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Abstract. We introduce functional norms for hyperbolic Young towers which allow us
to directly study the transfer operator on the full tower. By eliminating the need for
secondary expanding towers commonly employed in this context, this approach simplifies
and expands the analysis of this class of Markov extensions and the underlying systems
for which they are constructed. As an example, we prove large-deviation estimates with a
uniform rate function for a large class of non-invariant measures and show how to translate
these to the underlying system.

1. Introduction
Young towers were introduced in [Y1] as a unified framework in which to view the
statistical properties of both uniformly and non-uniformly hyperbolic dynamical systems.
Briefly, given a dynamical system f : M 	, a Young tower is a type of Markov extension
F :1 	 with the following representation. Given a reference measure µ, one chooses a
reference set3⊂ M of positive measure with a hyperbolic product structure and constructs
a return time function R :3→ Z+ with certain (Markov) properties. The Young tower is
an extension of

⋃
`≥0 f `3 where the `th level of the tower corresponds to those x ∈ f `3

for which R(x) > `. In essence, the Young tower represents 3 as a horseshoe with
countably many branches and variable return times. The rate of decay in the measure
of the levels of the tower, µ(R(x) > `), gives information about the statistical properties
of f ; for example, it reflects the exponential or polynomial decay of correlations (see [CY]
for a survey).

Young towers have been constructed for many systems: billiards with convex
scatterers, including those subject to external forces [C3, C2, Y1]; piecewise hyperbolic
attractors [C1, Y1]; Hénon maps [BY, Y1]; non-uniformly expanding maps in one
dimension [WY, Y1]; and Lorentz attractors [HM].

The strategy in all these papers is the same. One first constructs a Young tower F :1 	
satisfying certain properties (see (P1)–(P5) of §2.1). One then defines a quotient tower
1=1/∼ where x ∼ y whenever x and y lie on the same stable leaf. There are thus three
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objects involved in the study of such systems. Letting π and π represent the canonical
projections from (F, 1) to ( f, M) and (F, 1) respectively, we represent them as follows:

F :1 	

π

%%KKKKKKKKKK
π

yyssssssssss

f : M 	 F :1 	

The reason for introducing the reduced tower 1 is that since F :1 	 is expanding, one
can bring to bear the classical methods of analysis of the transfer operator for expanding
maps. This functional analytic approach establishes the quasi-compactness of the transfer
operator acting on certain spaces of functions and then links its peripheral spectrum to
the statistical properties of the system [B, DF, HH, IM, K, LY, N]. In the case of
Young towers, one must then pass these statistical properties from 1 back up to 1 before
projecting them down to M .

The problem is that in general one cannot lift measures from 1 to 1 so that the usual
procedure is to first prove the existence of an invariant measure on1 separately (see [Y1])
and then pass from 1 to 1 the desired properties related to the invariant measure such as
central limit theorems, decay of correlations or large-deviation estimates (cf. [MN, RY]).
From 1, these project easily onto M .

The purpose of this paper is to simplify the application of Young towers by directly
studying the transfer operator L associated with (F, 1), thus eliminating the need for
the reduced tower (F, 1) entirely. We introduce Banach spaces on which L is quasi-
compact and obtain its spectral decomposition, following the recent extensions of this
method to the hyperbolic setting [BT, BKL, DL, GL, R]. In doing so, we recover the
statistical properties which have been proven for f : M 	 previously. In addition, we
are able to obtain much more information about the evolution of non-invariant measures
under the dynamics of f . We include as an example a large-deviation principle for a large
class of initial distributions which is entirely new in the non-uniformly hyperbolic setting
(Theorems 4 and 5) and include an explicit application to dispersing billiards (Theorem 6).
We show that the rate function governing the large deviations is independent of the initial
distribution.

It may be of some independent interest that when no contracting directions are present,
i.e., when f itself is expanding, the norms we define for hyperbolic towers reduce to norms
for expanding towers which yield analogous results: i.e., the quasi-compactness of the
transfer operator and a spectral gap. This is a characteristic of our norms which has not
been present previously in the hyperbolic setting and which yields a unified treatment of
hyperbolic and expanding Young towers (see Remark 2.2 for more details).

The rest of this paper is organized as follows. In §2, we define Young towers precisely,
define the relevant norms and state our results. In §3, we explore some properties of the
Banach spaces while §§4 and 5 contain the required Lasota–Yorke type estimates and
spectral results. Large-deviation estimates and applications are proved in §§6 and 7.

2. Setting and statement of results
2.1. Definition of the tower. We recall the definition of a Young tower (F, 1) as
described in [Y1]. We begin with a piecewise smooth map on a finite-dimensional
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Riemannian manifold, f : M 	, and let µ (respectively µγ ) denote Riemannian volume
on M (respectively γ where γ ⊂ M is a submanifold). We say that f admits a generalized
horseshoe if there exists a compact subset 3 of M satisfying properties (P1)–(P5) below.
(We recall only the main properties; see [Y1] for more details.)
(P1) Hyperbolic product structure. 3=

⋃J
j=1 3

( j) and each of the3( j) has the following

product structure†: 3( j)
= (
⋃
γ u∈0u

j
γ u) ∩ (

⋃
γ s∈0s

j
γ s) where 0u

=
⋃

j 0
u
j and

0s
=
⋃

j 0
s
j are continuous families of local stable and unstable manifolds such

that, for every j , each γ u
∈ 0u

j intersects every γ s
∈ 0s

j in a unique point. Moreover,
µγ (γ ∩3) > 0 for each γ ∈ 0u .

A set A is an s-subset (respectively u-subset) of 3 if γ ∩ A 6= ∅ implies γ ⊆ A for any
γ ∈ 0s(u).
(P2) Return time function. Each 3( j) is partitioned into countably many s-subsets 3( j)

i

with µγ (3( j)
\
⋃

i 3
( j)
i )= 0 for all γ ∈ 0u

j . There exists a function, R :3→ Z+,

constant on each 3( j)
i , such that f R(3( j)

i )(3
( j)
i ) is a u-subset of one of the 3(k).

Moreover, for each n, the number of (i, j) such that R( j)
i = n is finite.

We refer to elements of 0u(s) by γ u(s) and J u f denotes the unstable Jacobian of f with
respect to µγ u . Denote by γ s(x) and γ u(x) the stable and unstable leaves through x ,
respectively. For x, y ∈3, there exists a separation time s0(x, y), depending only on
the unstable coordinate, and numbers C0 ≥ 1, α < 1 independent of x, y, such that the
following hold.
(P3) Contraction on 0s . For y ∈ γ s(x), d( f n x, f n y)≤ C0α

nd(x, y) for all n ≥ 0‡.
(P4) Backward contraction and distortion on 0u . Let y ∈ γ u(x) and 0≤ k ≤ n <

s0(x, y).
(a) d( f n x, f n y)≤ C0α

s0(x,y)−n .
(b) log

∏n
i=k J u f ( f i x)/J u f ( f i y)≤ C0α

s0(x,y)−n .
(P5) Convergence of J u f n and absolute continuity of 0s .

(a) For y ∈ γ s(x) and all n ≥ 0,

log
∞∏

i=n

J u f ( f i x)

J u f ( f i y)
≤ C0α

n .

(b) Given γ , γ ′ ∈ 0u , define 8 : γ → γ ′ by 8(x)= γ s(x) ∩ γ ′. Then 8 is
absolutely continuous and

d(8−1
∗ µγ ′)

dµγ
=

∞∏
i=0

J u f ( f i x)

J u f ( f i8x)
.

The structure of the generalized horseshoe immediately yields the existence the Young
tower,

1= {(x, n) ∈3× N : n < R(x)}.

† In [Y1], the tower has a single base 3 and all returns are full returns to the base. In the present paper we treat
the generalized case of towers with multiple bases. These are the 3( j).
‡ As an abstract requirement, (P3) is slightly stronger than the inequality d( f n x, f n y)≤ C0α

n stated in [Y1].
In practice, however, the stronger version holds for all systems for which Young towers have been constructed to
date.
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The tower map F is defined by F(x, `)= (x, `+ 1) for ` < R(x)− 1 and
F(x, R(x)− 1)= ( f R(x)x, 0). We refer to 1` :=1|n=` as the `th level of the tower and
to a point (x, `) as simply x where the level ` will be made clear by context.

F admits a Markov partition {1`, j } which has finitely many elements on each
level `. We identify 10, j with 3( j) for j = 1, . . . , J . We define a separation time
s(x, y)≤ s0(x, y) by s(x, y)= inf{n > 0 : Fn x, Fn y lie in different 1`, j }. There is a
canonical projection π :1→ M which conjugates the dynamics, π ◦ F = f ◦ π . π is
not necessarily one-to-one or onto, but if f is injective, then so is π |1` for each `.

We call F transitive if, for all j, j ′, there exists n ≥ 0 such that Fn(10, j ) ∩10, j ′ 6= ∅.
We say F is mixing if, for all j, j ′, there exists N ≥ 0 such that Fn(10, j ) ∩10, j ′ 6= ∅ for
all n ≥ N . Similarly, we call T ⊂1 a transitive component if T is a union of elements
1`, j such that F |T is transitive.

The base of the tower, 10, is identified with 3 and inherits the structure of 0s and 0u

as well as the measures µ and µγ . The measure µ is extended to 1`, ` > 0, by defining
µ(A)= µ(F−`A) for all measurable A ⊂1`. Thus J F , the Jacobian of F with respect to
µ, satisfies J F ≡ 1 except at return times. F enjoys properties (P3)–(P5) at return times
due to the identity Jπ(F)J F = J f (π)Jπ and the fact that Jπ ≡ 1 on 10.

Since F :1`→1`+1 is rigid translation, the foliations 0s and 0u extend naturally
to the entire tower, i.e., 1`, j has a product structure given by F`(S) where S is an s-
subrectangle in 10, and hence in 3. We call these defining foliations 0s(1) and 0u(1)†.

We say the tower has exponential return times if the following holds:

there exist constants c0 > 0 and θ < 1 such that µ(R > n)= µ

(⋃
`≥n

1`

)
≤ c0θ

n . (1)

Exponential return times are essential to our approach since we will prove the existence
of a spectral gap which in turn implies exponential decay of correlations. Towers with
polynomial return times have been shown to admit polynomial decay of correlations [Y2].
Accordingly, we will assume that (1) holds throughout this paper.

2.1.1. A reference measure on 1. In each 1`, j we choose a representative curve
γ̂ ∈ 0u(1`, j ). For any γ ∈ 0u(1`, j ), let 8γ,γ̂ : γ → γ̂ denote the holonomy map along
0s-leaves and let J u F denote the unstable Jacobian of F with respect to µγ . Then define
mγ by dmγ = φ dµγ where

φ(x)=
∞∏

i=0

J u F(F i x)

J u F(F i (8γ,γ̂ x))
.

Given γ ′ ∈ 0u(10), if γ ∈ 0u(1`, j ) satisfies F(γ ∩ S)= γ ′ for some s-subrectangle
S, then for x ∈ γ ∩ S, define Jγ F(x)= d(mγ ′ ◦ F)/dmγ . Elsewhere on 1, Jγ F ≡ 1.
Similarly, one defines Jγ F R(x)whenever F R(γ ∩ S)= γ ′ for some s-subrectangle S. For
convenience, we restate Lemma 1 from [Y1], which summarizes the important properties
of mγ .

† For maps with singularities, the elements of 0s (1) and 0u(1) are actually positive-measure Cantor sets in real
stable and unstable manifolds for f , as described in [Y1]. For simplicity, we shall refer to these Cantor sets as
stable and unstable leaves throughout.
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LEMMA 2.1. [Y1] Let γ , γ ′ ∈ 0u(1`, j ).
(1) Let 8γ,γ ′ : γ → γ ′ be the holonomy map along 0s-leaves as above. Then 8∗mγ =

mγ ′ .
(2) Jγ F(x)= Jγ ′F(y), for all x ∈ γ , y ∈ γ s(x) ∩ γ ′.
(3) There exists C1 > 0 such that for all x, y ∈ γ with s0(x, y)≥ R(x),∣∣∣∣ Jγ F R(x)

Jγ F R(y)
− 1

∣∣∣∣≤ C1α
s(F R x,F R y)/2.

Moreover by (P5)(a), e−C0 ≤ φ ≤ eC0 .

On each1`, j , we define the measure µs on 0u(1`, j ) to be the factor measure of µ|1`, j

on unstable leaves normalized so that µs(0u(1`, j ))= 1. We define m to be the measure
with factor measure µs and measures mγ on unstable leaves. Notice that in any 1`, j ,
Lemma 2.1(1) implies that mγ (S)= m(S) for any s-subset S ⊆1`, j and γ ∈ 0u(1`, j ).
This feature of mγ implies that m is a product measure on each 1`, j . When disintegrating
m, we maintain the convention that µs is normalized, but mγ is not.

2.1.2. Transfer operator. The primary object of interest in this paper is the transfer
operator L associated with F . Before defining it, we introduce a class of functions.

We define a metric along stable leaves which makes the distance between unstable
leaves uniform. Fix x ∈10 and let y ∈ γ s(x). Let 8 : γ u(x)→ γ u(y) be the sliding
map along stable leaves. Define ds(x, y) := supz∈γ u(x) d(z, 8z). We extend this metric to
1`, ` > 1, by setting ds(F`x, F`y)= α`ds(x, y) for all ` < R(x) and y ∈ γ s(x). By (P3),

ds(F
n x, Fn y)≤ C0α

nds(x, y) for all n ≥ 0 whenever y ∈ γ s(x). (2)

The class of test functions we use are required to be smooth along stable leaves only.
Let Fb denote the set of bounded measurable functions on 1. For ϕ ∈ Fb and 0< r ≤ 1,
define

H r
s (ϕ)= sup

γ s∈0s (1)

H r (ϕ|γ s ) where H r (ϕ|γ s )= sup
x,y∈γ s

|ϕ(x)− ϕ(y)| ds(x, y)−r .

If A is an s-subset of 1, we define |ϕ|Cr
s (A) = supγ s⊂A |ϕ|C 0(γ s ) + H r (ϕ|γ s ) and let

Cr
s (A)= {ϕ ∈ Fb : |ϕ|Cr

s (A) <∞}.
For h ∈ (Cr

s (1))
′ an element of the dual of Cr

s (1), the transfer operator L : (Cr
s (1))

′
→

(Cr
s (1))

′ is defined by

Lh(ϕ)= h(ϕ ◦ F) for each ϕ ∈ Cr
s (1).

When h is a measure absolutely continuous with respect to the reference measure m, we
shall call its L1(m) density h as well. Hence h(ϕ)=

´
1

hϕ dm. With this convention,
L1(m)⊂ (Cr

s (1))
′ and one can restrict L to L1(m). In this case,

Lnh(x)=
∑

y∈F−n x

h(y)(Jm Fn(y))−1

for each n ≥ 0 where Jm Fn is the Jacobian of Fn with respect to m.
Along unstable leaves, we define the metric du(x, y)= βs(x,y)

0 for y ∈ γ u(x) and some
β0 < 1 to be chosen later. Let Lipu(ϕ|γ ) denote the Lipschitz constant of a function ϕ
along γ ∈ 0u with respect to du and define Lipu(ϕ)= supγ∈0u(1) Lipu(ϕ|γ ). We define
Lipu(1)= {ϕ ∈ Fb : Lipu(ϕ) <∞}.
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2.2. Definition of norms. Let P = {1`, j } denote the Markov partition for F . For
each k ≥ 0, define P k

=
∨k

i=0 F−i P and let P k
`, j = P k

|1`, j . The elements E ∈ P k
`, j are

k-cylinders which are s-subsets of 1`, j . For ψ ∈ L1(m) and E ∈ P k , define
 

E
ψ dm =

1
m(E)

ˆ
E
ψ dm.

Now choose 0< q < p ≤ 1 and fix 1> β0 >max{θ,
√
α} where θ is given by (1) and α is

from (P3). Next, choose 1> β ≥max{β(p−q)/p
0 , αq

}.
For h ∈ Lipu(1), define the weak norm of h by |h|w = sup`, j,k |h|w(P k

`, j )
where

|h|w(P k
`, j )
= β`0 sup

E∈P k
`, j

sup
|ϕ|C p

s (E)
≤1

 
E

hϕ dm. (3)

Define the strong stable norm of h by ‖h‖s = sup`, j,k ‖h‖s(P k
`, j )

where

‖h‖s(P k
`, j )
= β` sup

E∈P k
`, j

sup
|ϕ|Cq

s (E)
≤1

 
E

hϕ dm. (4)

For ϕ ∈ C p
s (1), define ϕE on E ∈ P k

`, j by ϕE (x)= m(E)−1
´
γ u(x)∩E ϕ dmγ , for x ∈ E .

Let ϕ̃E (x)= ϕE (γ
u(x)) for x ∈1`, j be the extension of ϕE to1`, j . Note that ϕ̃E is well-

defined since ϕE is constant on unstable leaves. In what follows, let Ek ∈ P k
`, j , Er ∈ P r

`, j
for r ≥ k.

We define the strong unstable norm of h by ‖h‖u = sup`, j,k ‖h‖u(P k
`, j )

where

‖h‖u(P k
`, j )
= sup

Ek∈P k
`, j

sup
Er⊂Ek

sup
|ϕ|C p

s (Er )
≤1
β`−k

∣∣∣∣ 
Er

hϕ dm −
 

Ek

hϕ̃Er dm

∣∣∣∣. (5)

The strong norm of h is defined as ‖h‖ = ‖h‖s + b‖h‖u , for some b > 0 to be chosen
later.

We denote by B the completion of Lipu(1) in the ‖ · ‖-norm and by Bw the completion
of Lipu(1) in the | · |w norm.

Remark 2.2. If there is no stable direction, on each 1`, j the weak norm, | · |w, reduces to
the C 0 norm of h weighted by β`0 . Similarly, the strong stable and unstable norms reduce
to the C 0 norm and Lipschitz constant of h respectively, each weighted by β`. The Lasota–
Yorke estimates (Proposition 2.3) and the compactness argument (Lemma 3.6) both hold
in this setting so that one immediately obtains the results of Theorem 1.

2.3. Statement of results on the tower. The standing assumptions throughout this paper
are that (F, 1) satisfies (P1)–(P5) and (1).

PROPOSITION 2.3. There exists C > 0 such that, for each h ∈ B and n ≥ 0,

|Lnh|w ≤ C |h|w, (6)

‖Lnh‖s ≤ Cβn
‖h‖s + C |h|w, (7)

‖Lnh‖u ≤ Cβn
‖h‖u + C‖h‖s . (8)
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For any 1> τ > β, there exists N ≥ 0 such that 2CβN < τ N . Choose b = βN . Then,

‖L N h‖ = ‖L N h‖s + b‖L N h‖u

≤ CβN (‖h‖s + b‖h‖u)+ bC‖h‖s + C |h|w

≤ τ N
‖h‖ + C |h|w.

The above represents the traditional Lasota–Yorke inequality. Since by Lemma 3.6, the
unit ball of B is relatively compact in Bw, it follows from standard arguments [DF, B] that
the essential spectral radius of L on B is bounded by β. Our first theorem presents the
decomposition of the peripheral spectrum.

THEOREM 1. The operator L : B 	 is quasi-compact with essential spectral radius β and
spectral radius 1. In addition, the following hold.
(i) If F is mixing, then 1 is a simple eigenvalue and all other eigenvalues have modulus

strictly less than 1.
(ii) If F is transitive and periodic with period p, then the set of eigenvalues of modulus

1 consists of simple eigenvalues {e2π ik/p
}

p−1
k=0 .

(iii) In general, F has finitely many transitive components, each with largest eigenvalue
1. On each component, (ii) applies.

Let Vφ be the eigenspace of L corresponding to the eigenvalue eiφ and set V := ⊕φVφ .
Our next results characterize the set of invariant measures in B and some of the statistical
properties of F . Let C 0

b(1) denote the set of bounded functions on1 which are continuous
on each 1`, j . Recall that an invariant probability measure ν is called a physical measure
if there exists a positive Lebesgue measure invariant set Bν , with ν(Bν)= 1, such that, for
each ψ ∈ C 0

b ,

lim
n→∞

1
n

n−1∑
i=0

ψ(F i x)= ν(ψ) for all x ∈ Bν .

THEOREM 2.
(i) Each ν ∈ V is a signed measure absolutely continuous with respect to the probability

measure ν := limn→∞(1/n)
∑n−1

i=0 Li 1. The conditional measures of ν on γ ∈ 0u

are absolutely continuous with respect to µγ .
(ii) F admits only finitely many physical measures and they are precisely the ergodic

elements of V0. The supports of the physical measures correspond to the
ergodic decomposition with respect to Lebesgue and ν(E)= m(E) for each ergodic
component E .

(iii) For allψ ∈ C 0
b(1) and every γ ∈ 0u(1), the limitψ+(x) := limn→∞(1/n)

∑n−1
i=0 ψ

◦ F i (x) exists for µγ -almost every x ∈ γ and takes on only finitely many different
values in 1. If ν is ergodic, then ψ+(x)=

´
ψ dν for µγ -almost every x.

(iv) If F is mixing, then F exhibits exponential decay of correlations for Hölder
observables, and the central limit theorem holds. In particular, there exist constants
C1 > 0, σ < 1, such that for any ψ ∈ Lipu(1) and ϕ ∈ C p

s (1),∣∣∣∣ˆ ψϕ ◦ Fn dν − ν(ψ)ν(ϕ)

∣∣∣∣≤ C1σ
n
|ϕ|C p

s (1)
(|ψ |∞ + Lipu(ψ)).
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2.3.1. Large-deviation estimates. An immediate application of the spectral decomposi-
tion of L is the derivation of large-deviation estimates for smooth observables g :1→ R.

Let f : X 	 be a measurable map. Letting Sng =
∑n−1

k=0 g ◦ f k , if ν is an ergodic
invariant measure, then (1/n)Sn(g) converges to ν(g) by the Birkhoff ergodic theorem.
Large-deviation estimates provide exponential bounds on the rate of convergence of Sng
to the mean ν(g). These typically take the form

lim
ε→0

lim
n→∞

ν

(
x ∈1 :

1
n

Sn(g)(x) ∈ [t − ε, t + ε]

)
=−I (t) (9)

where I (t)≥ 0 is called the rate function.
Large-deviation estimates of this type have been proved for systems admitting Young

towers [RY, MN]. When f is (non-uniformly) expanding and ν is has strictly positive
density with respect to Lebesgue, the measure on the left-hand side of (9) can be replaced
by Lebesgue [KN]. This is also true when f is Axiom A [OP]. For more general non-
uniformly hyperbolic systems, (9) is not known to be true when ν is not an invariant
measure.

In the setting of the present paper, we prove as a direct corollary of our operator
approach that (9) holds for all probability measures in B with the same rate function I .
Let σ 2 denote the limit as n→∞ of the variance of (1/

√
n)Sng with respect to the unique

invariant measure for F .

THEOREM 3. Let (F, 1) be mixing and let g ∈ Lipu(1) ∩ C p
s (1). There exist constants

τmax, ωmax > 0 such that for all probability measures η ∈ B, the logarithmic moment
generating function

q(z)= lim
n→∞

1
n

log η(ezSn g)

exists, is independent of η and is analytic in the rectangle {z ∈ C : |Re z|< τmax, |Im z|<
ωmax}. Moreover, q ′(0)= ν(g), q ′′(0)= σ 2 and q(z) is strictly convex for real z whenever
σ 2 > 0.

An immediate consequence of this theorem is a large-deviation result for probability
measures in B.

THEOREM 4. Let η ∈ B be a probability measure and let I (u) be the Legendre transform
of q(z). Then, for any interval [a, b] ⊂ [q ′(−τmax), q ′(τmax)],

lim
n→∞

1
n

log η
(

x ∈1 :
1
n

Sng(x) ∈ [a, b]

)
=− inf

u∈[a,b]
I (u).

2.4. Discussion of applications. Throughout this section, f : M 	 is a map which
admits a Young tower F :1 	 as described in §2.1 with exponential return times. Let
0s(u)(M) denote the set of local stable (unstable) manifolds on M . For ζ ≥ 0, Cζ (0u(M))
denotes the set of functions ϕ on M which satisfy supγ∈0u(M) |ϕ|Cζ (γ ) <∞, and similarly
for Cζ (0s(M)).
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THEOREM 5.
(i) The map f has at least one and at most finitely many physical measures which lift to

1. Each of these physical measures has absolutely continuous conditional measures
on unstable leaves.

For (ii)–(iv), we assume f is mixing and that ξ ∈ π∗B is a probability measure.
(ii) The map f has a unique physical measure ν̃ = π∗ν. ν̃ satisfies the central limit

theorem and enjoys exponential decay of correlations, i.e., there exists C2 > 0 such
that ∣∣∣∣ˆ ψϕ ◦ f n d ν̃ − ν̃(ψ)ν̃(φ)

∣∣∣∣≤ C2σ
n
|ψ |Cζ (0u(M))|ϕ|Cζ (0s (M))

for all ψ ∈ Cζ (0u(M)), ϕ ∈ Cζ (0s(M)), with σ as in Theorem 2(iv).
(iii) The limit limn→∞ f n

∗ ξ = ν̃ weakly.
(iv) Suppose g̃ ∈ Cζ (M) for some ζ > 0 and let Sn g̃ =

∑n−1
i=0 g̃ ◦ f i . Then the

logarithmic moment generating function q(z)= limn→∞(1/n) log ξ(eSn g̃) exists
and satisfies the conclusions of Theorem 3. As a consequence, all probability
measures ξ ∈ π∗B satisfy the large-deviation principle given by Theorem 4 with the
same rate function I .

The discussion of which measures on M lift to 1, i.e., are in π∗B, depends on the
properties of the underlying system ( f, M). For non-uniformly expanding systems, one
can show that Lebesgue measure µ ∈ π∗B and indeed Cζ (M)⊂ π∗B under fairly mild
assumptions (cf. [BDM]). For hyperbolic systems, the question is more subtle. One
can easily see that measures supported on π(1`, j ) for finitely many 1`, j with smooth
conditional densities on 0u(M) lift to measures in B. One may also allow singular
measures supported on a single local unstable leaf. For more general measures the story is
not so simple and in general one cannot even guarantee that Lebesgue measure lifts to 1.
One class of measures which always lift to1 are those measures which satisfy ξ = ψν̃ for
some ψ ∈ Cζ (0u(M)), for then defining η := (ψ ◦ π)ν, one has η ∈ B and π∗η = ξ (see,
for example, [DWY, Lemma 6.3]).

For systems whose invariant measure is smooth with respect to Lebesgue, such as
dispersing billiards, we obtain convergence results for a class of measures which do not
lift to 1, but can be approximated by elements of π∗B.

THEOREM 6. Let ( f, M) be the billiard map corresponding to a dispersing billiard which
admits a mixing Young tower with exponential tail bounds as in [Y1, C3]. Let µ be
Lebesgue measure and let ν be the smooth invariant measure for f . Let G̃ denote the
set of probability measures ξ on M such that dξ/dµ ∈ Cζ (0u(M)) for some ζ > 0. Let
ξ ∈ G̃ ∪ π∗B be a probability measure. Then the following hold.
(i) Convergence to ν. f n

∗ ξ converges weakly to ν as n→∞.
(ii) Large deviations. For any g ∈ Cζ (M), ξ satisfies the large-deviation estimate of

Theorem 4 with rate function I independent of ξ .

3. Properties of the spaces B and Bw
Before exploring the generalized function spaces we have defined, we record the following
lemma for future use.
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LEMMA 3.1. (Regularity of ϕE ) Let 0< r ≤ 1 and k ≥ 0. For E ∈ P k
`, j and ϕ ∈ Cr

s (E),
let ϕE be defined as in §2.2. Then ϕE ∈ Cr

s (E) and |ϕE |Cr
s (E) ≤ |ϕ|Cr

s (E).

Proof. Choose E ∈ P k
`, j and ϕ ∈ Cr

s (E). By definition, ϕE (x)= m(E)−1
´
γ u(x)∩E ϕ dmγ .

This immediately implies |ϕE |∞ ≤ |ϕ|∞.
Take x, y ∈ γ s

⊂ E and let 8 : γ u(x)→ γ u(y) denote the holonomy map along stable
leaves. Note that J8≡ 1 by Lemma 2.1(1). Then

|ϕE (x)− ϕE (y)| ≤ m(E)−1
∣∣∣∣ˆ
γ u(x)∩E

(ϕ − ϕ ◦8) dmγ

∣∣∣∣≤ H r
s (ϕ)ds(x, y)r ,

using the fact that mγ (E)= m(E) and ds(z, 8z)= ds(x, y) for all z ∈ γ u(x). 2

3.1. Embeddings.

LEMMA 3.2. There exists C > 0 such that for all h ∈ Bw and ϕ ∈ C p
s (1), we have

|h(ϕ)| ≤ C |h|w(|ϕ|∞ + H p
s (ϕ)).

Proof. Let h ∈ Lipu(1) and ϕ ∈ C p
s (1). Then

ˆ
1

hϕ dm =
∑
`, j

ˆ
1`, j

hϕ dm ≤
∑
`, j

m(1`, j )β
−`
0 |h|w|ϕ|C p

s (1`, j )

≤ C |h|w(|ϕ|∞ + H p
s (ϕ)),

since β0 > θ and m(1`, j )≤ eC0µ(1`, j ) by Lemma 2.1. 2

It is clear from the definition of ‖ · ‖u that measures h ∈ B necessarily have absolutely
continuous conditional measures on h-almost-every γ ∈ 0u(1). Lemma 3.3 provides
some examples of what types of measures are found in B.

Given a measure η with absolutely continuous conditional measures on unstable leaves,
we define a measure ηs on 0u(1), i.e., a measure transverse to unstable leaves, as follows:
set ηs(0u(1`, j ))= 0 if η|1`, j ≡ 0. If η|1`, j 6= 0, then ηs

|0u(1`, j ) is the factor measure of
η|1`, j normalized, and {ργ dmγ , γ ∈ 0

u(1`, j )} is the disintegration of η into measures on
unstable leaves. We will use the convention that ηs(1`, j )= 1, and that the densities ργ
are not normalized.

We define G to be the set of such measures η 6= 0 whose (unnormalized) densities satisfy
supγ∈0u(1) |ργ |C0(γ ) + Lipu(ργ ) <∞.

LEMMA 3.3.
(i) G ⊂ B and in particular Lipu(1)⊂ B.
(ii) If h ∈ Lipu(1) ∩ C p

s (1) and g ∈ B, then hg ∈ B,

‖hg‖s ≤ ‖g‖s |h|C q
s (1)

and ‖hg‖u ≤ ‖g‖s(Lipu(h)+ H p
s (h))+ ‖g‖u |h|C p

s (1)
.

Proof. (i) We first show Lipu(1)⊂ B and then use these functions to approximate singular
measures η in the ‖ · ‖-norm. Let h ∈ Lipu(1). It follows immediately that ‖h‖s ≤ |h|∞.
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Now let Ek ∈ P k
`, j and take Er ∈ P r

`, j with Er ⊆ Ek . For ϕ ∈ C p
s (Er ), define ϕ̃Er as in

§2.2. Choose γ s
0 ∈ 0

s(Ek) and let h0(x)= h(γ u(x) ∩ γ s
0 ) for x ∈1`, j . Then

 
Er

hϕ dm −
 

Ek

hϕ̃Er dm =
 

Er

(h − h0)ϕ dm +
 

Er

h0ϕ dm

−

 
Ek

h0ϕ̃Er dm +
 

Ek

(h0 − h)ϕ̃Er dm. (10)

The first term of (10) is ≤ Lipu(h)βk
|ϕ|C q

s (Er )
. The fourth term has the same bound since

|ϕ̃Er |C q
s (Ek )
≤ |ϕ|C q

s (Er )
by Lemma 3.1. Note that by Lemma 2.1(1), mγ (γ ∩ Ek)= m(Ek)

for each γ ∈ 0u(1`, j ) since µs is a probability measure. Since h0 and ϕ̃Er are both
constant on unstable leaves, 

Ek

h0ϕ̃Er dm = m(Ek)
−1

ˆ
0u(1`, j )

dµs(γ )h0ϕ̃Er mγ (Ek)=

 
Er

h0ϕ dm,

so that the second and third terms of (10) cancel. Thus ‖h‖u ≤ 2Lipu(h) and h ∈ B.
To prove the result for more general η ∈ G, it suffices to prove it for measures supported

on a single unstable leaf. More general measures follow by approximation.
Fix γ0 ∈ 0

u(1`, j ) and let ρ be a Lipschitz function on γ0. Let η = ρmγ0 . We take a
sequence of smooth functionsψn , depending only on the stable coordinate, which converge
in distribution to δγ0 . Extend ρ to 1`, j by making it constant on stable leaves and define
hn = ψnρ. Note that hn ∈ Lipu(1) ∩ C p

s (1) and hn clearly converges to η in distribution.
It remains to show that {hn} is a Cauchy sequence in the ‖ · ‖-norm.

For E ∈ P k
`, j and ϕ ∈ C q

s (E),

 
E
(hn − hm)ϕ dm =

1
m(E)

ˆ
0u(1`, j )

dµs(γ )(ψn(γ )− ψm(γ ))

ˆ
γ∩E

ρϕ dmγ .

Since m(E)−1
´
γ∩E ρϕ dmγ is a Hölder continuous function of γ with C q norm bounded

by |ρ|∞|ϕ|C q
s (E)

, the integral above converges to 0 as n, m→∞. Moreover, since the C q

norms are uniformly bounded for |ϕ|C q
s (E)
≤ 1, we may take the supremum and conclude

convergence in the ‖ · ‖s-norm.
To estimate ‖hn − hm‖u , let Er ⊆ Ek ⊆1`, j and for ϕ ∈ C p

s (1`, j ), define ϕ̃Er as
in §2.2. Choose γ s

∈ 0s(Er ) and let ρ(x)= ρ(γ u(x) ∩ γ s) for x ∈1`, j . Now set
gn,m = hn − hm and gn,m = (ψn − ψm)ρ. Then following (10), since gn,m is constant
along unstable leaves, we have
 

Er

gn,mϕ dm −
 

Ek

gn,m ϕ̃Er dm =
 

Er

(gn,m − gn,m)ϕ dm +
 

Ek

(gn,m − gn,m)ϕ̃Er dm.

(11)
The first term above is equal to m(Er )

−1
´

dµs(γ )(ψn − ψm)
´
γ∩Er

(ρ − ρ)ϕ dmγ .

Dividing by βk and using the fact that β−k(ρ − ρ) is bounded on Er since ρ ∈ Lipu(1`, j ),
we see that the integral of interest has the form

´
dµs(γ )(ψn − ψm)9, where 9 is a

Hölder continuous function of γ with Hölder norm bounded by Lipu(ρ)|ϕ|C p
s (1`, j )

. We
conclude that the integral converges to zero as n, m→∞, uniformly for |ϕ|C p

s (1`, j )
≤ 1. A

similar estimate holds for the second term of (11) so that ‖hn − hm‖u→ 0 as n, m→∞.
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(ii) By density of Lipu(1)⊂ B, it suffices to prove the claim for h ∈ Lipu(1) ∩ C p
s (1)

and g ∈ Lipu(1). That ‖hg‖s ≤ ‖g‖s |h|C q
s (1)

is immediate.

Let Er ⊆ Ek , ϕ ∈ C p
s (1) and ϕ̃Er be as above. We define h0 as in (i) and follow (10) to

obtain 
Er

hgϕ dm −
 

Ek

ghϕ̃Er dm =
 

Er

(h − h0)gϕ dm +
 

Er

h0gϕ dm

−

 
Ek

h0gϕ̃Er dm +
 

Ek

(h0 − h)gϕ̃Er dm. (12)

To estimate the second and third terms of (12), we use the fact that h0 ∈ C p
s (1`, j ) and

(h0ϕ)Er = h0ϕEr since h0 is already constant on unstable leaves, where (h0ϕ)Er denotes
the average of h0ϕ on unstable leaves in Er . Then

 
Er

gh0ϕ dm −
 

Ek

gh0ϕ̃Er dm ≤ βk−`
‖g‖u |h|C p

s (1`, j )
|ϕ|C p

s (1`, j )
.

The first term of (12) is ≤ β−`‖g‖s |h − h0|C q
s (Ek )
|ϕ|C q

s (Ek )
and similarly for the fourth

term. We must show |h − h0|C q
s (1)

has order βk .

Clearly, |h − h0|∞ ≤ Lipu(h)βk
0 since the separation time in Ek is ≥ k. To estimate the

Hölder norm, let x, y ∈ γ s . Then

|h(x)− h0(x)− h(y)− h0(y)| ≤ 2Lipu(h)βk
0 ,

estimating the x and y differences separately. On the other hand, since h ∈ C p
s (1),

|h(x)− h0(x)− h(y)− h0(y)| ≤ 2H p
s (h)ds(x, y)p.

The Hölder constant is bounded by the minimum of the two estimates
2 Lipu(h)βk

0 ds(x, y)−q and 2H p
s (ϕ)ds(x, y)p−q . This minimum is largest when the two

estimates are equal, i.e., when βk
0 = ds(x, y)p. Thus Hq

s (h − h0)≤ Cβk(p−q)/p
0 ≤ Cβk

since β was chosen ≥β(p−q)/p
0 . 2

Remark 3.4. Since | · |w ≤ ‖ · ‖s , there exists a natural embedding of B into Bw. Moreover,
Lemmas 3.2 and 3.3 imply that Lipu(1) ↪→ B ↪→ Bw ↪→ C p

s (1)
′. In fact, the inclusions

are injective up to modification of h ∈ Lipu(1) on sets of m-measure zero. This can be
proven as in [GL, Proposition 4.1]. Accordingly, we will consider B as a subset of Bw and
Lipu(1) as a subset of B by identifying h ∈ Lipu(1) with the measure hm.

3.2. Compactness.

LEMMA 3.5. On a fixed E ∈ P k0
`, j , the unit ball of ‖ · ‖ is compactly embedded in | · |w.

Proof. Let ε > 0 be fixed. We will show that there are finitely many ψi ∈ C p
s (E) such that,

for any h ∈ Lipu(1) and any ϕ ∈ C p
s (E) with |ϕ|C p

s (E)
≤ 1, there exists an i such that

β`0

∣∣∣∣ 
E

hϕ dm −
 

E
h ψi dm

∣∣∣∣≤ b−1
‖h‖ε.
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Now let ϕ ∈ C p
s (E) be such that |ϕ|C p

s (E)
≤ 1. For k ≥ k0, let Ek

i denote the finitely many

k-cylinders in E . For ϕ ∈ Cr
s (E) and x ∈ Ek

i , define

ϕk,i (x)= m(Ek
i )
−1

ˆ
γ u(x)∩Ek

i

ϕ dmγ ,

and note that ϕk,i ∈ Cr
s (E

k
i ) by Lemma 3.1. Let Hr

E (k, i) be the space of such averaged
Hölder functions generated by ϕ ∈ Cr

s (E). Since p > q, it is a standard consequence of the
Arzela–Ascoli theorem that the unit ball of H p

E (k, i) is compactly embedded in Hq
E (k, i)

for each i ≥ 0, k ≥ k0. Thus we may choose finitely many functions {ψk,i,n}
N
n=1 ⊂

H p
E (k, i) which form an ε-covering in the C q

s -norm of the unit ball of C p
s (Ek

i ).
Choose k such that βk < ε and let ϕk =

∑
i ϕk,i 1Ek

i
. On each Ek

i , choose 1≤ n ≤ N

such that |ψk,i,n − ϕk,i |C q
s (Ek

i )
≤ ε and let ψk =

∑
i ψk,i,n1Ek

i
. Then ϕk, ψk ∈ C p

s (E) by
Lemma 3.1 and |ψk − ϕk |C q

s (E)
≤ ε. Now,∣∣∣∣ˆ

E
h ϕ dm −

ˆ
E

hψk dm

∣∣∣∣≤ ∣∣∣∣ˆ
E

h(ϕ − ϕk) dm

∣∣∣∣+ ∣∣∣∣ˆ
E

h(ϕk − ψk) dm

∣∣∣∣. (13)

We estimate the first term of (13) using the strong unstable norm,∣∣∣∣ˆ
E

h(ϕ − ϕk) dm

∣∣∣∣=∑
i

m(Ek
i )

∣∣∣∣ 
Ek

i

h ϕ dm −
 

Ek
i

h ϕk,i dm

∣∣∣∣≤ m(E)βk−`
‖h‖u .

We estimate the second term of (13) using the strong stable norm,∣∣∣∣ˆ
E

h(ϕk − ψk) dm

∣∣∣∣≤ m(E)β−`‖h‖s |ϕk − ψk |C q
s (E)
≤ m(E)β−`ε‖h‖s .

Then since β0 < β and βk < ε, we have

β`0

∣∣∣∣ 
E

hϕ dm −
 

E
hψk dm

∣∣∣∣≤ β`0βk−`
‖h‖u + β

`
0β
−`ε‖h‖s ≤ b−1

‖h‖ε. 2

LEMMA 3.6. The unit ball of B is compactly embedded in Bw.

Proof. In light of Lemma 3.5, it suffices to show that the weak norm of h ∈ B can be
approximated by considering its norm on only finitely many k-cylinders E ∈ P k

`, j . This
will follow from the fact that β0 < β and the averaging property of the strong unstable
norm.

Notice that for h ∈ Lipu(1), E ∈ P k
`, j and ϕ ∈ C p

s (E),∣∣∣∣ˆ
E

hϕ dm

∣∣∣∣≤ m(E)β−`‖h‖s |ϕ|C q
s (E)

so that |h|w(P k
`, j )
≤ β`0β

−`
‖h‖s .

Now fix ε > 0 and choose L large enough that (β0β
−1)L < ε. Then

|h|w = sup
`<L

sup
j,k≥0
|h|w(P k

`, j )
+ ε‖h‖s .

Since there are only finitely many 1`, j per level `, it remains to show that the weak norm
of h on k-cylinders can be made small for large k.
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Choose K so that βK < ε. Then any cylinder set Er ∈ P r
`, j with r ≥ K is contained

in some K -cylinder EK . For ϕ ∈ C p
s (Er ), let ϕEr be as in §2.2 and let ϕ̃Er denote the

extension of ϕEr to EK . Then

β`0

∣∣∣∣ 
Er

hϕ dm −
 

EK

h ϕ̃Er dm

∣∣∣∣≤ β`0βK−`
‖h‖u |ϕ|C p

s (Er )
.

With this choice of K and L and letting J` denote the number of 1`, j on level `, we have

|h|w = sup
`<L

sup
j≤J`

sup
k≤K
|h|w(P k

`, j )
+ b−1

‖h‖ε,

which implies the desired compactness. 2

4. Lasota–Yorke-type estimates
In this section we prove Proposition 2.3. By density of Lipu(1) in B and Bw, it suffices to
derive these inequalities for h ∈ Lipu(1) once we show L is continuous on (B, ‖ · ‖). To
avoid repeating estimates, we postpone the proof of this fact to §4.4.

4.1. Weak norm estimate. Let h ∈ Lipu(1) and k ≥ 0 be fixed. Choose E ∈ P k
`, j and

ϕ ∈ C p
s (E) with |ϕ|C p

s (E)
≤ 1.

Case 1. n ≤ `. Notice that E ′ = F−n E is an n + k cylinder in 1`−n, j ′ , i.e., E ′ ∈
P k+n
`−n, j ′ .ˆ

E
Lnhϕ dm =

ˆ
F−n E

hϕ ◦ Fn dm ≤ m(E ′)βn−`
0 |h|

w(P k+n
`−n, j ′

)
|ϕ ◦ Fn

|C p
s (E ′)

. (14)

Since Jm Fn
|E ′ ≡ 1 and ds(Fn x, Fn y)= αnds(x, y) for all x, y ∈ E ′, we have m(E ′)=

m(E) and |ϕ ◦ Fn
|C p

s (E ′)
≤ |ϕ|C p

s (E)
. Putting this together with (14) and taking the

supremum over ϕ ∈ C p
s (E) and E ∈ P k

`, j , yields

|Lnh|w(P k
`, j )
≤ βn

0 |h|w(P k+n
`−n, j ′

)
. (15)

Case 2. n > `. First consider the case `= 0 and E ∈ P k
0, j . Note that F−n E comprises

a countable union of (n + k)-cylinders, F−n E =
⋃

E ′, E ′ ∈ P n+k
`′, j ′ . Then by (14),

ˆ
E

Lnhϕ dm ≤
∑

E ′⊂F−n E

m(E ′)β−`
′

0 |h|w(P k+n
`′, j ′

)
|ϕ ◦ Fn

|C p
s (E ′)

(16)

where E ′ ⊆1`′, j ′ . To estimate |ϕ ◦ Fn
|C p

s (E ′)
, take x, y ∈ γ s

⊂ E ′ and write

|ϕ ◦ Fn(x)− ϕ ◦ Fn(y)| ≤ H p
s (ϕ)ds(F

n x, Fn y)p
≤ H p

s (ϕ)C0α
pnds(x, y)p (17)

by (2). Since |ϕ ◦ Fn
|∞ = |ϕ|∞, we conclude |ϕ ◦ Fn

|C p
s (E ′)
≤ C0|ϕ|C p

s (E)
.

Due to bounded distortion given by Property (P4)(b) and Lemma 2.1, we have
m(E ′)/m(E)≤ C(m(E ′n)/m(10, j )) where E ′n is the n-cylinder containing E ′. Using the
fact that there are only finitely many10, j , we record the following estimate for future use.
There exists C > 0 such that,

m(E ′)≤ Cm(E ′n)m(E). (18)
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Now (16) becomes,ˆ
E

Lnhϕ dm ≤
∑

E ′⊂F−n E

CC0β
−`′

0 |h|wm(E ′n)m(E)≤ C ′|h|wm(E)
∑
`′, j ′

β−`
′

0 m(1`′, j ′)

where the sum is finite since θ < β0. Dividing by m(E) and taking the supremum over
ϕ ∈ C p

s (E) and E ∈ P k
`, j , we have

|Lnh|w(P k
0, j )
≤ C ′|h|w. (19)

Now for n > `, we use (15) and (19) to prove (6),

|Lnh|w(P k
`, j )
≤ β`0 |Ln−`h|

w(P k+`
0, j ′

)
≤ C ′β`0 |h|w.

4.2. Strong stable norm estimate. Fix h ∈ Lipu(1) and k ≥ 0. Choose E ∈ P k
`, j and

ϕ ∈ C q
s (E) with |ϕ|C q

s (E)
≤ 1.

Case 1. n ≤ `. Following (14) with C q
s (1) in place of C p

s (1), we obtain

‖Lnh‖s(P k
`, j )
≤ βn
‖h‖s(P k+n

`−n, j ′
)
. (20)

Case 2. n > `. As in §4.1, we first let `= 0 and fix E ∈ P k
0, j .ˆ

E
Lnhϕ dm =

ˆ
F−n E

h(ϕ ◦ Fn
− ϕ) dm +

ˆ
F−n E

hϕ dm (21)

where ϕ(x)=
´
γ s (x) ϕ ◦ Fn dµs is constant on each γ s

⊂ F−n E . Denoting by E ′ the

components of F−n E , E ′ ∈ P k+n
`′, j ′ , we estimate the first term of (21) byˆ

F−n E
h(ϕ ◦ Fn

− ϕ) dm ≤
∑

E ′⊂F−n E

β−`
′

‖h‖s |ϕ ◦ Fn
− ϕ|C q

s (E ′)
m(E ′). (22)

Since ϕ ◦ Fn is continuous on γ s
∈ 0s and µs is a probability measure, we have ϕ ◦

Fn(z1)≤ ϕ ≤ ϕ ◦ Fn(z2) for some z1, z2 ∈ γ
s . Thus using (17) we estimate

|ϕ ◦ Fn
− ϕ|C q

s (E ′)
≤ Cαqn

|ϕ|C q
s (E)

.

Putting this together with (18) and (22), we obtainˆ
F−n E

h(ϕ ◦ Fn
− ϕ) dm ≤ C

∑
`′, j ′

β−`
′

m(E ′n)m(E)‖h‖sα
qn
≤ C ′αqn

‖h‖sm(E). (23)

To estimate the second term of (21), we note that |ϕ|C p
s (E ′)
≤ |ϕ|∞ ≤ 1 since ϕ is

constant along stable leaves. Then, again using (18) and the fact that θ < β0,ˆ
F−n E

hϕ dm ≤
∑

E ′⊂F−n E

m(E ′)β−`
′

0 |h|w|ϕ|C p
s (E ′)
≤ C |h|wm(E)

∑
`′, j ′

β−`
′

0 m(1`′, j ′).

(24)
Combining (23) and (24), dividing by m(E) and taking the appropriate suprema yields

‖Lnh‖s(P k
0, j )
≤ Cαqn

‖h‖s + C |h|w. (25)

Now for n > `, we combine (20), (25) and the fact that αq < β to obtain (7),

‖Lnh‖s(P k
`, j )
≤ β`‖Ln−`h‖s(P k+`

0, j ′
)
≤ β`(Cαq(n−`)

‖h‖s + C |h|w).

https://doi.org/10.1017/S0143385709000534 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385709000534


1386 M. F. Demers

4.3. Strong unstable norm estimate. Fix h ∈ Lipu(1) and Ek ∈ P k
`, j . For r ≥ k, let

Er ∈ P r
`, j be such that Er ⊆ Ek . For ϕ ∈ C p

s (Er ), let

ϕEr (x)= m(Er )
−1

ˆ
γ u(x)∩Er

ϕ dmγ

be defined as in §2.2 and let ϕ̃Er (x)= ϕEr (γ
u(x)) be the extension of ϕEr to Ek .

Case 1. n ≤ `. Since m(Er )= m(F−n Er ) and similarly for Ek , we have 
Er

Lnhϕ dm −
 

Ek

Lnhϕ̃Er dm =
 

F−n Er

hϕ ◦ Fn dm −
 

F−n Ek

hϕ̃Er ◦ Fn dm.

As before, |ϕ ◦ Fn
|C p

s (F−n Er )
≤ |ϕ|C p

s (Er )
. Let (ϕ ◦ Fn)En

r
be the average of ϕ ◦ Fn on

unstable leaves in the (r + n)-cylinder En
r := F−n Er . Since (ϕ ◦ Fn)En

r
is constant

on unstable leaves, we may extend it to F−n Ek ∈ P k+n
`−n, j ′ . It follows that ϕ̃Er ◦ Fn

=

(ϕ ◦ Fn)En
r

since Jγ Fn
≡ 1 on F−n Ek .∣∣∣∣ 

F−n Er

hϕ ◦ Fn dm −
 

F−n Ek

h(ϕ ◦ Fn)En
r

dm

∣∣∣∣≤ ‖h‖u(P k+n
`−n, j ′

)
βk+n−`

|ϕ|C p
s (E)

.

Dividing by βk−` and taking the supremum over ϕ ∈ C p
s (Er ) and r ≥ k, we conclude that

‖Lnh‖u(P k
`, j )
≤ βn
‖h‖u(P k+n

`−n, j ′
)
. (26)

Case 2. n > `. As before, we first consider the case `= 0 and fix Er ⊆ Ek ⊆10, j .
Let En

k denote an (n + k)-cylinder in F−n Ek and similarly for En
r ⊂ En

k . As usual, define
(ϕ ◦ Fn)En

r
to be the average of ϕ ◦ Fn on unstable leaves in En

r , extended to En
k . Now,

 
Er

Lnh ϕ dm −
 

Ek

Lnh ϕ̃Er dm

=

∑
En

k⊂F−n Ek

m(En
r )

m(Er )

[ 
En

r

h ϕ ◦ Fn dm −
 

En
k

h (ϕ ◦ Fn)En
r

dm

]

+

∑
En

k⊂F−n Ek

[
m(En

r )

m(Er )
−

m(En
k )

m(Ek)

]  
En

k

h(ϕ ◦ Fn)En
r

dm

+

∑
En

k⊂F−n Ek

m(En
k )

m(Ek)

 
En

k

h[(ϕ ◦ Fn)En
r
− ϕ̃Er ◦ Fn

] dm. (27)

Label the three sums of (27) by 1©, 2© and 3© respectively. To estimate 1©, recall that,
by (17), |ϕ ◦ Fn

|C p
s (En

r )
≤ C0|ϕ|C p

s (Er )
. Let En denote the n-cylinder containing En

r (and
En

k ) on level `′(En). We use (18) to estimate

1©≤
∑

En
r ⊂F−n Er

Cm(En)βn+k−`′(En)
‖h‖u |ϕ ◦ Fn

|C p
s (En

r )
≤ C ′βn+k

‖h‖u . (28)

To estimate 2©, note that m(A)= mγ (γ ∩ A) for any s-subset A by Lemma 2.1(1). By
Lemma 2.1(3) and (18), there exist x, y ∈ En

k such that∣∣∣∣m(En
r )

m(Er )
−

m(En
k )

m(Ek)

∣∣∣∣≤ ∣∣∣∣ Jγ Fn(y)

Jγ Fn(x)
− 1

∣∣∣∣m(En
k )

m(Ek)
≤ Cαk/2m(En) (29)
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since s(x, y)≥ n + k. Recall that |(ϕ ◦ Fn)En
r
|C q

s (En
r )
≤ |ϕ ◦ Fn

|C q
s (En

r )
≤ C0|ϕ|C q

s (Er )
by

Lemma 3.1 and (17). Using this estimate and (29),

2©≤
∑

En
k⊂F−n Ek

Cαk/2m(En)‖h‖sβ
−`′C0|ϕ|C q

s (Er )
≤ C ′‖h‖sα

k/2. (30)

In order to estimate 3©, we need the following preliminary lemma.

LEMMA 4.1. For En
k ⊂1`′, j ′ , let (ϕ ◦ Fn)En

r
and ϕ̃Er be as above. There exists C > 0

depending only on the distortion of F such that

|(ϕ ◦ Fn)En
r
− ϕ̃Er ◦ Fn

|C q
s (En

k )
≤ Cαr(p−q)/2p

|ϕ|C p
s (Er )

.

Proof. For x ∈ En
k ,

ϕ̃Er ◦ Fn(x)= m(Er )
−1

ˆ
γ u(Fn x)∩Er

ϕ dmγ = m(Er )
−1

ˆ
γ u(x)∩En

r

ϕ ◦ Fn Jγ Fn dmγ .

Thus

|(ϕ ◦ Fn)En
r
(x)− ϕ̃Er ◦ Fn(x)| =

1
m(En

r )

∣∣∣∣ˆ
γ u(x)∩En

r

ϕ ◦ Fn
(

1−
m(En

r )Jγ Fn

m(Er )

)
dmγ

∣∣∣∣.
(31)

Now m(Er )/m(En
r ) is the average value of Jγ Fn on γ u(x) ∩ En

r since m(En
r )=

mγ (γ
u(x) ∩ En

r ) and m(Er )= mγ (γ
u(Fn x) ∩ Er ) by Lemma 2.1(1). Lemma 2.1(3)

implies ∣∣∣∣1− m(En
r )Jγ Fn

m(Er )

∣∣∣∣≤ C1α
r/2

since the separation time for any two points in En
r is at least n + r . Thus (31) becomes

|(ϕ ◦ Fn)En
r
(x)− ϕ̃Er ◦ Fn(x)| ≤ |ϕ|∞C1α

r/2. (32)

It remains to estimate the Hölder constant of the difference along stable leaves. Let
y ∈ γ s(x)⊂ En

k . On the one hand we have

|ϕ̃Er ◦ Fn(x)− (ϕ ◦ Fn)En
r
(x)− ϕ̃Er ◦ Fn(y)+ (ϕ ◦ Fn)En

r
(y)| ≤ 2|ϕ|∞C1α

r/2,

using (32) for the x and y differences separately. On the other hand, using (17), (2) and
Lemma 3.1, we have

|ϕ̃Er ◦ Fn(x)− (ϕ ◦ Fn)En
r
(x)− ϕ̃Er ◦ Fn(y)+ (ϕ ◦ Fn)En

r
(y)|

≤ H p(ϕ̃Er |Fn(γ s ))ds(F
n x, Fn y)p

+ H p((ϕ ◦ Fn)En
r
|γ s )ds(x, y)p

≤ H p
s (ϕ)C0α

pnds(x, y)p
+ H p

s (ϕ ◦ Fn)ds(x, y)p
≤ 2C0 H p

s (ϕ)α
pnds(x, y)p.

The Hölder constant is bounded by the minimum of the two estimates,
2C1α

r/2ds(x, y)−q and 2C0α
pnds(x, y)p−q . This minimum is largest when the two

quantities are equal, i.e., when ds(x, y)p
= α−npαr/2C1/C0. Thus

Hq
s (ϕ̃r ◦ Fn

− (ϕ ◦ Fn)n+r )≤ C H p
s (ϕ)α

qnαr(p−q)/2p

which, together with (32), completes the proof of the lemma. 2
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We are now ready to estimate 3© using the strong stable norm.

3©≤
∑
`′, j ′

C‖h‖sβ
−`′m(1`′, j ′)|(ϕ ◦ Fn)En

r
− ϕ̃Er ◦ Fn

|C q
s (En

k )
≤ C‖h‖sα

r(p−q)/2p (33)

by Lemma 4.1. Combining (28), (30) and (33) in (27), using the fact that α(p−q)/2p
≤ β,

and taking the appropriate suprema, we have

‖Lnh‖u(P k
0, j )
≤ Cβn

‖h‖u + C‖h‖s . (34)

Now for n > `, we combine (26) and (34) to prove (8),

‖Lnh‖u(P k
`, j )
≤ β`‖Ln−`h‖u(P k+`

0, j ′
)
≤ β`(Cβn−`

‖h‖u + C‖h‖s).

4.4. Continuity of L. Since L is linear, it suffices to show L is bounded on B. Note that
for h ∈ B, we can express the strong stable norm given by (4) as

‖h‖s(P k
`, j )
= β` sup

E∈P k
`, j

sup
|ϕ|Cq

s (E)
≤1

m(E)−1h(ϕχE ) (35)

where χE is the indicator function of the set E . Similarly, defining ϕEr and ϕ̃Er as in §2.2,
we can express the strong unstable norm given by (5) as

‖h‖u(P k
`, j )
= sup

Ek∈P k
`, j

sup
Er⊂Ek

sup
|ϕ|C p

s (Er )
≤1
β`−k
|m(Er )

−1h(ϕχEr )− m(Ek)
−1h(ϕ̃ErχEk )|.

(36)
Now following the estimates of §4.1, we have for E ∈ P k

`, j and ϕ ∈ C q
s (E),

Lh(ϕχE )=
∑

E ′⊂F−1 E

h(ϕ ◦ F · χE ′)≤
∑

E ′⊂F−1 E

m(E ′)β−`
′(E ′)
‖h‖s |ϕ ◦ F |C q

s (E ′)
. (37)

By (17), |ϕ ◦ F |C q
s (E ′)
≤ C0|ϕ|C q

s (E)
. Now if ` > 0, then there is only one E ′ = F−1 E ,

`′(E ′)= `− 1, and m(E ′)= m(E) so we conclude that

‖Lh‖s(P k
`, j )
≤ C0β‖h‖s .

On the other hand, if `= 0, then by (18), m(E ′)≤ Cm(E ′1)m(E) where E ′1 is the
1-cylinder containing E ′. So (37) becomes

Lh(ϕχE )≤ CC0m(E)‖h‖s
∑

E ′⊂F−1 E

β−`
′

m(1`′, j ′)

and the sum is finite since β > θ . Thus ‖Lh‖s ≤ C ′‖h‖s as required.
Similarly, using (36) and following the estimates of §4.3, one sees that ‖Lh‖u ≤

C(‖h‖s + ‖h‖u).

5. Spectral picture
Proposition 2.3 and Lemma 3.6 imply that L : B 	 is quasi-compact with essential spectral
radius bounded by β. In this section we study the peripheral spectrum of L on B and prove
Theorems 1 and 2.
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5.1. Proof of Theorem 1.

LEMMA 5.1. The spectral radius of L on B is 1. Its peripheral spectrum comprises
measures and contains no Jordan blocks.

Proof. It is a direct consequence of (6) that the spectral radius of L is at most one. If it
were strictly less than one, Lemma 3.2 would yield the contradiction

|m(1)| = |Lnm(1)| = lim
n→∞

|Lnm(1)| ≤ lim
n→∞

C‖Lnm‖ = 0.

Now let z be in the spectrum of L with |z| = 1. Suppose there exist h0, h1 ∈ B, h0 6= 0
such that Lh0 = zh0 and Lh1 = zh1 + h0. Then Lnh1 = znh1 + nzn−1h0. Now (17)
implies that H p

s (ϕ ◦ Fn)≤ C0α
pn H p

s (ϕ) for ϕ ∈ C p
s (1). So

n|h0(ϕ)| ≤ |h1(ϕ)| + |Lnh1(ϕ)| = |h1(ϕ)| + |h1(ϕ ◦ Fn)| ≤ 2C |h1|w(|ϕ|∞ + C0 H p
s (ϕ))

for each n by Lemma 3.2. Dividing by n and taking the limit as n→∞ implies that
h0 ≡ 0, contrary to our assumption.

It remains to show that the peripheral spectrum is comprised of measures. Suppose
h ∈ B satisfies Lh = zh for some |z| = 1. By Lemma 3.2 and (17),

|h(ϕ)| = |Lnh(ϕ)| = |h(ϕ ◦ Fn)| ≤ C |h|w(|ϕ|∞ + C0α
pn H p

s (ϕ)).

Letting n→∞ yields |h(ϕ)| ≤ C |h|w|ϕ|∞ for all ϕ ∈ C p
s (1), which implies h is a

measure. 2

Let Vφ denote the eigenspace in B corresponding to the eigenvalue eiφ . The absence of
Jordan blocks in the peripheral spectrum implies that the spectral projectors 5φ : B→ Vφ
are well-defined and satisfy

5φh = lim
n→∞

1
n

n−1∑
k=0

e−ikφLkh (38)

where convergence is in the ‖ · ‖-norm so the limit holds with h applied to any ϕ ∈ C p
s (1).

By density, 5φLipu(1)= Vφ so that for each η ∈ Vφ there is an h ∈ Lipu(1) such that
5φh = η.

LEMMA 5.2. Let η ∈ Vφ . Then η is absolutely continuous with respect to ν where
ν :=501. Moreover, η has absolutely continuous conditional measures with respect to
Riemannian volume on unstable curves γ ∈ 0u(1) and η ∈ G.

Proof. Let hη ∈ Lipu(1) be such that 5φhη = η. Then for ϕ ∈ C p
s (1),

|η(ϕ)| ≤ lim
n→∞

1
n

n−1∑
k=0

|e−ikφLkhη(ϕ)| ≤ lim
n→∞

|hη|∞
1
n

n−1∑
k=0

Lk1(|ϕ|)= |hη|∞ν(|ϕ|).

So η = ψν for some ψ with |ψ |L∞(ν) ≤ |hη|∞.
Since η can be written as the limit of ηn = (1/n)

∑n−1
k=0 e−ikφLkhη and the conditional

measures of ηn on unstable leaves in 0u have uniformly bounded and Lipschitz densities,
the Markov structure of 1 and the regularity of J u F guarantee that this property passes to
η (this can be proved as in [Y1, §2]). 2
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LEMMA 5.3. The peripheral spectrum of L on B forms a group on the unit circle.

Proof. Let U Fϕ = ϕ ◦ F define the composition operator of F on L2(ν) and let Lν be
its dual, i.e., the transfer operator of F with respect to ν. It is a standard fact of ergodic
theory that the eigenvalues of U F form a subgroup on the unit circle [W, §3.1]. It is then
straightforward to show that the the peripheral eigenvalues of Lν equal those of U F . In
what follows, we will show that the eigenvalues on the unit circle of Lν acting on L2(ν)

are precisely the peripheral spectrum of L on B. We denote these sets by %(Lν) and %(L)
respectively.

Suppose η ∈ Vφ and let ψ ∈ L∞(ν) satisfy η = ψν by Lemma 5.2. For ϕ ∈ C 0
b(1),

eiφ
ˆ
ϕψ dν = eiφη(ϕ)= Lη(ϕ)= η(ϕ ◦ F)=

ˆ
ϕ ◦ F · ψ dν =

ˆ
ϕ · Lνψ dν

so that Lνψ = eiφψ . Since ψ ∈ L∞(ν)⊂ L2(ν), we conclude that %(L)⊂ %(Lν).
To show inclusion in the other direction, suppose ψ ∈ L2(ν) satisfies Lνψ = eiφψ . For

j ≥ 0, choose h j ∈ Lipu(1) ∩ C p
s (1) such that |ψ − h j |L1(ν) ≤ 1/j . By Lemma 3.3(ii),

h jν ∈ B. Thus,

5φ(h jν)= lim
n→∞

1
n

n−1∑
k=0

e−ikφLk(h jν)=: η j =: ψ jν ∈ Vφ, (39)

by (38) and Lemma 5.2. On the other hand, for ϕ ∈ C 0
b(1),

1
n

n−1∑
k=0

e−ikφLk(h jν)(ϕ)=
1
n

n−1∑
k=0

e−ikφ
ˆ
ϕ ◦ Fk

· (h j − ψ) dν +
ˆ
ϕψ dν. (40)

The first term in (40) is bounded by

1
n

n−1∑
k=0

|ϕ|∞|ψ − h j |L1(ν) ≤ |ϕ|∞/j.

Combining (39) and (40), we have |
´
ϕψ dν −

´
ϕψ j dν| ≤ |ϕ|∞/j for all ϕ ∈ C 0

b(1)

and each j . Since Vφ is finite dimensional and ψν is approximated by elements of Vφ , it
must be that ψν ∈ Vφ . Thus %(Lν)⊂ %(L). 2

We call 10, j a recurrent base if µ-almost every x ∈10, j satisfies: Fn(x) ∈10, j for
infinitely many n > 0. We call 10, j transient if it is not recurrent.

LEMMA 5.4. Let 1( j) be the tower above a recurrent base 10, j . Then the full Lebesgue
measure of 1( j) belongs to a single ergodic component.

Proof. Choose ν ∈ V0 ergodic and fix a density point x0 which is not on the boundary of
any cylinder E ∈ P k

`, j , k ≥ 0. Without loss of generality, take x0 ∈10, j , a recurrent base.
Let γ0 be the unstable leaf containing x0 and let ρ0 be the conditional density of ν on γ0

which is Lipschitz by Lemma 5.2. Thus ρ0 > 0 on an open subset U in γ0 containing
x0. Since 10, j is recurrent, there exists E ∈ P k

1, j with E ∩ γ0 ⊂U such that Fn(E) is
a u-subset of 10, j for some n > 0. Thus the density of Fn

∗ ν|Fn(E∩γ0) is strictly positive.
Since each stable leaf γ s

∈ 0s(1) belongs to a single ergodic component, the full Lebesgue
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measure of 10, j must belong to a single ergodic component. Thus the ergodic component
of ν includes the full measure of each recurrent base (and hence the entire tower above
each such base) which contains a density point of ν. 2

Proof of Theorem 1. Lemma 5.4 allows us to assign each of the recurrent bases to a single
ergodic component: two bases 10, j and 10, j ′ are in the same ergodic component if and
only if there exists n, n′ such that Fn(10, j ) ∩10, j ′ 6= ∅ and Fn′(10, j ′) ∩10, j 6= ∅.

Step 1. Mixing case. By transitivity the full Lebesgue measure of each base belongs to
a single ergodic component by Lemma 5.4; therefore there can be only one invariant
probability measure ν ∈ V0. Now suppose there exists η ∈ Vφ where φ = 2πp/q for some
p, q ∈ Z+. Thus ν and η are both invariant densities for Lq . Since F is mixing, Fq is
also transitive on1 so Lq can have at most one invariant probability measure. Thus η = ν.
This proves item (i) of the theorem.

Step 2. Non-mixing case. First assume F is transitive and periodic with period p. Then
1 decomposes under F p into p transitive components, on each of which F p is mixing.
By Step 1, 1 is an eigenvalue of L p with multiplicity p and there are no other eigenvalues
on the unit circle. The corresponding eigenvalues for L lie at the pth roots of unity and
it follows from transitivity that all the pth roots are realized as simple eigenvalues. This
proves (ii).

If F is not transitive, we simply restrict to a single transitive component and apply (ii).
Since quasi-compactness implies there are only finitely many components, (iii) follows. 2

5.2. Proof of Theorem 2.
(i) Theorem 2(i) is proven by Lemma 5.2.
(ii) Let ν be a physical measure. There exists Bν with µ(Bν) > 0 such that for every

ϕ ∈ C 0
b ,

lim
n→∞

1
n

n−1∑
i=0

ϕ(F i x)= ν(ϕ) for all x ∈ Bν . (41)

Let x0 ∈1`, j be a density point of Bν . Given ε > 0, let hε ∈ Lipu(1) be a probability
density with respect to m supported on 1`, j such that hε(Bν)≥ 1− ε. For ϕ ∈ C0

b(1),
choose a set Bν,ε ⊂ Bν on which (41) converges uniformly and hε(Bν\Bν,ε)≥ 1− 2ε.
Then

50hε(ϕ) = lim
n→∞

1
n

n−1∑
i=0

hε(ϕ ◦ F i )

= lim
n→∞

1
n

n−1∑
i=0

hε(ϕ ◦ F i
· 1Bν,ε )+ hε(ϕ ◦ F i

· 11`, j\Bν,ε )

= hε(1Bν,ε )ν(ϕ)+O(|ϕ|∞ε)= ν(ϕ)+O(|ϕ|∞ε).

Since50hε ∈ V0, this means ν can be approximated by elements of V0 and so ν ∈ V0. The
fact that ν is ergodic follows from its definition as a physical measure.
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Next we show that all ergodic elements of V0 are physical measures. By Lemma 5.4,
if ν ∈ V0 is an ergodic measure, its support is contained in a finite set of towers 1( j)

above recurrent bases 10, j and no other ergodic measure in V0 can be supported on this
set. Denote this set by Eν and note that ν(Eν)= 1. Thus (41) converges to ν(ϕ) for ν-
almost every x ∈ Eν . Since the ergodic average is constant along stable leaves and ν has
absolutely continuous conditional measures on γ ∈ 0u(1), we must have (41) converging
for µγ -almost every x ∈ γ on every γ ∈ 0u(1`, j ), 1`, j ⊂ Eν .

On the other hand, if 10, j is transient, every point in 1( j) belongs to a cylinder set of
finite length n which maps to a recurrent base 10,k at time n. Let Ck denote the collection
of such cylinder sets in 1( j) which map to the recurrent base 10,k . It is clear that Ck

belongs to the basin of attraction of the unique element of V0 supported on 10,k and that
the forward ergodic averages beginning in Ck converge to the same constant.

Thus to each ergodic element ν ∈ V0, we associate a basin Bν comprising a maximal set
of recurrent towers Eν plus a collection of cylinder sets from transient towers. Since (41)
converges for µ-almost every x ∈ Bν and ν(Bν)= ν(Eν)= 1, ν is necessarily a physical
measure.

It remains to show that the ergodic decomposition with respect to ν corresponds to that
with respect to m. Let ν be an ergodic element of V0. Since F−1 Bν = Bν and Bν is a union
of cylinder sets, 1Bν ∈ C p

s (1) and 1Bν ◦ F = 1Bν , so

ν(Bν)= lim
n→∞

1
n

n−1∑
i=0

Li m(Bν)= lim
n→∞

1
n

n−1∑
i=0

m(Bν)= m(Bν).

(iii) This is implied by the argument in (ii).
(iv) This is a standard corollary of the existence of a spectral gap given by Theorem 1(i).

To obtain the slightly stronger result forψ ∈ Lipu(1) and ϕ ∈ C p
s (1), note thatψν ∈ G and

thus ψν ∈ B by Lemmas 5.2 and 3.3(i). Thus there exists σ < 1 such that
ˆ
ψϕ ◦ Fn dν = Ln(ψν)(ϕ)= ν(ψ)ν(ϕ)+O(σ n

‖ψν‖B|ϕ|C p
s (1)

).

6. Large-deviation estimates
We connect the moment generating function q(z) defined in §2.3.1 to the spectral
properties of a generalized transfer operator as follows.

For g ∈ Lipu(1) ∩ C p
s (1), define the generalized transfer operator for h ∈ B by

Lgh(ϕ)= h(ϕ ◦ F · eg) for all ϕ ∈ C p
s (1).

It is then a simple calculation that Ln
gh(ϕ)= h(ϕ ◦ Fn

· eSn g). Now fix g and for z ∈ C
suppose that Lz = Lzg is quasi-compact with a simple eigenvalue λz of maximum modulus.
Then, for h ∈ B such that 5λz h(1) 6= 0,

q(z)= lim
n→∞

1
n

log h(ezSn g)= lim
n→∞

1
n

log Ln
z h(1)= log λz . (42)

So q(z) is well-defined if Lz has a spectral decomposition similar to that for L0 = L given
by Theorem 1. With this in mind, we prove in §6.2.

https://doi.org/10.1017/S0143385709000534 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385709000534


Functional norms for Young towers 1393

PROPOSITION 6.1. For g ∈ Lipu(1) ∩ C p
s (1), let g0 := |g|∞ <∞. Then, for h ∈ B and

n ≥ 0,

|Ln
gh|w ≤ Ceng0 |g|C p

s (1)
|h|w, (43)

‖Ln
gh‖s ≤ Ceng0 |g|C p

s (1)
(βn
‖h‖s + |h|w), (44)

‖Ln
gh‖u ≤ Ceng0(βn

‖h‖u |g|C p
s (1)
+ ‖h‖s(Lipu(g)+ |g|C q

s (1)
)). (45)

This implies a Lasota–Yorke type inequality for Lz if |z|< (−ln β)/g0. In order to
ensure that the spectral gap for Lz persists for small |z|, we introduce the following norm
for operators from B to Bw:

‖|Lz‖| = sup{|Lzh|w : h ∈ B, ‖h‖ ≤ 1}.

In §6.3, we prove the following.

LEMMA 6.2. There exists C > 0, independent of z ∈ C and g ∈ Lipu(1) ∩ C p
s (1), such

that
‖|Lz − L0‖| ≤ Ce|z|g0 |z||g|C q

s (1)
.

With this result, the perturbation results of [KL] imply that for small |z|, both the spectra
and the spectral projectors of Lz vary continuously with z so that if L= L0 has a spectral
gap, this gap persists for all z ∈ C with |z| sufficiently small. Moreover, the eigenvalue of
maximum modulus, λz , is real whenever z is real.

6.1. Proof of Theorems 3 and 4. Proof of Theorem 3. We follow [RY] in our proof of
Theorem 3, modifying the proof as necessary to generalize to non-invariant measures η.

Throughout this section, we assume F is mixing and fix g ∈ C p
s (1) ∩ Lipu(1). We

assume |z| is sufficiently small so that Lz = Lzg has a simple eigenvalue of maximum
modulus λz , with corresponding eigenvector νz ∈ B.

SUBLEMMA 6.3. The map z→ Lz is analytic for all z ∈ C. Consequently, if F is mixing,
the map z→ λz is analytic for z in a complex neighborhood of 0.

Proof. This follows directly from [RY, Lemma 4.1] and analytic perturbation
theory [K]. 2

Now let η ∈ B be a probability measure. Since 5λ0η(1)= 1, we have 5λzη(1) 6= 0 for
|z| sufficiently small [KL]. Thus, by (42),

q(z)= lim
n→∞

1
n

log η(ezSn g)= log λz,

proving the first statement of the theorem.
Since q(z) is independent of η, we may write q(z) := limn→∞(1/n) log ν0(ezSn g).

Now the computation of the derivatives of q follows exactly as in the proof of
[RY, Theorem 4.3]. 2

Proof of Theorem 4. This follows directly from the Gartner–Ellis theorem [DZ] since q(z)
is a smooth function of z for z real and sufficiently small. 2
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6.2. Proof of Proposition 6.1. The estimates parallel those of §4. In order to avoid
repetition, we indicate only where changes are necessary.

Weak norm. For h ∈ Lipu(1), E ∈ P k
`, j and ϕ ∈ C p

s (E), if n ≤ `, we follow (14),
ˆ

E
Ln

ghϕ dm =
ˆ

F−n E
heSn gϕ ◦ Fn dm

≤ m(F−n E)|h|
w(P k+n

`−n, j ′
)
|eSn g
|C p

s (F−n E)|ϕ ◦ Fn
|C p

s (F−n E).

Since m(E)= m(F−n E), |ϕ ◦ Fn
|C p

s (F−n E) ≤ |ϕ|C p
s (E)

and |eSn g
|C p

s (F−n E) ≤

Ceng0n|g|C p
s (1)

, we have

|Ln
gh|w(P k

`, j )
≤ Cβn

0 |h|w(P k+n
`−n, j ′

)
eng0 |g|C p

s (1)
. (46)

On the other hand, if `= 0 then following (16) we estimateˆ
E

Ln
ghϕ dm =

∑
E ′⊂F−n E

ˆ
E ′

heSn gϕ ◦ Fn dm

≤

∑
E ′

m(E ′)β−`
′

0 |h|w(P k+n
`′, j ′

)
|eSn g
|C p

s (E ′)
|ϕ ◦ Fn

|C p
s (E ′)

(47)

where E ′ ∈ P k+n
`′, j ′ as in §4.1. Now (43) follows from (46) and (47) using (18).

Strong stable norm. Similarly following the estimates of §4.2, for ϕ ∈ C q
s (E) we define ϕ

as in (21). Thenˆ
E

Ln
ghϕ dm =

∑
E ′⊂F−n E

ˆ
E ′

heSn g(ϕ ◦ Fn
− ϕ) dm +

ˆ
E ′

heSn gϕ dm.

Now (44) follows from (20), (23) and (24).

Strong unstable norm. Taking Er ⊂ Ek ∈ P k
`, j and ϕ ∈ C p

s (1`, j ), we define ϕ̃Er as in §4.3.

Case 1. n ≤ `. Since m(Er )= m(F−n Er ) and similarly for Ek , the estimate before (26)
yields ∣∣∣∣ 

F−n Er

heSn gϕ ◦ Fn dm −
 

F−n Ek

heSn g(ϕ ◦ Fn)En
r

dm

∣∣∣∣
≤ ‖heSn g

‖u(F−n Ek )β
k+n−`

|ϕ|C p
s (E)

.

Since eSn g
∈ Lipu(F−n Ek), by Lemma 3.3,

‖h eSn g
‖u(F−n Ek ) ≤ ‖h‖s(Lipu(eSn g

|F−n Ek )+ H p
s (e

Sn g))+ ‖h‖u |e
Sn g
|C p

s (1)
.

Then since Lipu(eSn g
|F−n Ek )≤ eng0Lipu(g)/(1− β), we have

‖Ln
gh‖u(P k

`, j )
≤ βn
‖h‖u(P k+n

`−n, j ′
)
Ceng0 |g|C p

s (1)

+‖h‖s(Ceng0 |g|C q
s (1)
+ eng0Lipu(g)/(1− β)). (48)
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Case 2. n > `. Following §4.3, we first consider the case `= 0 and fix Er ⊆ Ek ⊆10, j .
We estimate the analogous terms of (27) one at a time.

The expression corresponding to (28) is ≤ C ′βn+k
‖h eSn g

‖u(P n+k
`′, j ′

)
; the term

corresponding to (30) is ≤ C ′‖eSn gh‖sαk/2; and the term corresponding to (33) is
≤ C‖eSn gh‖sαr(p−q)/2p. Putting these estimates together with (48) and using
Lemma 3.3(ii) yields (45). 2

6.3. Proof of Lemma 6.2. Let h ∈ Lipu(1) and E ∈ P k
`, j with `≥ 1. Notice that

F−1 E = E ′ ∈ P k+1
`−1, j ′ . For any ϕ ∈ C p

s (E), we have
ˆ

E
(Lz − L0)hϕ dm =

ˆ
E ′

hϕ ◦ F(ezg
− 1) dm

≤ m(E ′)β1−`
‖h‖s |ϕ ◦ F |C q

s (E ′)
|ezg
− 1|C q

s (E ′)
.

Since F is rigid translation on E ′, |ϕ ◦ F |C q
s (E ′)
≤ |ϕ|C q

s (E)
and m(E ′)= m(E). It is

straightforward to estimate |ezg
− 1|C q

s (E ′)
≤ e|z|g0 |z||g|C q

s (E ′)
. Taking the appropriate

suprema,
|(Lz − L0)h|w(P k

`, j )
≤ ‖h‖se|z|g0 |z||g|C q

s (1)
for `≥ 1. (49)

It remains to consider the case `= 0. In this case, F−1 E is the countable union of
cylinders E ′ ∈ P k+1

`′, j ′ . Let `′ denote the level of E ′.
ˆ

E
(Lz − L0)hϕ dm ≤

∑
E ′⊂F−1 E

m(E ′)β−`
′

‖h‖s |ϕ ◦ F |C q
s (E ′)
|ezg
− 1|C q

s (E ′)
.

By (17), |ϕ ◦ F |C q
s (E ′)
≤ C0|ϕ|C q

s (E)
and by (18), m(E ′)≤ Cm(E ′1)m(E) where E ′1 is the

1-cylinder containing E ′. Thus

|(Lz − L0)h|w(P k
0, j )
≤ ‖h‖sC0e|z|g0 |z||g|C q

s (1)

∑
`′, j ′

β−`
′

m(1`′, j ′).

This, together with (49), proves the lemma. 2

7. Proof of Theorems 5 and 6

Proof of Theorem 5. For any measure η ∈ B, we may define its projection η̃ on M by
η̃(A)= η(π−1 A) for all Borel A ⊂ M . In particular, if ν ∈ B is an invariant measure for
F , then π∗ν = ν̃ is an invariant measure for f due to the relation π ◦ F = f ◦ π . Statement
(i) now follows from Theorem 2(i), (ii).

That statement (ii) follows from Theorem 2(iv) is by now standard, although we follow
a different route than the one used in [Y1] since we only require our test functions to
be Hölder continuous along stable or unstable leaves separately. The crucial points are:
(A) if ψ ∈ Cζ (0u(M)) and we choose β0 ≥ α

ζ/2, then its lift ψ ◦ π ∈ Lipu(1); (B) if
ϕ ∈ Cζ (0s(M)) and we choose p ≤ ζ , then ϕ ◦ π ∈ C p

s (1).
To prove (A), take x, y ∈ γ u

∈ 0u(1`, j ) and let x0 = F−`x , y0 = F−`y. Then

|ψ(πx)− ψ(πy)| ≤ H ζ
u (ψ) d(πx, πy)ζ ≤ H ζ

u (ψ)d( f `(πx0), f `(πy0))
ζ . (50)
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Now
d( f `(πx0), f `(πy0))≤ C0α

s0(πx0,πy0)−` ≤ C0α
s(x,y)

by Property (P4)(a). So ψ ◦ π ∈ Lipu(1) if β0 ≥ α
ζ .

To prove (B), we take x, y ∈ γ s
∈ 0s(1`, j ) and follow (50),

|ϕ(πx)− ϕ(πy)| ≤ H ζ
s (ϕ) d( f `(πx0), f `(πy0))

ζ
≤ H ζ

s (ϕ)C0α
ζ`ds(x0, y0)

ζ

using property (P3). But α`ds(x0, y0)= ds(x, y) so that ϕ ◦ π ∈ C p
s (1) for all p ≤ ζ .

Statement (iii) follows from Theorem 1. Since ξ ∈ π∗B is a probability measure, we
can find η ∈ B with 50η(1)= 1 such that π∗η = ξ . Then f n

∗ ξ = f n
∗ (π∗η)= π∗(F

n
∗ η)

guarantees the required convergence.
To prove statement (iv), let η ∈ B be such that π∗η = ξ . For g̃ ∈ Cζ (M), define its lift

to 1 by g = g̃ ◦ π . Choosing β0 ≥ α
ζ/2 and p = ζ as in statement (ii) guarantees that

g ∈ Lipu(1) ∩ C p
s (1). Since eSn g̃(πx)

= eSn g(x) for all x ∈1, Theorem 3 implies

lim
n→∞

1
n

log ξ(eSn g̃)= lim
n→∞

1
n

log η(eSn g)= q(z).

Also,

{x ∈1 : (1/n)Sng(x) ∈ [a, b]} = π−1
{x ∈ M : (1/n)Sn g̃(x) ∈ [a, b]}

so, by Theorem 4,

lim
n→∞

1
n

log ξ
(

1
n

Sn g̃(x) ∈ [a, b]

)
= lim

n→∞

1
n

log η
(

1
n

Sng(x) ∈ [a, b]

)
=− inf

u∈[a,b]
I (u)

for [a, b] ⊂ [q ′(−τmax), q ′(τmax)] where I (u) is the Legendre transform of q(z). 2

Proof of Theorem 6. Let µ denote Lebesgue measure on M and let ν denote the smooth
invariant measure of the dispersing billiard map f . If ξ = ψν for some ψ ∈ Cζ (0u(M)),
then ψ ◦ π ∈ Lipu(1) and so η := ψ ◦ π · ν ∈ G by Lemma 5.2. Since π∗η = ξ , we
have ξ ∈ π∗B so that the convergence result and large-deviation estimates follow from
Theorem 5. It remains to prove the theorem for measures of the form ξ = ψµ for
ψ ∈ Cζ (0u(M)). This will follow immediately once we prove the theorem for µ.

Recall that the canonical coordinates used in dispersing billiards are (r, φ) where r
indicates position along the boundary of a scatterer (oriented clockwise) and φ is the angle
an outgoing trajectory makes with the unit normal on the boundary. In these coordinates,
µ= (k/ cos φ)ν where k is a normalizing constant. Since ψ = k/ cos φ is not bounded,
µ /∈ π∗G; however, by approximating µ by measures in π∗G, we can obtain the stated
results.

Proof of statement (i). Let Nε be an ε-neighborhood of φ =±π/2 in the phase space of
the billiard map. Note that µ(Nε)=O(ε). Let

ψε =min
{
ψ,

k

cos(π/2− ε)

}
and note that ψε is Lipschitz on M . Let µε = ψεν. Then since µε ∈ π∗G, for ϕ ∈ C0(M),

lim
n→∞

f n
∗ µ(ϕ)= lim

n→∞
f n
∗ µε(ϕ)+ (µ− µε)(ϕ ◦ f n)= ν(ϕ)+ |ϕ|∞O(ε)

by Theorem 5(iii). Sending ε→ 0 proves statement (i).
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Proof of statement (ii). Let An(a, b)= {x ∈ M : (1/n)Sng(x) ∈ [a, b]}. Then

lim
n→∞

µ(An(a, b))= lim
n→∞

µε(An(a, b))+ (µ− µε)(An(a, b))= inf
u∈[a,b]

−I (u)+O(ε),

by Theorem 5(iv). The large-deviation result follows by letting ε→ 0. 2
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