figure 3 and decrease to
zero for small ε. Our experiments however always come with
a finite time and spatial resolution that leads to an estimated

εexp ¼ 1
A

Z
jHdminjda of 0.32. This estimate is a lower bound

since dmin <dn and actual errors might be higher. To do
better than the minimal distance estimation of the normal dis-
tances, the iterative interface tracking as described above is
tested on the snow sample with a prescribed growth corre-
sponding to ε= 0.32. The number of iterations and the
divisor mj together define how fast and how accurate the
error is decreasing. In Figure 4 two possible choices for mi

and the number of iterations are plotted. The faster the simu-
lated interfaces approaches the second interface, the more
scatter and the less topological inconsistencies are measured.
The results show that the iterative approach reduces the error
by at least 45%. To optimize computation time, and limit the
number of topological inconsistencies we choose to limit the
number of simulated interfaces to seven. As seen in Figure 4,

Fig. 1. Schematic of the iterative interface tracking. Γi and Γf
represent two consecutive images and the dashed curves, the
simulated intermediate interfaces. In contrast to dn, dmin is not
perpendicular to Γi. dg is perpendicular to the simulated interfaces.

Fig. 2. Scatter plot of measured distances dmeas as a function of
prescribed distances dn for N= 4,8,12,16 iterations.
dg ¼ dmeasðdfÞ, the averaged value for the final iteration (N= 18).
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four or five iterations would be sufficient for this particular
choice for mj, but the threshold that cuts away points from
the interface with divergent distances works more efficiently
if the number of iterations is increased.

3.3. Local temperature gradients
In addition to purely geometric properties of the image, a
finite element solution of Eqn (4) with boundary condition,
Eqn (5) is computed to estimate the local temperature gradi-
ent for all voxels in the dataset. According to the growth law,
Eqn (9), the temperature gradients must be known in the limit
of approaching the interface from the vapor space. This limit-
ing procedure is mimicked by a VTK interpolation filter
(ResampleDataSets), which interpolates the temperature
field in the pore space ‘close’ to the interface:

∇∇∇∇∇TðxÞ ¼ ∇∇∇∇∇Tðxþ enðxÞÞ; ð25Þ

where e is the spatial distance from the interface at which the
temperature gradient is sampled.

3.4. Discerning settling and growth
Estimating growth velocities in snow bears the fundamental
difficulty that the effect of growth cannot be well

distinguished from settling effects due to gravity. This is
readily illustrated by a hypothetical spherical ice particle,
for which the growing interface in a constant temperature
gradient (cf. Eqn (9)) has the same effect as a translation of
the particle in the absence of growth. If settling velocities
are in the same order of magnitude as growth velocities, it
requires a method to correct for the effects of settling. For
the temperature gradient experiment the settling is assumed
to be small compared with the actual crystal growth, but
for the isothermal experiment the displacement fields gener-
ally depend on the position in the sample (Schleef and Löwe,
2013). However, by evaluating only a shallow layer at the
bottom of the snow (100 voxels thick) it is reasonable to
assume a uniaxial displacement field as a first approximation.
In addition, settling effects are minimized at the bottom of the
snow. Vertical displacements of the structure are estimated
manually. Once the settling rates are known, the μCT
images are translated back, and the remaining differences
are interpreted as growth and analyzed by the methods
described in the previous section.

3.5. Sub voxel sample position corrections
As a result of the experimental setup, the exact location of the
sample has a sub voxel uncertainty. This originates from the
error in absolute positions of consecutive images in the μCT
scanning procedure. The sample must be repeatedly moved
to the scan position for each image acquisition, which comes
with an uncertainty. It is possible to correct for this uncer-
tainty by measuring the average translation of the entire
sample in the x- and y-direction by

Δrx;y ¼ dn=ðn � êx;yÞ; ð26Þ

and then translating the data back accordingly. The μCT sub
voxel uncertainty in the z-direction cannot be distinguished
from both settling and crystal growth in the z-direction, and
is therefore not corrected automatically. Local mechanical
deformations play a significant role in the isothermal experi-
ment and give a bias in the correction Δrx,y. As a conse-
quence the translation rates for the isothermal experiment
are estimated manually.

4. RESULTS

4.1. Curvature driven metamorphism

4.1.1. Experimental data
For the isothermal analysis we chose a time series from the
isothermal metamorphism experiments described by
Schleef and Löwe (2013). In these experiments, the coupling
of isothermal coarsening and densification was investigated
within time-lapse experiments with new snow produced
from a laboratory snowmaker. For further experimental
details we refer to Schleef and Löwe (2013). To minimize
complications emerging from settling, we chose a sample
that had very small densification. The temperature of the
experiments was −18 °C and the time step of the time
lapse measurements, Δt= 3 hours. The spatial resolution of
the data is 10 µm. The size of the dataset is 600 × 600 ×
100 voxels, where we have restricted the data in the z-
direction to the bottom 100 voxels, such that settling rates
are uniform. The initial conditions for the experiment were
precipitation particles, i.e. plates (PPpl) with rounded grains

Fig. 3. Measured errors E as a function of prescribed growth with
corresponding ε. The lower bound for the estimated error Eεexp for
the temperature gradient experiment are indicated by the dashed
red line.

Fig. 4. Measured errors E as a function of the number of iterationsN.
The estimated error corresponding to the minimal distance
measurement of the experimental data Eεexp is indicated by the
dashed red line.
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(RGsr) according to Fierz and others (2009), with a relative
high initial value for the specific surface area of 68 m2 kg−1.

4.1.2. Visual overview
For a qualitative overview of the image analyis data that were
used to assess the curvature-driven growth laws Eqns (12)
and (14), we show an example visualization of the key quan-
tities in Figure 5. For the first image of the time series, the
curvature difference H�H is shown (left) together with the
normal distance dn (right), which was obtained from
the interface tracking method applied to the first and fifth
images of the time series. Here and for the analysis below,
we did not use consecutive images of the experiment but
rather, compared every fifth image (Δt= 15 hours) to in-
crease the signal-to-noise ratio. The normal velocity is then
obtained from the normal distance via dn= vnΔt. The
images are restricted to a subset of the total data with a size
of 60 × 60 × 60 voxels. Further insight into the data is obtained
below by a pointwise comparison of vn with H�H as
predicted by Eqns (12) and (14).

4.1.3. Interface velocity histograms
First we assess the diffusion limited growth law, Eqn (14). For
every point on the interface we computed the mean curva-
ture H and the velocity vn. The results are shown in a 2-D
histogram plot for t= 0 and t= 33 hours (Fig. 6) indicating
a strong signal around zero velocity and zero mean curva-
ture, and a weaker signal that has a dependency of the vel-
ocity on the mean curvature. If we conduct the same
analysis for two consecutive images with a smaller time
step, 3 and 9 hours, the curvature depending signal
becomes much weaker. Secondly we compared the velocity
with the actual growth law from Eqn (12), which includes the
curvature dependent length scale λ as depicted in Figure 6.
Again large scatter is observed at the origin, which is rather
symmetric in the velocity.

4.1.4. Time evolution of growth law coefficients
Despite the scatter we have conducted an area weighted
least squared analysis on Eqn (12) and (14) to obtain an esti-
mate for Bexp and Cexp including its evolution over time

during the experiment. The results include the sample
Pearson correlation coefficients r and are shown in
Figure 7. The correlation coefficient r related to Bexp is
slowly decreasing over time with mean r ≈ 0:32. The esti-
mated values for Bexp are consistently higher than the theor-
etical value Btheo. Similarly the estimated values for Cexp

shown in Figure 8 are consistently higher than Ctheo, but it
should be noted that the order of magnitude of Ctheo strongly
depends on the order of the condensation coefficient α,
which for this evaluation is set to 10−2 (Kaempfer and
Plapp, 2009). The correlation coefficient r related to Cexp,
with an average value of r ¼ 0:39, is significantly higher,
and again shows a decrease over time. These results are dis-
cussed in Section 5.1.

4.2. Temperature gradient driven metamorphism

4.2.1. Experimental data
For the temperature gradient analysis we have chosen a time
series from the temperature gradient experiments described
by Pinzer and others (2012), where vapor fluxes during tem-
perature gradient metamorphism were analyzed via time-
lapse experiments carried out in a snow breeder. For
further experimental details we refer to Pinzer and
Schneebeli (2009) and Pinzer and others (2012). For the
present analysis, one time series was chosen with a time
step between two images of Δt= 8 hours and a spatial reso-
lution of 18 µm. The size of the dataset is 190 × 190 × 190
voxels. The average temperature was −7.8 °C and the
applied temperature gradient was 55 K m−1. The initial
crystal condition for the experiment was rounded grains,
RGlr (Fierz and others, 2009) with an initial specific surface
area of 26 m2 kg−1. The uncertainty in the relative x and y
positions of two consecutive images was corrected
automatically.

4.2.2. Visual overview
Again, we provide a qualitative overview of the image ana-
lysis data, which are used to assess the growth law Eqn (9)
in Figure 9. The images are restricted to a subset of the
total data with a size of 70 × 70 × 70 voxels. For the first
image of the time series, the dot product ∇∇∇∇∇T � n of the

Fig. 5. Visualization of the curvature difference H�H (left) and the normal distances dn computed from the interface tracking (right) for the
first sample of the isothermal time-series. The size of the sample is 60 × 60 × 60 voxels.
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temperature gradient at the interface with the normal vector
is shown (left) together with the normal distances measured
by the interface tracking method between first and second
time step (right). The normal velocity of the interface is
then obtained via dn= vnΔt.

4.2.3. Interface velocity histograms
To assess the relevance of Eqn (9), we compared local inter-
face velocities with local temperature gradients for all points
on the interface at different times in our time-lapse data. The
relation between velocity and temperature gradient is shown
in Figure 10 using 2-D histograms for four equally spaced
pairs of consecutive μCT images. In addition, two linear fits
are included in Figure 10 to compare the data with the
growth law Equation (9). The tangent fit represents a linear
fit of the histogram data in the small gradient region

�50 K m�1 <∇∇∇∇∇T � n< 50 K m�1, which describes the
linear approximation of the interface velocity for small gradi-
ents close to zero. For small velocities, we clearly measure a
higher Awhen compared with a linear fit of all data points. In
addition, we have plotted a binned average, providing a
measure for the average velocity for a small range of tem-
perature gradients.

4.2.4. Time evolution of growth law coefficients
To assess the temporal evolution of the growth law parameter
A, a linear fit and the sample Pearson correlation coefficient r
is evaluated for the entire time-lapse experiment and shown
in Figure 11. The results show that the measured values of A
are close to the theoretical value.

In the next step we analyzed the statistical significance of
the presence of a curvature dependent term in the data. To

Fig. 6. Interface velocities for the isothermal time series. Top: 2-D histograms for vn and the growth law Eqn (12) for t= 0 hour (left) and t= 30
hours (right). Bottom: 2-D histograms for vn and the growth law Eqn (14), for t= 0 hour (left) and t= 30 hours (right).

Fig. 7. Fitted values Bexp from Eqn (12) with the Pearson correlation
coefficient r over time t. For comparison the theoretical value Btheo

evaluated at −18 °C from Eqn (13) is shown.

Fig. 8. Fitted values Cexp from Eqn (14) with the Pearson correlation
coefficient r over time t. For comparison the theoretical value Ctheo

evaluated at −18 °C from Eqn (15) is included. Note that Ctheo is
only an order of magnitude estimate.
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this end we first fitted the data to the coarsening growth law
Eqn (12). The results of the estimates Bexp are shown in
Figure 12. The correlation coefficients found here are in the
same order as for the isothermal experiment (Figs 7 and 8).

It is thus reasonable to also assess the linear combination
of Eqns (9) and (12):

vn ¼ A∇∇∇∇∇T � nþ B
λ

H�H
� �

: ð27Þ

The values for A and B are similar to those obtained before
(not shown). However the correlation coefficient changes,
depending on the growth law that is used. We first assessed
rA by fitting A to Eqn (9). Secondly we calculated rB where

B is fitted to Eqn (12). Finally rA,B is computed where A and
B are simultaneously fitted in the combined growth law,
Eqn (27). The time-evolution of these coefficients is plotted
in Figure 13. The data show that rB ≈ 0:30, rA ≈ 0:46 and
rA;B ≈ 0:57.

4.2.5. Sensitivity analysis
Finally, we assess the impact of the limit parameter e intro-
duced in Section 3.3. To this end we have analyzed the de-
pendence of the growth law coefficient A on e for one sample
at t= 0. The results are shown in Figure 14. Our choice of
e= 1.25 used for the analysis of all the samples then

Fig. 9. Visualization of the temperature gradient projected on the normal ∇∇∇∇∇T � n (left) and the normal distances dn computed from the
interface tracking (right) for the the first sample of the temperature gradient time-series. The size of the sample is 70 × 70 × 70 voxels.

Fig. 10. Interface velocities for the temperature gradient time series shown as 2-D histograms at four different times for the velocity vn as a
function of local temperature gradients ∇∇∇∇∇T � n. Included are two fits for A from Eqn (9), a weighted least squares and a tangent fit for small
∇∇∇∇∇T � n.
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corresponds to the minimal sensitivity of this parameter. The
dependence on e will be further detailed in the discussion.

5. DISCUSSION

5.1. Curvature driven metamorphism
For isothermal metamorphism, we compared the interface
velocities data obtained by the proposed interface tracking
method, using two available models: diffusion limited
growth, Eqn (12) and kinetics limited growth, Eqn (14). For
the diffusion limited model (Fig. 6, top) the data revealed a
large scatter around the origin and the scatter plots are diffi-
cult to interpret visually due to the symmetric appearance of
the data. However, we observed a weak but consistent cor-
relation (Fig. 7) when fitting the data to the diffusion limited
growth law, Eqn (12). The fitted values, Bexp are higher
than the theoretical value Btheo. If Eqn (12) was strictly
valid, a possible explanation of the high Bexp values would
be an underestimation of the mean curvatures. We recall
that our curvature estimates rely on the smoothing parameter,
which had to be chosen subjectively, and smoothing pre-
dominantly reduces always high curvature regions. Another
explanation could be the presence of surface diffusion,
which is neglected in Eqn (12). If surface diffusion played a

role it would increase the value for the estimated Bexp,
since both processes simultaneously contribute to the reduc-
tion of mean curvature. As suggested by Tomita (2000),
surface diffusion should manifest itself as a higher order cor-
rection to Eqn (12) according to

vn ¼ B
λ
ð1� λ2∇∇∇∇∇2

SÞ½H�H�; ð28Þ

with ∇∇∇∇∇2
S the surface Laplacian. It will, in principal, be pos-

sible to also evaluate the growth law Eqn (28) and discern
effects of surface diffusion and bulk vapor diffusion.
However this would require higher quality experimental
data. The available dataset for new snow with a voxel size
10 µm is presently at the limit of resolution, where curvatures
can be estimated reliably, as can be seen from Figure 5. The
algorithms used by Flin and others (2005) and Brzoska and
others (2007) use a different smoothing procedure and
might give an improved curvature estimation for fresh
snow, which would enable the analysis of surface diffusion
dependent growth laws. Previous results (Löwe and others,
2011) in fact suggest that surface diffusion does play a role
at lower temperatures. This is indicated by the exponent gov-
erning the power law decrease of the specific surface area,
which is closer to 1/4, indicating surface diffusion, than to
1/3 indicating bulk diffusion.

If the data are fitted to the kinetics limited growth law, Eqn
(14) instead (Fig. 6, bottom), the correlation coefficient

Fig. 11. Fitted values Aexp from Eqn (9) with the Pearson correlation
coefficient r over time t. For comparison the theoretical value Atheo

evaluated at −7.8 °C from Eqn (10) is shown.

Fig. 12. Fitted values for B to Eqn (12) and the sample Pearson
correlation coefficient r over time. For comparison the theoretical
value Btheo evaluated at −7.8 °C from Eqn (13) is shown.

Fig. 13. The sample Pearson correlation coefficients over time for
various fits. rA corresponds to the fitted data to Equation (9), rB to
Equation (12) and rA,B to Equation (27).

Fig. 14. The fitted A to Eqn (9) as a function of the scale factor e as
defined by Eqn (25).
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slightly increases (Fig. 8). Within the limited accuracy of the
data, we conclude that kinetics cannot be completely
ignored. This is consistent with the dominant snow type
(PPpl) of the sample, which contains many plate-like struc-
tures, where kinetics should play a crucial role on the basal
orientations of the plates (Libbrecht, 2005). The same kinetics
limited growth law (Eqn (14)) was already suggested by Flin
and others (2003) to model isothermal metamorphism.

Our experimental setup bears another uncertainty in the
order of one voxel in x-, y- and z-direction (Section 3.5),
which stems from the uncertainty in absolute position.
Here the experimental setup developed by Calonne and
others (2015) might improve on that, since the sample is
left at exactly the same position during the time-series.
Another difficulty encountered here for the isothermal
dataset is the necessity of correcting for settling effects. We
outlined that the motion of an interface by crystal growth
and the motion of the interface by gravitational settling can
a priori not be discerned. On one hand, large specific
surface areas are required to ensure a good signal-to-noise
ratio for metamorphism. On the other hand, large specific
surface areas increase the effect of settling (Schleef and
others, 2014). In new snow, the crystals experience signifi-
cant displacements, which are larger than the size of the par-
ticles. It is difficult to compensate for these effects
automatically. In addition the settling is not uniform, as
assumed in Eqn (26). In the future, an ideal isothermal experi-
ment would comprise artificially compacted, slightly sintered
new snow in order to minimize settling effects with reason-
ably high curvature for significant growth effects.

5.2. Temperature gradient driven metamorphism
As a reference model, the obtained data were compared with
the generalization of the classical picture from Shreve (1967)
for the migration of vapor bubbles in ice. Despite its simpli-
city, the model is still used as a reference to analyze experi-
ments for the migration of vapor bubbles in ice (Dadic and
others, 2010). In the Shreve picture, the local interface vel-
ocities are mainly determined by the local temperature gradi-
ent in the pore space. For a single sphere, the simplicity of the
geometry allows us to compute the temperature gradient in
the pore space analytically. This can be generalized to
complex microstructures, if the temperature gradients are
computed numerically. Our results revealed that, on
average, the Shreve picture holds reasonably well for the
entire snow structure. Compared with the isothermal case,
we found less scatter in the histograms (Fig. 10) and estimated
values Aexp, which are in the same order of magnitude as the
theoretical value for the entire time series (Fig. 11). The esti-
mate Aexp is fairly constant over time, implying that on
average, the relation between the interface velocities and
the temperature gradient constitute an important physical
contribution to the growth under temperature gradients.
However, the fact that facets and depth hoar emerge
during metamorphism clearly indicates that the purely diffu-
sion limited picture, Eqn (9) cannot be strictly valid.

In addition, we analyzed an empirical, linear superpos-
ition of the curvature and gradient driven processes, cf. Eqn
(27). Again, the analysis shows a low correlation implying
a slight influence of the curvature term, but less pronounced
than the temperature gradient contribution (Fig. 13). Similar
to the isothermal analysis, the estimated values for Bexp are
higher than their theoretical value. The same explanations

given for the isothermal case are applicable here. A compari-
son with the isothermal case is however difficult due to the
differences in their apparent kinetic regime, temperature,
voxel resolution and initial snow type.

The analysis of the temperature gradient growth law has
revealed another uncertainty, namely the numerical solution
of the temperature field. A subtle source of error originates
from the numerical solution on voxel-based images for the
proposed method of estimating the temperature gradients in
the pore space (Section 3.3). The temperature gradient
must be computed in the limit of approaching the interface
from the vapor space in Eqn (9). This sampling must be
close enough to the interface to represent the vapor-space
near the interface, but not too close since the sampling will
be in the ice phase for a fraction of the points, resulting in
a lower value for the average temperature gradient, and
higher values for A. If the sampling were too far away from
the interface, temperature gradients would decrease, result-
ing in a higher value for A, as observed in the sensitivity ana-
lysis (Fig. 14). Accordingly we have chosen the spatial
distance e from the interface to be in the order of one
voxel, more precisely e= 1.25 m which corresponds to the
minimum of the sensitivity. The choice and sensitivity of
the results on e are closely related to the accuracy of the nu-
merical solution of the temperature distribution at that point.
The numerical solution (Pinzer and others, 2012) implements
the two-phase material by a space-dependent thermal con-
ductivity, which changes discontinuously from the ice con-
ductivity κi to the air conductivity κa at the interface.
Theoretically, the interface condition Eqn (5) should be
recovered. An a posteriori analysis was made of the interface
condition by computing the ratio

∇∇∇∇∇T � nj�
∇∇∇∇∇T � njþ

¼ κa=κi: ð29Þ

Theoretically the ratio should assume a value of ≈ 0.01. From
the simulations, an average ratio close to 0.125 was found,
with significant scatter. This is a clear indication of limited
accuracy close to the interface on a voxel mesh. This
implies uncertainties of the estimated A up to a factor of
12.5. The origin of this uncertainty is the voxel based finite
element solutions, which are commonly used (Pinzer and
others, 2012; Löwe and others, 2013; Calonne and others,
2014a) and which are also applied here. Apparently, the
present case of discontinuous coefficients clearly requires
more sophisticated methods (Soghrati and others, 2012) to
ensure reasonable accuracy of the solution at the interface.

A crucial aspect of the temperature gradient analysis is the
temporal resolution of the time-lapse experiment. The ana-
lysis has shown that interface tracking is feasible, but
limited by the resolution of μCT time series. The time differ-
ence of 8 hours has turned out to be too high to avoid the
loss of interface correlations between two consecutive
images. The optimal temporal resolution depends on
typical sizes of the structure, which could for example be
assessed by the dimensionless quantity, Eqn (24). The inter-
face dynamics of small features naturally requires a higher
temporal and spatial resolution. Consecutive interfaces also
become decorrelated during structural re-arrangements trig-
gered by growth under gravity and this was occasionally
observed. Such a mechanism of ‘dropping grains’ has been
employed by Vetter and others (2010) for isothermal meta-
morphism. These events contribute to the scatter in the
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velocity, since dropping structures cannot be registered
anymore by the interface tracking.

Overall the temperature gradient analysis is less affected
by the influence of settling due to the higher initial density
and the faster growth during temperature gradient meta-
morphism. But in contrast to the isothermal case, where
vapor transport and growth are isotropic, here the main
growth direction (temperature gradient) and the main settling
direction (gravity) are the same. An ideal experimental setup
would realize a temperature gradient perpendicular to
gravity, or at least reverse the direction of the temperature
gradient to better discern these effects.

6. CONCLUSIONS
A first attempt has been made to measure the local interface
dynamics of the ice/air interface in snow from μCT time-lapse
experiments and to interpret the data in terms of non-equilib-
rium vapor processes at the pore level. We have developed
an interface tracking method for time-lapse experiments
and compared the measured normal velocities with the sim-
plest, isotropic diffusion limited and kinetics limited growth
models that are applicable to bicontinuous structures.
While the growth rates predicted by these models are in
the same order of magnitude as the experimental data, a
final conclusion about this coincidence is not yet possible.
This is due to the large scatter, which was discussed and
related to experimental, theoretical and methodological lim-
itations. Given the possible improvements suggested from the
analysis, it seems promising to further advance the method,
and validate growth laws as required for the upscaling in
macroscopic snow modeling.
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