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1. Introduction

The algebraic question of determining functorial coalgebra decompositions of tensor alge-
bras arose from homotopy theory as follows. The classical results of Cohen et al . [6] on
the exponents of the homotopy groups of spheres and Moore spaces were obtained by
studying decompositions of the loop spaces of Moore spaces. Decompositions of the loop
space functor Ω from p-local simply connected co-H-spaces to spaces have been investi-
gated in [20–22,24,26]. By means of decompositions of the loop space functor, one gets
natural decompositions ΩX � Ā(X) × B̄(X) for some homotopy functors Ā and B̄ on
p-local simply connected co-H-spaces X. Such decompositions may lose some information
for an individual space X in the sense that the functor Ā may be indecomposable but
the space Ā(X) may have further decompositions. However, functorial decompositions
have the good property that one can freely change the co-H-spaces X in the decompo-
sition formulae because they are functorial. Also, there are examples of spaces X such
as the Hopf invariant one complexes in [11] with the property that the space Ā(X) is
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indecomposable for a certain functor Ā. A fundamental question concerning functorial
decompositions is how to determine the homology of the factors Ā(X) and B̄(X), which
can be reduced to a purely algebraic question as follows.

Let V be any module over a field k = Z/p and let T (V ) be the tensor algebra on V .
Then T (V ) becomes a Hopf algebra by taking V to be primitive. By forgetting the algebra
structure on T (V ), we have the functor T from modules to coalgebras. Let

T (V ) ∼= A(V ) ⊗ B(V ) (1.1)

be any natural coalgebra decomposition of T (V ) for some functors A and B from
(ungraded) modules to coalgebras. From [22, Theorem 1.3], the functors A and B can
be canonically extended as functors from graded modules to graded coalgebras and the
above decomposition formula holds for any graded module V . Then from [21, Theo-
rem 1.1], the functors A and B induce functors Ā and B̄ from co-H-spaces to spaces
and a natural decomposition ΩX � Ā(X) × B̄(X) with the property that there exist
filtrations on the mod p homology H∗(Ā(X)) and H∗(B̄(X)) such that isomorphisms
E0H∗(Ā(X)) ∼= A(Σ−1H̄∗(X)) and E0H∗(B̄(X)) ∼= B(Σ−1H̄∗(X)) are obtained on the
associated graded modules, where Σ−1 is the desuspension of a graded module. In short,
any coalgebra decomposition of the functor T as in formula (1.1) induces a natural decom-
position of the loops on p-local simply connected co-H-spaces in which the homology of
its factors can be determined by their corresponding algebraic functors.

The functors A and B in decomposition (1.1) are complementary to each other and so it
suffices to understand one of them as a coalgebra summand of the functor T . There exist
some important coalgebra summands of T in [22, Theorem 6.5] that give a functorial
version of the Poincaré–Birkhoff–Witt Theorem. One such functor is the functor Amin,
which is the smallest natural coalgebra summand of T (V ) containing V . The coalgebra
complement of the functor Amin, denoted by Bmax, has the property that Bmax(V )
can be chosen as a sub-Hopf algebra of T (V ). However, the determination of Amin(V )
and Bmax(V ) seems beyond current technology. As a consequence, the homology of the
geometric realizations Āmin(X) and B̄max(X) remains unknown. It is therefore important
to find coalgebra summands B of T with the explicit information on B(V ), because in
such a case the homology of the geometric realization B̄(X) can be understood.

The purpose of this paper is to provide some explicit coalgebra summands B of T .
We are interested in the special cases where B can be chosen as a sub-Hopf algebra of
T . This will give a relatively large coalgebra summand of T because any subalgebra of
a tensor algebra is a tensor algebra, and so the complementary functor A of B as in
decomposition (1.1) becomes relatively small. Let Ln(V ) be the nth free Lie power on
V ; namely, Ln(V ) is the homogenous component of the free Lie algebra L(V ) on V of
tensor length n. Our main result is as follows.

Theorem 1.1. Let the ground ring be a field of characteristic p. Let {mi}i∈I be a
finite or infinite set of positive integers prime to p with each mi > 1. Then the sub-Hopf
algebra of T (V ) generated by

Lmipr (V ) for i ∈ I, r � 0,
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is a natural coalgebra summand of T (V ). In particular, the sub-Hopf algebra B(V ) of
T (V ) generated by

Ln(V ) for n not a power of p

is a natural coalgebra summand of T (V ).

By the maximum property of the functor Bmax, the sub-Hopf algebras in the theorem
are all contained in Bmax. According to [22, Proposition 11.1] as well as [4], the inde-
composable elements in Bmax do not have tensor length p for p > 2 and so the sub-Hopf
algebra B(V ) coincides with Bmax(V ) up to tensor length p2 − 1. For the case p = 2, the
sub-Hopf algebra B(V ) coincides with Bmax(V ) up to tensor length 7 according to the
computations in [25]. Our sub-Hopf algebra B(V ) is strictly smaller than Bmax(V ) for
a general module V .

An application of Theorem 1.1 to homotopy theory is given in [31]. Let the functors B

and Bmax be extended to functors from graded modules to graded modules in the sense
of [22]. Then the sub-Hopf algebra B(V ) coincides with Bmax(V ) for graded modules V

of dimension less than or equal to p − 1 with Veven = 0 according to [31, Theorem 1.1].
From this, we obtain EHP fibrations for the spaces Āmin(X) for (p − 1)-cell co-H-spaces
X [31, Theorem 1.5]. These fibrations help in understanding the homotopy groups of
co-H-spaces.

There is a canonical connection between coalgebra decompositions of T and the decom-
positions of the Lie powers Ln(V ) as modules over the general linear groups by restrict-
ing decomposition (1.1) to the primitives. The decompositions of Lie powers have been
actively studied in the recent development of representation theory [2–4, 9, 10]. Thus,
the study of coalgebra decompositions of the functor T helps to establish closer relations
between homotopy theory and representation theory.

The paper is organized as follows. In § 2, we investigate the sub-quotient functors of the
tensor power functors Tn : V �→ Tn(V ) = V ⊗n from modules to modules. These special
functors are of course closely related to the tensor representation of the symmetric groups
and the finite-dimensional polynomial representations of the general linear groups (by
evaluating on a fixed module V ). They are also related to modules over the Schur algebras
and modules over the Steenrod algebra [15–17]. In this section, we introduce exact
functors γn(·) from the category of functors from modules to modules to the category of
modules over the symmetric groups which are variations of the classical Schur functor [1,
13,19]. In geometry, the summands of the tensor power functors Tn are closely related
to decompositions of self-smash products [23,29].

In § 3, we investigate the subfunctors of the Lie powers Ln that occur as the sum-
mands of the functor Tn, which we call Tn-projective subfunctors of Ln. According to
Theorem 3.9, these functors are closely related to the summands of the Lie powers Ln(V )
that occur as summands of V ⊗n studied in [3,9,10].

We give a coalgebra decomposition of T called the ‘block decomposition’ in § 4. Accord-
ing to Theorem 4.3, this is a coalgebra decomposition of T in the form

T ∼=
∞⊗

i=1

Cmi ,
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where {mi} is the set of all positive integers prime to p and the primitives of Cmi are
exactly given by the primitives of the tensor algebra T with tensor length mip

r for r � 0.
In other words, the primitives of the tensor algebra T with tensor length mpr for r � 0
for each m prime to p can be blocked into a coalgebra summand Cm of T .

The proof of Theorem 1.1 is given in § 5. In § 6, we give some applications of our
decomposition theorem to Lie powers by restricting to the primitives.

2. The structure on the tensor powers

2.1. Tensor algebras

Let V be any module and let

T (V ) =
∞⊕

n=0

V ⊗n

be the tensor algebra generated by V , where V ⊗n = k and the multiplication on T (V ) is
given by the formal tensor product of monomials. The tensor algebra admits the universal
property that, for any associated algebra A and any linear map f : V → A, there exists
a unique algebra map f̃ : T (V ) → A such that f̃ |V = f . In particular, the linear map

V → T (V ) ⊗ T (V ), x �→ x ⊗ 1 + 1 ⊗ x

extends uniquely to an algebra map ψ : T (V ) → T (V )⊗T (V ) and so T (V ) has the canon-
ical Hopf algebra structure with the multiplication given by the formal tensor product of
monomials and the comultiplication given by ψ. We refer to [18] as a classical reference
for Hopf algebras and quasi-Hopf algebras. The comultiplication ψ is coassociative and
cocommutative. The module T (V ) with the comultiplication ψ : T (V ) → T (V ) ⊗ T (V )
is called a shuffle coalgebra as its graded dual

T ∗(V ) =
∞⊕

n=0

(V ⊗n)∗ ∼=
∞⊕

n=0

(V ∗)⊗n

is the usual shuffle algebra under the multiplication ψ∗ : T ∗(V ) ⊗ T ∗(V ) → T ∗(V ).
We are interested in the functor T : V �→ T (V ). There are three variations on this

functor:

• the functor TH : V �→ T (V ) from modules to Hopf algebras;

• the functor TC : V �→ T (V ) from modules to coalgebras by forgetting the multipli-
cation;

• the functor TM : V �→ T (V ) from modules to modules by forgetting both the mul-
tiplication and comultiplication.

As notation, the functor T refers to one of TH, TC or TM if the working category is clear.
By taking tensor length, the functor TM admits a natural decomposition

TM ∼=
∞⊕

n=0

Tn, (2.1)
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where Tn(V ) = V ⊗n with T0(V ) = k. Thus, the functors TH, TC and TM are graded
functors. From the well-known property (see, for example, [12, Lemma 3.8]) that

Hom(Tn, Tm) =

{
0 if n �= m,

k(Σn) if n = m,
(2.2)

the decomposition of TM is in fact an orthogonal decomposition. A direct consequence
is that the comultiplication ψ (as a natural transformation) is uniquely determined by
the multiplication on T (V ) for its Hopf structure.

Proposition 2.1. Let ∆V : TM(V ) → TM(V ) ⊗ TM(V ) be a natural transformation
such that TM(V ) with the usual multiplication together with the comultiplication given
by ∆V is a quasi-Hopf algebra for every V . Then ∆V = ψV for all V .

Proof. For every V , from the property that Hom(Tn, Tm) = 0 for n �= m, we have

∆V (T1(V )) ⊆ T1(V ) ⊗ T0(V ) ⊕ T0(V ) ⊗ T1(V )

and the counit

εV : T (V ) =
∞⊕

n=0

Tn(V ) → T0(V )

is the canonical projection given by sending each Ti(V ) to 0 for i > 0 and ε|T0(V ) = id.
Since both ∆V and ψV have counit uniquely given by εV , we have

∆V |T1(V ) = ψV |T1(V ).

It follows that ∆V = ψV because both are algebra maps with respect to the formal tensor
product. �

Remark 2.2. Given a module V , of course one could have many comultiplications
on T (V ) such that T (V ) is Hopf. The proposition states that ψ is the only possible
comultiplication on T (V ) which is a natural transformation.

2.2. Subfunctors of the tensor algebra functor

Let C and D be categories and let A, B : C → D be functors. We call A a subfunctor
(quotient functor) of B if there is a natural transformation φ : A → B such that

φX : A(X) → B(X)

is injective (surjective) for every object X ∈ C. A subfunctor (quotient functor) of T refers
to a subfunctor (quotient functor) of TH, TC or TM. A subfunctor (quotient functor) of
TH is called a sub-Hopf functor (quotient Hopf functor) of T . Similarly we have a sub-
coalgebra functor (quotient coalgebra functor) of T and a submodule functor (quotient
module functor) of T . A graded subfunctor (graded quotient functor) of T refers to a
subfunctor of TH, TC or TM as functors from modules to graded Hopf algebras, graded
coalgebras or graded modules, respectively.
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Proposition 2.3. Let B be a functor from modules to modules. Suppose that

(i) there is a natural monomorphism φV : B(V ) → T (V ) and

(ii) there is a natural epimorphism ψ : T (V ) → B(V ) for any module V .

Then there is a natural grading on B(V ) such that φ : B → T and ψ : T → B are natural
transformations of graded functors.

Proof. From the hypothesis, φ induces a natural isomorphism

φ : B(V )
∼=−→ Im(φ ◦ ψ : T (V ) → T (V )).

By the orthogonal property of T as in (2.2), the composite

φ ◦ ψ : T → T

is a natural transformation of graded functors. Thus, φ ◦ ψ(Tn) ⊆ Tn and

Im(φ ◦ ψ : T (V ) → T (V )) =
∞⊕

n=0

Im(φ ◦ ψ|Tn : Tn(V ) → Tn(V )).

Let Bn(V ) = φ−1
V (Im(φ ◦ ψ|Tn

: Tn(V ) → Tn(V ))). Then

B =
∞⊕

n=0

Bn

is a graded functor and φ : B → T is a natural transformation of graded functors. Since

φ(ψ(Tn)) = Im(φ ◦ ψ|Tn : Tn(V ) → Tn(V )),

we have ψ(Tn) = Bn and so ψ is also a natural transformation of graded functors, hence
the result. �

Corollary 2.4. Let C be a sub-quotient functor of T . Suppose that C is a natural
summand of TM. Then C is a graded sub-quotient functor of T .

2.3. The associated symmetric group modules of the functors

Let V̄n be the n-dimensional k-module with a fixed choice of basis {x1, . . . , xn}. For
each 1 � i � n, define the linear transformation

di : V̄n → V̄n−1

by setting

di(xj) =

⎧⎪⎨
⎪⎩

xj if j < i,

0 if j = i,

xj−1 if j > i.
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The right k(Σn)-action on V̄n is given by

xi · σ = xσ(i)

for 1 � i � n and σ ∈ Σn. Then, for each 1 � i � n and any σ ∈ Σn, clearly there exists
a unique permutation diσ ∈ Σn−1 such that the diagram

V̄n
σ

xj �→xσ(j)
��

di

��

V̄n

dσ(i)

��
V̄n−1

diσ �� V̄n−1

(2.3)

commutes. Let B be a functor from modules to modules. Then B(V̄n) is a right k(Σn)-
module induced by the action of k(Σn) on V̄n. Define

γn(B) =
n⋂

i=1

Ker(B(di) : B(V̄n) → B(V̄n−1)). (2.4)

By applying the functor B to diagram (2.3), γn(B) is a k(Σn)-submodule of B(V̄n). Let

φ : B → C

be a natural transformation of functors from modules to modules. Then clearly φV̄n

induces a k(Σn)-map
γn(φ) : γn(B) → γn(C).

Proposition 2.5. Let

A
� � j �� B

p �� �� C

be a short exact sequence of functors from modules to modules. Then there is a short
exact sequence of k(Σn)-modules

γn(A) � � γn(j) �� γn(B)
γn(p)�� �� γn(C).

Thus, γn(−) is an exact functor from the category of functors from modules to modules
to the category of k(Σn)-modules.

Remark. The exact functor γn(−) is a variation of the Schur functor given in [13] in
the following sense. Let B is a sub-quotient functor of Tn and let V be a module with
m = dimV � n. Then B(V ) is a sub-quotient k(GLm(k))-module of V ⊗n. Let V̄n embed
into V in the canonical way such that V = V̄ ⊕ V ′. In our definition, γn(B) ⊆ B(V̄ ) ⊆
B(V ). According to [9, § 1.2, p. 71], B(V ) �→ γn(B) is the Schur functor.

Proof. Define the coface operation di : V̄n−1 → V̄n by setting

di(xj) =

{
xj if j < i,

xj+1 if j � i,
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for 1 � i � n. Then the sequence of modules {V̄n+1}n�0 with faces

d1, . . . , dn : V̄n → V̄n−1

relabelled as d0, . . . , dn−1 and cofaces

d1, . . . , dn : V̄n−1 → V̄n

relabelled as d0, . . . , dn−1 by shifting indices down by 1 forms a bi-∆-group in the sense
of [30, § 1.2]. By applying the functors to the bi-∆-group {V̄n+1}n�0, one gets a short
exact sequence of bi-∆-groups

{A(V̄n+1)}n�0 ↪→ {B(V̄n+1)}n�0 � {C(V̄n+1)}n�0.

The assertion then follows by [30, Proposition 1.2.10]. �

Corollary 2.6. Let φ : A → B be a natural transformation between functors from
modules to modules. Suppose that

γn(φ) : γn(A) → γn(B)

is an isomorphism for each n � 1. Then

φV : A(V ) → B(V )

is an isomorphism for any finite-dimensional module V . Thus, if both A and B preserve
colimits, then φ is a natural equivalence.

Proof. Let C be the cokernel of φ. Suppose that C(V ) �= 0 for some finite-dimensional
module V . Let

n = min{k | C(V ) �= 0, dim(V ) = k}.

Then γn(C) = C(V̄n) �= 0. By Proposition 2.5, γn(C) = 0, which is a contradiction.
Thus, C(V ) = 0 for any finite-dimensional module V . Similarly, for D the kernel of φ,
we have D(V ) = 0 for any finite-dimensional module V , finishing the proof. �

2.4. Tn-projective functors

Consider the functor Tn. Let γn = γn(Tn). Then γn is the k-submodule of V̄ ⊗n
n spanned

by the monomials
xσ(1) ⊗ · · · ⊗ xσ(n)

for σ ∈ Σn with the right symmetric group action explicitly given by

(xi1 ⊗ · · · ⊗ xin) · σ = xσ(i1) ⊗ · · · ⊗ xσ(in) (2.5)

for σ ∈ Σn and the monomials xi1 · · ·xin ∈ γn. Observe that

γn
∼= k(Σn) (2.6)

as a k(Σn)-module.
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Let V be any k-module and let a1, . . . , an ∈ V . We write a1 · · · an for the tensor
product a1 ⊗ · · · ⊗ an ∈ V ⊗n if there is no confusion. Let the symmetric group Σn act
on V ⊗n by permuting positions. More precisely, the left k(Σn)-action on V ⊗n is given

σ · (a1 · · · an) = aσ(1) · · · aσ(n) (2.7)

for σ ∈ Σn and the monomials a1 · · · an ∈ V ⊗n. Let B be any functor from modules to
modules. Define the functor γB

n (−) by setting

γB
n (V ) = γn(B) ⊗k(Σn) V ⊗n (2.8)

for any module V . Clearly,

γTn
n (V ) = γn ⊗k(Σn) V ⊗n ∼= Tn(V ).

Proposition 2.7. Let

B
� � j �� Tn

p �� �� C

be a short exact sequence of functors from modules to modules. Then the natural iso-
morphism γn ⊗k(Σn) V ⊗n ∼= Tn(V ) induces a natural commutative diagram of exact
sequences

γn(B) ⊗k(Σn) V ⊗nγn(j)⊗id��

��

γn ⊗k(Σn) V ⊗nγn(p)⊗id�� ��

∼=
��

γn(C) ⊗k(Σn) V ⊗n

��
B(V ) � � �� Tn(V ) �� �� C(V )

with a natural exact sequence

Tork(Σn)
1 (γn(C), V ⊗n) ↪→ γn(B) ⊗k(Σn) V ⊗n → B(V ) → γn(C) ⊗k(Σn) V ⊗n � C(V ).

for any module V .

Proof. By taking the image of jV , we may consider B(V ) to be a submodule of Tn(V )
for any module V . Let

θ : γn ⊗k(Σn) V ⊗n → Tn(V )

be the isomorphism and let ΦB
V = θ ◦ (γn(j) ⊗ id). Observe that the isomorphism θ is

given by
θ(x1 · · ·xn ⊗ a1 · · · an) = a1 · · · an

for a1, . . . , an ∈ V . Let a = a1 · · · an ∈ V ⊗n be any monomial with aj ∈ V for 1 � j � n

and let
α =

∑
σ∈Σn

kσxσ(1) · · ·xσ(n) ∈ γn(B).
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Then

ΦB
V (α ⊗ a1 · · · an) =

∑
σ∈Σn

kσxσ(1) · · ·xσ(n) ⊗ a1 · · · an

=
∑

σ∈Σn

kσ(x1 · · ·xn) · σ ⊗ a1 · · · an

=
∑

σ∈Σn

kσx1 · · ·xn ⊗ σ · (a1 · · · an)

=
∑

σ∈Σn

kσx1 · · ·xn ⊗ aσ(1) · · · aσ(n)

=
∑

σ∈Σn

kσaσ(1) · · · aσ(n) ∈ V ⊗n.

Define a linear transformation fa : V̄n → V by setting

fa(xi) = ai

for 1 � i � n. Consider Tn(fa) = f⊗n
a : Tn(V̄n) → Tn(V ). Then

Tn(fa)(α) = f⊗n
a

( ∑
σ∈Σn

kσxσ(1) · · ·xσ(n)

)
= ΦB

V (α ⊗ a1 · · · an).

From the commutative diagram

B(V̄n) � � jV̄n ��

B(fa)
��

Tn(V̄n)

Tn(fa)
��

B(V ) � � jV �� Tn(V )

since
α ∈ γn(B) ⊆ B(V̄n),

we have
ΦB

V (α ⊗ a1 · · · an) = Tn(fa)(α) ∈ B(V ). (2.9)

It follows that
Im(ΦB

V ) ⊆ B(V )

for any module V . Thus, the left square in the statement of the proposition commutes.
By Proposition 2.5, there is a short exact sequence of k(Σn)-modules

γn(B) � � γn(j) �� γn
γn(p)�� �� γn(C).

Since γn is a free k(Σn)-module, there is an exact sequence

Tork(Σn)
1 (γn(C), V ⊗n) ↪→ γn(B) ⊗k(Σn) V ⊗n → γn ⊗k(Σn) V ⊗n � γn(C) ⊗k(Σn) V ⊗n.

Hence, the right square in the statement of the proposition commutes, and the asserted
exact sequence exists. �
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Example 2.8. We give an example that the natural transformation

γn(B) ⊗k(Σn) V ⊗n → B(V )

could be neither an epimorphism nor a monomorphism for subfunctors B of Tn. Let k

be a field of characteristic 2. The Lie power L2(V ) is the submodule of V ⊗2 spanned by
[a, b] = ab − ba for a, b ∈ V . The restricted Lie power Lres

2 (V ) is the submodule of V ⊗2

spanned by a2, [a, b] for a, b ∈ V . Then

γ2(L2) = γ2(Lres
2 )

is the one-dimensional submodule of k(Σ2) generated by 1 − τ . Since k is of character-
istic 2, γ2(L2) = γ2(Lres

2 ) is the trivial k(Σ2)-module and so

γ2(Lres
2 ) ⊗k(Σ2) V ⊗2 = S2(V ),

the two-fold symmetric product of V . The natural transformation

γ2(Lres
2 ) ⊗k(Σ2) V ⊗2 → Lres

2 (V )

is not an epimorphism for V with dimV � 1 because its image is given by L2(V ). The
kernel of this natural transformation is measured by

Tork(Σ2)
1 (γ2/Lie(2), V ⊗2) �= 0

for V with dimV � 1.

Let B be a functor from modules to modules. The dual functor B∗ is defined as follows.
For any finite-dimensional module V , define

B∗(V ) = B(V ∗)∗,

where V ∗ = Homk(V, k) is the dual k-module of V , and, for a general module V , let

B∗(V ) = colimVα B∗(Vα)

be the direct limit of the module B∗(Vα) subject to the direct system given by the
diagram of all finite-dimensional submodules of V with inclusions. Clearly, T ∗

n = Tn.

Proposition 2.9. Let B be a functor from modules to modules. Then γn(B∗) is the
dual k(Σn)-module of γn(B) for each n � 1.

Proof. For the basis {x1, . . . , xn} for V̄n, let {x∗
1, . . . , x

∗
n} be the standard dual basis

of V̄ ∗
n . Let

θn : V̄n → V̄ ∗
n

be the linear transformation such that θn(xj) = x∗
j for 1 � j � n. Then it is routine to

check that the composite

γn(B∗) ⊆ B∗(V̄n) = B(V̄ ∗
n )∗ B(θn)∗

−−−−→ B(V̄n)∗ � γn(B)∗

is an isomorphism of k(Σn)-modules. �
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We call a direct sum of copies of Tn a free Tn-functor. A functor B from modules to
modules is called Tn-projective if there exists a free Tn-functor F together with natural
transformations s : B → F and r : F → B such that r◦s : B → B is a natural equivalence.
In other words, a Tn-projective functor means a summand (or retract) of a free Tn-functor.

Proposition 2.10. Let B be a functor from modules to modules.

(i) If B is a Tn-projective functor, then γn(B) is a projective k(Σn)-module and there
is a natural isomorphism

γn(B) ⊗k(Σn) V ⊗n ∼= B(V )

for any module V .

(ii) If B is a subfunctor of a direct sum of finite copies of Tn with the property that
γn(B) is a projective k(Σn)-module, then B is a Tn-projective functor. Moreover,
there is a natural equivalence B ∼= B∗.

(iii) If B is a quotient functor of a direct sum of finite copies of Tn with the property that
γn(B) is a projective k(Σn)-module, then B is a Tn-projective functor. Moreover,
there is a natural equivalence B ∼= B∗.

(iv) Let B be a sub-quotient functor of a direct sum of finite copies of Tn. Suppose
that B is a Tn-projective functor. Then B is both projective and injective in the
category of sub-quotient functors of direct sums of finite copies of Tn.

Proof. The proof of assertion (i) is straightforward. Assertion (iii) follows from (ii)
by considering the dual functor.

(ii) Let B be a subfunctor of F , where F is a finite direct sum of copies of Tn. Let
C = F/B. Then there is a short exact sequence

γn(B) ↪→ γn(F ) � γn(C).

Since γn(B) is a finitely generated projective k(Σn)-module, it is an injective k(Σn)-
module and so the above short exact sequence splits as k(Σn)-modules. It follows that
γn(C) is a projective k(Σn)-module because γn(F ) is a free k(Σn)-module:

Tork(Σn)
1 (γn(C), V ⊗n) = 0.

Since F is a direct sum of copies of the functor Tn, we can apply the exact sequence in
Proposition 2.7. In particular, the natural transformation

ΦB
V : γn(B) ⊗k(Σn) V ⊗n → B(V ) (2.10)

is a natural monomorphism. The natural inclusion B ↪→ F induces an natural epimor-
phism F = F ∗ � B∗. By Proposition 2.7, there is a natural epimorphism

ΦB∗

V : γn(B∗) ⊗k(Σn) V ⊗n → B∗(V ). (2.11)
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By Proposition 2.9,
γn(B∗) ∼= γn(B)∗ ∼= γn(B)

as k(Σn)-modules because γn(B) is a finitely generated k(Σn)-projective module. Let V

be any finite-dimensional k-module. From (2.10) and (2.11), we have

dim B(V ) = dimB(V ∗)∗ = dimB∗(V ) � dim(γn(B) ⊗k(Σn) V ⊗n) � dim B(V ).

Thus, ΦB
V and ΦB∗

V are isomorphisms for any finite-dimensional module V . Since the
functors γn(B) ⊗k(Σn) (−)⊗n, B and B∗ preserve colimits, the natural transformations
ΦB and ΦB∗

are natural equivalences. The assertion now follows from the fact that
γn(B) ⊗k(Σn) V ⊗n is a natural summand of γn(F ) ⊗k(Σn) V ⊗n ∼= F (V ).

(iv) Let C be the category of sub-quotient functors of direct sums of copies of Tn. It
suffices to show that Tn is projective and injective in the C. Let B be an object in C with
a natural epimorphism q : B � Tn. It induces an epimorphism γn(q) : γn(B) → γn(Tn) =
γn. Since γn is k(Σn)-projective, there is a k(Σn)-cross-section s : γn(Tn) → γn(B). Now
the natural transformation

Tn(V ) ∼= γn(Tn) ⊗k(Σn) V ⊗n s⊗id−−−→ γn(B) ⊗k(Σn) V ⊗n ΦB
V−−→ B(V )

is a cross-section to q and so Tn is projective in C. Since Tn
∼= T ∗

n is self-dual, Tn is also
injective in C. The proof is finished. �

We remark that if B is a sub-quotient functor of Tn with the property that γn(B) is
k(Σn)-projective, it is possible that B is not Tn-projective. For instance, for the ground
field k being of characteristic 2, the functor B = Lres

2 /L2 has the property that γ2(B) = 0
with B not T2-projective.

3. The structure on lie power functors

3.1. The Lie power functors and the symmetric group modules Lie(n)

In this section, the ground ring is a field k. Let V be a module. The free Lie algebra L(V )
generated by V is the smallest sub-Lie algebra of the tensor algebra T (V ) containing V ,
where the Lie structure on T (V ) is given by [a, b] = ab − ba. The functor L admits a
graded structure

L(V ) =
∞⊕

n=1

Ln(V ),

where Ln(V ) = L(V ) ∩ Tn(V ) is called the nth Lie power of V . By applying (2.4) to the
functor Ln, we have the symmetric group module

Lie(n) = γn(Ln).

Let V̄ be the n-dimensional module with basis {x1, . . . , xn} as in § 2.3. By definition,

Lie(n) = Ln(V̄n) ∩ γn
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is spanned by the homogenous Lie elements of length n in which each xi occurs exactly
once. By the Witt formula, Lie(n) is of dimension (n − 1)!. By the antisymmetry and
Jacobi identities, Lie(n) has a basis given by the elements

[[x1, xσ(2)], xσ(3), . . . , xσ(n)]

for σ ∈ Σn−1 [5].

Proposition 3.1. There is a natural short exact sequence

Tork(Σn)
1 (γn/Lie(n), V ⊗n) ↪→ Lie(n) ⊗k(Σn) V ⊗n � Ln(V )

for any module V .

Proof. By Proposition 2.7, it suffices to show that the natural transformation

ΦLn

V : Lie(n) ⊗k(Σn) V ⊗n → Ln(V )

is an epimorphism. Let [[a1, a2], . . . an] ∈ Ln(V ) with a1, . . . , an ∈ V . Let

α = [[x1, x2], . . . , xn] ∈ Lie(n).

There then exists a unique kσ ∈ k such that

α = [[x1, x2], . . . , xn] =
∑

σ∈Σn

kσxσ(1) · · ·xσ(n).

Along the lines of the proof of Proposition 2.7, we have

ΦLn

V (α ⊗ a1 · · · an) =
∑

σ∈Σn

kσaσ(1) · · · aσ(n) = [[a1, a2], . . . , an]. (3.1)

The assertion follows from the fact that Ln(V ) is the k-module spanned by the Lie
elements [[a1, a2], . . . , an] with aj ∈ V . �

For any natural transformation φ : Ln → Ln, we have the k(Σn)-linear map

γn(φ) : γn(Ln) = Lie(n) → γn(Ln) = Lie(n).

This defines a ring homomorphism γ : End(Ln) → Endk(Σn)(Lie(n)).

Proposition 3.2. If n �= m, then Hom(Ln, Lm) = 0. Moreover, the ring homomor-
phism

γ : End(Ln) → Endk(Σn)(Lie(n))

is an isomorphism with a natural commutative diagram of functors

Lie(n) ⊗k(Σn) V ⊗n γn(δ)⊗id ��

ΦLn
V����

Lie(n) ⊗k(Σn) V ⊗n

ΦLn
V����

Ln(V )
δV �� Ln(V )

for any natural transformation δ : Ln → Ln.
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Proof. Let φ : Ln → Lm be a natural transformation. Let β̄n : Tn → Ln be the
natural epimorphism defined by β̄n(a1 · · · an) = [[a1, a2], . . . , an] for any module W and
any monomial a1 · · · an ∈ Tn(W ) = W⊗n. Then the composite

Tn
β̄ �� ��

Ln
φ−→ Lm

� � �� Tm

is a natural transformation, which is zero as Hom(Tn, Tm) = 0 for n �= m. Thus, φ = 0.
For the second statement, let δ : Ln → Ln be a natural transformation. Let V be any

module. Consider [[a1, a2], . . . , an] ∈ Ln(V ) with aj ∈ V . Let fa : V̄n → V be the linear
map with fa(xj) = aj for 1 � j � n. Then there is a commutative diagram

γn(Ln)

δV̄n

��

⊆ Ln(V̄n)
Ln(fa)��

γn(δ)
��

Ln(V )

δV

��
γn(Ln) ⊆ Ln(V̄n)

Ln(fa)�� Ln(V )

(3.2)

Thus,

δV ◦ ΦLn

V ([[x1, x2], . . . , xn] ⊗ a1 · · · an)

= δV ([[a1, a2], . . . , an]) (by (3.1))

= Ln(fa)(γn(δ)([[x1, x2], . . . , xn])) (by (3.2))

= ΦLn

V (γn(δ)([[x1, x2], . . . , xn]) ⊗ a1 · · · an) (by (2.9))

and so the diagram in the statement commutes. It follows that the map

γ : End(Ln) → Endk(Σn)(Lie(n))

is a monomorphism.
To show that γ is an epimorphism, let θ : Lie(n) → Lie(n) be any k(Σn)-linear map.

Since k(Σn) is a Fröbenius algebra, the free k(Σn)-module γn is injective and so there
is a commutative diagram of exact sequences of k(Σn)-modules

Lie(n) � � ��

θ

��

γn �� ��

θ̃

��

γn/Lie(n)

θ̄

��
Lie(n) � � �� γn �� �� γn/Lie(n)

It follows that there is a commutative diagram of short exact sequences of functors

Tork(Σn)
1 (γn/Lie(n), V ⊗n)

Tor(θ̄,id)
��

� � �� Lie(n) ⊗k(Σn) V ⊗n

θ⊗id

��

ΦLn
V �� �� Ln(V )

δ

��
Tork(Σn)

1 (γn/Lie(n), V ⊗n)
� � �� Lie(n) ⊗k(Σn) V ⊗n

ΦLn
V �� �� Ln(V )
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for some natural transformation δ : Ln → Ln. By taking V = V̄n and restricting to the
submodule γn ⊆ V̄ ⊗n, we have the commutative diagram

Lie(n)
g

∼=
��

θ

��

Lie(n) ⊗k(Σn) γn

ΦLn
V̄n

|

∼=
��

θ⊗id
��

Lie(n)

γn(δ)

��
Lie(n)

g

∼=
�� Lie(n) ⊗k(Σn) γn

ΦLn
V̄n

|

∼=
�� Lie(n)

where g(α) = α ⊗ x1 · · ·xn. Thus, θ = γn(δ) because

ΦLn

V̄
◦ g([[xσ(1), xσ(2)], . . . , xσ(n)]) = ΦLn

V̄
([[x1, x2], . . . , xn] · σ ⊗ x1 · · ·xn)

= ΦLn

V̄
([[x1, x2], . . . , xn] ⊗ σ · (x1 · · ·xn))

= ΦLn

V̄
([[x1, x2], . . . , xn] ⊗ xσ(1) · · ·xσ(n))

= [[xσ(1), xσ(2)], . . . , xσ(n)].

The proof is finished. �

Corollary 3.3. There is a one-to-one correspondence, multiplicity preserving, between
the decompositions of the functor Ln and the decompositions of Lie(n) over k(Σn).

3.2. The Tn-projective subfunctors of Ln

Let Q be a subfunctor of Ln. Then Q is a subfunctor of Tn because Ln is a subfunctor
of Tn. By Proposition 2.10, the functor Q is Tn-projective if and only if γn(Q) is a
k(Σn)-projective module. From Corollary 3.3, we have the following.

Proposition 3.4. There is a one-to-one correspondence, multiplicity preserving,
between Tn-projective subfunctors of Ln and k(Σn)-projective submodules of Lie(n)
given by Q �→ γn(Q).

According to [22, Lemma 6.2 and Theorem 7.4], there exists a subfunctor Lmax
n of Ln

with Liemax(n) = γn(Lmax
n ) that has the following maximum properties:

• Liemax(n) is a k(Σn)-projective submodule of Lie(n) and

• any k(Σn)-projective submodule of Lie(n) is isomorphic to a summand of Liemax(n)
as a k(Σn)-module.

From the stated maximum properties, Liemax(n) is unique up to isomorphisms of k(Σn)-
modules. By the above proposition, Lmax

n is unique up to natural equivalences with the
maximum properties that

• Lmax
n is a Tn-projective subfunctor of Ln and

• any Tn-projective subfunctor of Ln is isomorphic to a summand of Lmax
n .

From Proposition 2.10, we have the following.
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Proposition 3.5. There is a natural isomorphism

Φ
Lmax

n

V : Liemax(n) ⊗k(Σn) V ⊗n → Lmax
n (V )

for any module V .

3.3. The k(GL(V ))-module Ln(V )

In this subsection, the ground field k is an infinite field of characteristic p > 0 and V

is a fixed k-module with the action of the general linear group GL(V ) = GLm(k) from
the right, where m = dimV . Let GL(V ) act on Tn(V ) = V ⊗n through the diagonal, i.e.

(a1 · · · an) · g = (a1g) · · · (ang)

for ai ∈ V and g ∈ GL(V ). Recall that the Schur algebra is defined by

S(V, n) = Endk(Σn)(V ⊗n),

where the left action of Σn on V ⊗n is given by permuting factors. By the classical Schur–
Weyl duality, the group GL(V, n) generates the algebra S(V, n) = Endk(Σn)(V ⊗n) and
so there is an epimorphism of rings

k(GL(V )) → S(V, n).

Observe that if M is a sub-quotient of a direct sum of copies of V ⊗n, then the k(GL(V ))-
action factors through its quotient algebra S(V, n). Thus, if M and N are sub-quotients
of direct sums of copies of V ⊗n, then

Homk(GL(V ))(M, N) = HomS(V,n)(M, N).

Recall from [13] that the category of k(GL(V ))-modules that are sub-quotients of direct
sums of copies of V ⊗n is equivalent to the category of modules over the Schur algebra
S(V, n), which is denoted by Mod(S(V, n)).

Let B be a sub-quotient of a direct sum of copies of Tn. The action of GL(V ) on V

induces an action on B(V ) via the functor B. Thus, B(V ) is a module over k(GL(V )).
Since B(V ) is a sub-quotient of a direct sum of copies of V ⊗n, B(V ) is an object in
Mod(S(V, n)). Thus, we have a functor

Θ : B �→ B(V ),

Hom(A, B) → Homk(GL(V ))(A(V ), B(V )) = HomS(V,n)(A(V ), B(V ))

from the category of sub-quotients of direct sums of copies of Tn to Mod(S(V, n)).

Lemma 3.6. Let B be a sub-quotient of a free Tn-functor and let V be a module with
dim(V ) � n. Then B = 0 if and only if B(V ) = 0.
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Proof. If B = 0, clearly B(V ) = 0. Assume that B(V ) = 0. Let B = B̃/B′ with
B′ ↪→ B̃ ↪→ F , where F is a direct sum of copies of Tn. It is routine to check that
γj(Tn) = 0 for j > n. Thus, γj(F ) = 0 for j > n and so

γj(B′) = γj(B̃) = γj(B) = 0

for j > n. Since B(V ) = 0, we have B(V̄n) = 0 because dim V � dim V̄n = n. Thus,
γj(B) = 0 for j � n. The assertion follows by Corollary 2.6. �

Corollary 3.7. Let A and B be sub-quotients of free Tn-functors and let V be a
module with dim(V ) � n. Then

Θ : Hom(A, B) → Homk(GL(V ))(A(V ), B(V )) = HomS(V,n)(A(V ), B(V ))

is a monomorphism.

Proof. Let f : A → B be a natural transformation such that fV : A(V ) → B(V ) is 0.
Let C = Im(f : A → B). Then C(V ) = 0. Thus, C = 0 and hence the result. �

A direct sum of finite copies of Tn is called a finite free Tn-functor.

Proposition 3.8. Let B be a sub-quotient of a finite free Tn-functor and let A be a
quotient functor of a finite free Tn-functor. Suppose that dim V � n. Then the homo-
morphism

ΘA,B : Hom(A, B) → Homk(GL(V ))(A(V ), B(V )) = HomS(V,n)(A(V ), B(V ))

is an isomorphism.

Proof. By Schur–Weyl duality, the monomorphism

ΘTn,Tn : Hom(Tn, Tn) → Homk(GL(V ))(Tn(V ), Tn(V ))

is an epimorphism and so ΘA,B is an isomorphism when A and B are free Tn-functors.
According to [8, p. 94], V ⊗n is projective over S(V, n). Let A be a free Tn-functor. By
tracking the exact sequence form

ΘA,− : Hom(A, ·) → HomS(V,n)(A(V ),−)

together with the fact that ΘA,B is always a monomorphism, we have

ΘA,B : Hom(A, B) → HomS(V,n)(A(V ), B(V ))

for any sub-quotient B of a free Tn-functor. Let A be a quotient of a free functor F with
an epimorphism φ : F → A. Let C = Ker(φ). From the commutative diagram of exact
sequences

Hom(A, B) � � φ∗
��

ΘA,B

��

Hom(F, B) ��

∼= ΘF,B

��

Hom(C, B)

ΘC,B

��
HomS(V,n)(A(V ), B(V )) � � φ∗

�� HomS(V,n)(F (V ), B(V )) �� HomS(V,n)(C(V ), B(V ))

the monomorphism ΘA,B is an epimorphism, proving the proposition. �
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A k(GL(V ))-submodule M of Ln(V ) is called Tn-projective if M is isomorphic to a
summand of a direct sum of Tn(V )’s as modules over k(GL(V )). Let β̄n : Tn → Ln be
the natural epimorphism defined by β̄n(a1 · · · an) = [[a1, a2], . . . , an] for any module W

and any monomial a1 · · · an ∈ Tn(W ) = W⊗n. Let βn be the composite

Tn
β̄n �� �� Ln

� � i �� Tn .

Theorem 3.9. Suppose that dim V � n. Then

(i) the ring homomorphism

ΘLn,Ln : Hom(Ln, Ln) → Homk(GL(V ))(Ln(V ), Ln(V ))

is an isomorphism,

(ii) there is a one-to-one correspondence, multiplicity preserving, between summands
of the functor Ln and k(GL(V ))-summands of Ln(V ),

(iii) there is a one-to-one correspondence, multiplicity preserving, between Tn-projective
subfunctors of Ln and Tn-projective k(GL(V ))-submodules of Ln(V ),

(iv) for the functor Lmax
n , the module Lmax

n (V ) is the maximum Tn-projective submodule
of Ln(V ) in the sense that any Tn-projective k(GL(V ))-submodule of Ln(V ) is
isomorphic to a summand of Lmax

n (V ),

(v) for any choice of the functor Lmax
n , the socle Soc(Lmax

n (V )) is uniquely determined
by

β̄n(Soc(V ⊗n)) = βn(Soc(V ⊗n)),

(vi) for any choice of the functor Lmax
n , the head Hd(Lmax

n (V )) is uniquely determined
by

βn(Hd(V ⊗n)).

Remark. By assertion (v), the functor Lmax
n and the module Lmax

n (V ) are determined
by evaluating the map β̄n or βn on simple k(GL(V ))-submodules of V ⊗n.

Proof. Since Ln is a quotient functor of Tn, assertion (i) is a direct consequence of
Proposition 3.8. Assertion (ii) follows from (i) immediately. Assertion (iv) is a direct
consequence of (iii). The proof of assertion (vi) is similar to that of assertion (v).

For proving assertion (iii), let M be a Tn-projective k(GL(V ))-submodule of Ln(V ).
According to [8, p. 94], Tn(V ) is an injective module over S(V, n) and so is M because
M is a summand of a direct sum of finite copies of Tn. Thus, the inclusion

j : M ↪→ Ln(V ) ↪→ Tn(V )

admits a k(GL(V ))-retraction r : Tn(V ) → M . The composite

e = j ◦ r : Tn(V ) → Tn(V )
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is an idempotent in
Endk(GL(V ))(Tn(V )).

The natural transformation α = Θe : Tn → Tn is an idempotent. Let B = Im(α). Then
B is a Tn-projective subfunctor of Ln with B(V ) = M and hence assertion (iii).

(v) Let
V ⊗n =

⊕
i∈I

Pi

be a decomposition over S(V, n) such that each Pi is indecomposable. The map
β̄n : V ⊗n → Ln(V ) induces a map

β̄n : Soc(V ⊗n) =
⊕
i∈I

Soc(Pi) → Soc(Ln(V )).

Note that each indecomposable S(V, n)-summand of V ⊗n has a unique socle (see, for
example, [13, (6.4b)]). Thus, there exists I ′ ⊆ I such that

P =
⊕
i∈I′

Pi

has the property that
β̄n| : Soc(P ) → β̄n(Soc(V ⊗n))

is an isomorphism. It follows that

β̄n| : P → Ln(V )

is a monomorphism because its restriction to the socle is a monomorphism. Since P

is an injective S(V, n)-module, the map β̄n|P has a retraction. Thus, the Tn-projective
S(V, n)-module P is isomorphic to a S(V, n)-summand of Ln(V ). From the maximum
property of Lmax(n), P is isomorphic to a S(V, n)-summand of Lmax

n (V ). In particular,

β̄n(Soc(V ⊗n)) = β̄n|(Soc(P )) ⊆ Soc(Lmax
n (V )).

On the other hand, since Lmax
n (V ) is S(V, n)-projective, the inclusion

j : Lmax
n (V ) ↪→ Ln(V )

admits a S(V, n)-lifting j̃ : Lmax
n (V ) → V ⊗n such that j = β̄ ◦ j̃. Thus,

Soc(Lmax
n (V )) ⊆ β̄n(Soc(V ⊗n)).

Note that the inclusion i : Ln(V ) ↪→ Tn(V ) induces a monomorphism i| : Soc(Ln(V )) ↪→
Soc(Tn(V )). Thus,

β̄n(Soc(V ⊗n)) = βn(Soc(V ⊗n))

and hence the result follows. �

https://doi.org/10.1017/S0013091510000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000015


Natural coalgebra-split sub-Hopf algebras of tensor algebras 487

We remark that if dimV < n, then assertions (iii) and (iv) are not true by the following
example.

Example 3.10. Let k be of characteristic 3 and let V be a two-dimensional module
with basis {u, v}. Then the canonical map

f : L2(V ) ⊗ V → L3(V )[a1, a2] ⊗ a3 �→ [[a1, a2], a3]

is an isomorphism of modules over k(GL2(k)). Since L2(V ) is a k(GL(V ))-summand of
V ⊗2, L2(V ) ⊗ V is T3-projective. Thus, L3(V ) is T3-projective. On the other hand, it is
easy to see that the functor Lmax

3 = 0 and so Lmax
3 (V ) = 0.

In this case, L3(V ) is not an injective S(V, 3)-module. In fact, the inclusion L3(V ) ↪→
V ⊗3 does not have an S(V, 3)-retraction by inspecting the Steenrod module structure on
V ⊗3. Also it is easy to check that L3(V ) is not a projective S(V, 3)-module.

We call M ⊆ Ln(V ) functorial Tn-projective if there exists a Tn-projective subfunctor
Q of Ln such that M = Q(V ). (Note that here we require that Q(V ) is strictly equal to
M rather than just isomorphic to M .)

Proposition 3.11. Assume that the ground field k has infinitely many elements. Let
V be any k-module and let M be a k(GL(V ))-submodule of Ln(V ). Then M is functorial
Tn-projective if and only if M satisfies the following two conditions:

(i) there exists a k(GL(V ))-linear map r : V ⊗n → M such that r|M is the identity;

(ii) the inclusion M ↪→ Ln(V ) admits the following lifting:

V ⊗n

β̄n
����

M

��

� � �� Ln(V )

as modules over k(GL(V )).

Proof. Suppose that M is functorial Tn-projective. Let Q be a subfunctor of Ln with
Q(V ) = M . The inclusion

Q ↪→ Ln ↪→ Tn

admits a natural retraction because γn(Q) is injective. By evaluating at V , condition (i)
is satisfied. Since γn(Q) is projective, there a natural lifting j̃ : Q → Tn such that βn ◦ j̃

is the inclusion of Q in Ln and so condition (ii) is satisfied by evaluating at V .
Conversely, suppose that M satisfies conditions (i) and (ii). Let j : M ↪→ Ln(V ) and

Ln(V ) ↪→ V ⊗n be the inclusions. Let j̃ : M → V ⊗n be a k(GL(V ))-map such that
βn ◦ j̃ = j. By the Schur–Weyl duality, the map

k(Σn) = Hom(Tn, Tn) → Endk(GL(V ))(V ⊗n)
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is an epimorphism. There exists a natural transformation α : Tn → Tn such that αV =
j̃ ◦ r. Let θ = βn ◦ α. Consider the colimit of the sequence

Tn
θ−→ Tn

θ−→ Tn → · · · .

There exists k � 0 such that

Q = Im(θk) → colimθ Tn

is an isomorphism because, by taking γn(−) to the above sequence, the submodules
Im(γn(θt)) of γn(Tn) are monotone decreasing in dimension:

dim Im(γn(θ)) � dim Im(γn(θ2)) � dim Im(γn(θ3)) � · · · .

Since Q = βn(αθk−1(Tn)), Q is a Tn-projective subfunctor of Ln. By evaluating at V ,
we check that Q(V ) = M . Since

θV ◦ θV = βn ◦ αV ◦ βn ◦ αV

= i ◦ β̄n ◦ j̃ ◦ r ◦ i ◦ β̄n ◦ j̃ ◦ r

= i ◦ j ◦ r ◦ i ◦ j ◦ r

= i ◦ j ◦ r

= θV ,

the map θV is an idempotent. It follows that

Q(V ) = Im(θV ) = i ◦ j ◦ r(V ⊗n) = M

and hence the result. �

4. Coalgebra structure on tensor algebras

In this section, the tensor algebra T (V ) admits the comultiplication

ψ : T (V ) → T (V ) ⊗ T (V )

described in § 2.1.

4.1. Changing ground-rings

Some results in representation theory help us to change the ground ring. Let Z(p) be
the p-local integers. By the modular representation theory of symmetric groups (see, for
example, [7, Exercise 6.16, p. 142]), any idempotent in (Z/p)(Σn) lifts to an idempotent in
Z(p)(Σn). It is well known [14] that any irreducible module M over Z/p(Σn) is absolutely
irreducible, that is, for any extension field k, M ⊗ k is irreducible over k(Σn). Thus,
there is a one-to-one correspondence between idempotents in Z/p(Σn) and idempotents
in k(Σn).
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Let R be any commutative ring with identity. Consider T : V �→ T (V ) as the functor
from projective R-modules to coalgebras over R. Denote by coalgR(T, T ) the set of nat-
ural coalgebra self-transformations of T . Let k be any field of characteristic p. We have
canonical functions

R : coalgZ(p)(T, T ) → coalgZ/p(T, T )

by reducing mod-p and

K : coalgZ/p(T, T ) → coalgk(T, T )

by tensoring with k over Z/p. By [22, Corollary 6.9], there is a one-to-one correspon-
dence between natural indecomposable retracts of T over k and indecomposable k(Σn)-
projective submodules of Lie(n) for n � 1. Thus, we have the following.

Proposition 4.1. The functions R and K have the following properties.

• The map R : coalgZ(p)(T, T ) → coalgZ/p(T, T ) induces a one-to-one correspondence
betweens idempotents. Thus, every natural coalgebra decomposition of T over Z/p

lifts to a natural coalgebra decomposition over Z(p).

• The map K : coalgZp(T, T ) → coalgk(T, T ) induces a one-to-one correspondence
between idempotents. Thus, natural coalgebra decompositions of T depend only
on the characteristic of the ground field.

By this proposition, we can freely change between ground fields with the same char-
acteristic and lift natural coalgebra decompositions to the p-local integers if necessary.

4.2. Block decompositions

Henceforth in this section, the ground field k is algebraically closed with char(k) = p.
For any coalgebra C, let PC be the set of the primitives of C. If C is a functor from
modules to coalgebras, then PC is a functor from modules to modules. Recall from
Corollary 2.4 that if C is a sub-quotient coalgebra functor of TC such that C is a natural
summand of TM, then C is graded and so we have the homogenous functors Cn and
PnC = PC ∩ Cn for each n. For the case C = T , PT (V ) = Lres(V ) is the free restricted
Lie algebra generated by V and PnT = Lres

n for each n.
For natural transformations f, g : T → T , the convolution product f ∗ g is defined by

the composite

T (V )
ψ−→ T (V ) ⊗ T (V )

f⊗g−−−→ T (V ) ⊗ T (V ) multi.−−−−→ T (V ).

If f and g are natural coalgebra transformations, clearly f ∗ g is also a natural coalgebra
transformation. For any element ζ ∈ k, define λζ : T (V ) → T (V ) by setting

λζ(a1 · · · an) = ζna1 · · · an (4.1)

for a1, . . . , an ∈ V . In other words, λζ : T (V ) → T (V ) is the (unique) Hopf map such that
λζ(a) = ζa for a ∈ V . Let χ : T (V ) → T (V ) be the conjugation of the Hopf algebra T (V ),
namely χ is the anti-homomorphism such that χ(a) = −a for a ∈ V . More precisely,

χ(a1 · · · an) = (−1)nanan−1 · · · a1 (4.2)
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for a1, . . . , an ∈ V . For any element ζ ∈ k, we have the natural coalgebra transformation

θζ = λζ ∗ χ : T (V ) → T (V ). (4.3)

If α ∈ PnT (V ), then
θζ(α) = (ζn − 1)α (4.4)

by the definition of convolution product because ψ(α) = α ⊗ 1 + 1 ⊗ α. For general
monomials in Tn(V ), it is straightforward to check that we have the formula

θζ(a1 · · · an) =
∑

σ(1)<···<σ(k)
σ(k+1)<···<σ(n)

σ∈Σn

0�k�n

(ζk + (−1)n−k)aσ(1) · · · aσ(k)aσ(k+1) · · · aσ(n). (4.5)

The maps θζ are useful for obtaining natural coalgebra decompositions of T (V ).

Theorem 4.2. Let the ground ring k be a field of characteristic p. Then there exists
a natural coalgebra decomposition

T (V ) ∼= C(V ) ⊗ D(V )

for any module V with the property that

PCn =

{
0 if n is not a power of p,

PnT if n = pr for some r.

Remark. From the decomposition, we have PnD = 0 if n is a power of p and PnD =
PnT if n is not a power of p. The theorem allows one to give a decomposition that puts
all primitives of tensor length a power of p into one coalgebra factor and all the remaining
primitives into the other coalgebra factor.

Proof. Let {m1 < m2 < m3 < · · · } be the set of all positive integers prime to p

excluding 1 and let ζmi be a primitive mith root of 1. We shall construct by induc-
tion a sequence of sub-coalgebra functors C(k) of T , with the inclusion denoted by
jk : C(k) ↪→ T , and a sequence of quotient coalgebra functors qk : T → E(k) with the
following properties:

(i) C(k + 1) is a subfunctor C(k) for each k � 0;

(ii) there exists a coalgebra natural transformation q′
k : E(k) → E(k + 1) such that

qk+1 = q′
k ◦ qk for each k � 0;

(iii) the composite qk ◦ jk : C(k) → E(k) is a natural isomorphism;

(iv) PnC(k) = 0 if n is divisible by one of m1, m2, . . . , mk;

(v) PnC(k) = PnT if n is not divisible by any of m1, m2, . . . , mk.
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Let C(0) = E(0) = T and let i0 = q0 = id. The construction of C(1) and E(1) is
as follows. Let E(1) = colimθζm1

T be the colimit of the sequence of coalgebra natural
transformations

T
θζm1−−−→ T

θζm1−−−→ T → · · · .

Let q1 : T → E(1) be the map to its colimit. By [22, Theorem 4.5], there exists a sub-
coalgebra functor C(1) of T , with the inclusion denoted by j1 : C(1) → T , such that
q1 ◦ i1 is a natural isomorphism. From Equation (4.4),

θζm1
: PnT → PnT

is zero if m1|n and an isomorphism if m1�n. Thus, PnE(1) = colimθζm1
PnT = 0 if m1|n

and
q1 : PnT → PnE(1)

is an isomorphism if m1�n. Since C(1) ∼= E(1), conditions (iv) and (v) hold. Now suppose
that we have constructed C(j) and E(j) satisfying conditions (i)–(v) for j � k. Let
f : T → T be the composite

T
qk �� �� En

(qk◦jk)−1

∼=
�� C(k) � � jk �� T

θζmk+1 �� T

and let E(k+1) = colimf T . Let qk+1 : T → E(k+1) be the canonical map to its colimit.
Notice that

qk+1 ◦ f = qk+1 : T → E(k + 1).

Let q′
k = qk+1 ◦jk ◦ (qk ◦jk)−1. Then qk+1 = q′

k ◦qk and so condition (ii) is satisfied. Since
f factors through the subfunctor C(k), there exists a subfunctor C(k + 1) of C(k), with
the inclusion into T denoted by jk+1, such that qk+1 ◦ jk+1 is a natural isomorphism.
Hence, we have conditions (i) and (iii). Let α ∈ PnT (V ). Then

f(α) = θζmk+1
((jk ◦ (qk ◦ jk)−1 ◦ qk)(α)) = (ζn

mk+1
− 1)((jk ◦ (qk ◦ jk)−1 ◦ qk)(α)).

Thus, f(α) = 0 if n is divisible by one of m1, . . . , mk+1 and

f : PnT → PnT

is an isomorphism if n is not divisible by any of m1, . . . , mk+1. It follows that PnE(k+1) =
0 if n is divisible by one of m1, . . . , mk+1 and

qk+1 : PnT → PnE(k + 1)

is an isomorphism if n is not divisible by any of m1, . . . , mk+1. Since C(k+1) ∼= E(k+1),
we have conditions (iv) and (v). The induction is finished.

Now let

C =
∞⋂

k=0

C(k)
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be the intersection of the subfunctors C(k) of T and let E(∞) be the colimit of the
sequence

T
q1 �� �� E(1)

q′
2 �� �� E(2)

q′
3 �� �� E(3) �� �� · · · .

From condition (iii), each C(k) is coalgebra retract of T and so each C(k) is a functor from
modules to coassociative and cocommutative quasi-Hopf algebras with the multiplication
on C(k) given by

C(k) ⊗ C(k) � � �� T ⊗ TT
multi ���� �� C(k),

where we use the definition of a quasi-Hopf algebra given in [18]. By conditions (i)–(iii),
C(k +1) is a coalgebra retract of C(k) and so there is a natural coalgebra decomposition

C(k) ∼= C(k + 1) ⊗ C ′(k)

by [22, Lemma 5.3]. From conditions (iv) and (v), PnC(k + 1) = PnC(k) for n < mk+1

and so PnC ′(k) = 0 for n < mk+1. It follows that

C ′(k)n = 0

for 0 < n < mk+1. Thus,
C(k + 1)n = C(k)n

for n < mk+1 and from conditions (i)–(iii),

qk : E(k)n → E(k + 1)n

is an isomorphism for n < mk+1. Notice that the integers mk → ∞ as k → ∞. Let n be
a fixed positive integer. For the integers k with mk > n, we have Cn = C(k)n and

E(k)n

q′
k

∼=
�� E(k + 1)n

q′
k+1

∼=
�� E(k + 2)n

�� .

It follows that the composite

Cn = C(k)n
� � jk �� Tn

qk �� �� E(k)n
�� E(∞)n

is an isomorphism. Thus, the composite

C ↪→ T → E(∞)

is an isomorphism and so C is a coalgebra retract of T . This gives a natural coalgebra
decomposition

T ∼= C ⊗ D

for some coalgebra retract D of T . From conditions (iv) and (v), we have PnC = 0 if n

is not a power of p and PCpr = PTpr for r � 0. The proof is finished. �
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Theorem 4.3 (Block Decomposition Theorem). Let k be a field of characteristic
p. Let {mi}i�0 be the set of all positive integers prime to p with the order that m0 =
1 < m1 < m2 < · · · . Then there exist natural coalgebra retracts Cmi of T with a natural
coalgebra decomposition

T (V ) ∼=
∞⊗

i=0

Cmi(V )

such that

PnCmi =

{
PnT if n = mip

r for some r � 0,

0 otherwise.

Proof. We shall show by induction that there exist natural coalgebra retracts Cmi of
T , for 0 � i � k, with a natural coalgebra decomposition

T (V ) ∼=
( k⊗

i=0

Cmi(V )
)

⊗ Dk(V ) (4.6)

for some natural coalgebra retract Dk of T such that

PnCmi =

{
PnT if n = mip

r for some r � 0,

0 otherwise,

for 0 � i � k. The statement holds for k = 0 by Theorem 4.2, where Cm0 is the natural
coalgebra retract C of T given in Theorem 4.2. Suppose that the statement holds for k.
Along the lines of the proof of Theorem 4.2, using {θζmi

} for i � k +2, there is a natural
coalgebra decomposition

Dk(V ) ∼= Cmk+1(V ) ⊗ Dk+1(V ).

In brief, we first construct Emk+1(1) = colimg T as the colimit of the map g given by the
composite

T � Dk ↪→ T
θζmk+2−−−−−→ T

and then take an inductive construction along the lines of the proof of Theorem 4.2 by
pre-composing with T � Dk ↪→ T . This gives a monotone decreasing sequence of natural
coalgebra retracts Cmk+1(i) of Dk for i = 1, 2, . . . and the resulting natural coalgebra
retract Cmk+1 =

⋂∞
i=1 Cmk+1(i) of Dk has the property, on the level of primitives, that

PnCmk+1 = 0 if n is divisible by one of mk+2, mk+3, . . . and

PnCmk+1 = PnDk

if n is not divisible by any mi with i � k+2. Together with the fact that PnD = 0 if n =
mip

r for some 0 � i � k and r � 0 and PnD = PnT otherwise, we have PnCmk+1 = PnT

if n = mk+1p
r for some r � 0 and PnCmk+1 = 0 otherwise. The induction is finished.
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Now decomposition (4.6) induces a commutative diagram

T ∼=
( k⊗

i=0

Cmi

)
⊗ Dk ∼=

( k+1⊗
i=0

Cmi

)
⊗ Dk+1 qk+1

proj.
�� ��

qk

�� ��������������������

k+1⊗
i=0

Cmi

proj.
����

k⊗
i=0

Cmi

that induces a natural coalgebra transformation

T
q−→

∞⊗
i=0

Cmi ,

which is an isomorphism because, for each n, Dk
n = 0 for sufficiently large k � 0. This

finishes the proof. �

5. Proof of Theorem 1.1

In this section, the ground ring is a field k of characteristic p.

Lemma 5.1. Let Q be a Tn-projective subfunctor of Lres
n . Then Q is a subfunctor of

Ln and the sub Hopf algebra T (Q(V )) of T (V ) generated by Q(V ) is a natural coalgebra
retract of T (V ).

Proof. It is easy to see that γn(Lres
n ) = γn(Ln) = Lie(n). By Proposition 3.1, the

image of the natural transformation

Φ
Lres

n

V : γn(Lres
n ) ⊗k(Σn) V ⊗n → Lres

n (V )

is Ln(V ). Since Q is Tn-projective,

ΦQ
V : γn(Q) ⊗k(Σn) V ⊗n → Q(V )

is an isomorphism by Proposition 2.10 (i). From the commutative diagram

γn(Q) ⊗k(Σn) V ⊗n ��

∼= ΦQ
V

��

γn(Lres
n ) ⊗k(Σn) V ⊗n

Φ
Lres

n
V

��
Q(V ) � � �� Lres

n (V )

we have Q ⊆ Ln. By Proposition 2.10 (iv), there is a natural linear transformation

rV : Tn(V ) = V ⊗n → Q(V )
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with rV |Q(V ) = idQ(V ). Let
Hn : T (V ) → T (V ⊗n)

be the algebraic James–Hopf map induced by taking the homology of the geometric
James–Hopf map. Then there is a commutative diagram

T (Q(V )) � � ��

����������

����������
T (Ln(V )) � � ��

T (jV )

������������
T (V )

Hn

��
T (Q(V )) T (V ⊗n)

T (rV )��

where the maps in the top row are the inclusions of sub-Hopf algebras, jV is the canonical
inclusion and the right triangle commutes by the geometric realization theorem in [28,
Theorem 1.1]. Thus, the sub-Hopf algebra T (Q(V )) of T (V ) admits a natural coalgebra
retraction and hence the result. �

A natural sub-Hopf algebra B(V ) of T (V ) is called coalgebra-split if the inclusion
B(V ) → T (V ) admits a natural coalgebra retraction. For a Hopf algebra A, denote by
QA the set of indecomposable elements of A. Let IA be the augmentation ideal of A.
If B(V ) is a natural sub-Hopf algebra of T (V ), then there is a natural epimorphism
IB(V ) → QB(V ). Let QnB(V ) be the quotient of Bn(V ) = IB(V ) ∩ Tn(V ) in QB(V ).

Theorem 5.2. Let B(V ) be a natural sub-Hopf algebra of T (V ). Then the following
statements are equivalent:

(i) B(V ) is a natural coalgebra-split sub-Hopf algebra of T (V );

(ii) there is a natural linear transformation r : T (V ) → B(V ) such that r|B(V ) is the
identity;

(iii) each QnB is naturally equivalent to a Tn-projective subfunctor of Ln;

(iv) each QnB is a Tn-projective functor.

Proof. (i) =⇒ (ii) and (iii) =⇒ (iv) are obvious. By [22, Theorem 8.6], (ii) =⇒ (i).
Thus, (i) =⇒ (ii). From the proof of [22, Theorem 8.8], (ii) =⇒ (iii).

(iv) =⇒ (ii). Since B(V ) is a sub-Hopf algebra of primitively generated Hopf algebra
T (V ), B(V ) is primitively generated and so

rn : PnB(V ) = B(V ) ∩ Lres
n (V ) → QnB(V )

is a natural epimorphism, where Lres(V ) = PT (V ) is the free restricted Lie algebra
generated by V . Since QnB is Tn-projective, the map rn admits a natural cross-section
sn : QnB(V ) ↪→ PnB(V ) by Proposition 2.10 (iv).

Now we show that the inclusion B(V ) → T (V ) admits a natural linear retraction. By
identifying QnB(V ) with sn(QnB(V )), we have

B(V ) = T

( ∞⊕
k=1

QkB(V )
)

⊆ T (V ).
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Since each QkB is a retract of the functor Tk,

Qi1B ⊗ · · · ⊗ QitB

is a retract of Ti1+i2+···+it
for any sequence (i1, . . . , it). Note that {QiB(V ) | i � 1} are

algebraically independent. Thus, the summation∑
i1+i2+···+it=q

Qi1B(V ) ⊗ Qi2B(V ) ⊗ · · · ⊗ QitB(V ) ⊆ Tq(V ) = V ⊗q

is a direct sum. From the fact that⊕
i1+i2+···+it=q

Qi1B ⊗ Qi2B ⊗ · · · ⊗ Qit
B

is Tn-projective, there is natural linear retraction

V ⊗q →
⊕

i1+i2+···+it=q

Qi1B(V ) ⊗ Qi2B(V ) ⊗ · · · ⊗ Qit
B(V )

for any q � 1. Hence, the inclusion B(V ) → T (V ) admits a natural linear retraction. �

Proof of Theorem 1.1. Let B(V ) be the sub-Hopf algebra of T (V ) generated by

Lmipr (V ) for i ∈ I, r � 0.

Let {nj}j�1 = {mip
r | i � 1, r � 0} with

n1 = m1 < n2 < · · · .

That is, we rewrite the integers mip
r in order. Let B[k](V ) be the sub-Hopf algebra of

V generated by Lnj (V ) for 1 � j � k. By Theorem 5.2, it suffices to show that QnB is
Tn-projective for n � 1. Let n be a fixed positive integer. Choose k such that nk � n.
Then the inclusion B[k] ↪→ B induces an isomorphism

QnB[k] ∼= QnB

because B[k] and B has the same set of generators in tensor length � n. Thus, it suffices
to prove the following statement.

For each k � 1, B[k] is coalgebra-split.

The proof of this statement is given by induction on k. The statement holds for k = 1
by Lemma 5.1 because Lm1 is Tm1-projective by [22, Corollary 6.7] from the assumption
that mi is prime to p. Suppose that B[k−1] is coalgebra-split. Thus, there is a coalgebra
natural transformation r : T → B[k − 1] such that r|B[k−1] is the identity map. Let
nk = mip

r for some i and r. Let Cmi be the natural coalgebra retract in Theorem 4.3
with a natural coalgebra retraction rC : T → Cmi . Define f : T → T to be the composite

T
rC−−→ Cmi ↪→ T

r−→ B[k − 1] ↪→ T. (5.1)
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Let Ẽ = colimf T be the colimit with the canonical map

q : T → Ẽ.

As in the proof of Theorem 4.2, there exists a coalgebra subfunctor C̃ of Cmi such that

q|C̃ : C̃ → Ẽ

is an isomorphism by [22, Theorem 4.5] with a natural coalgebra decomposition

Cmi ∼= C̃ ⊗ D̃. (5.2)

According to [22, Lemma 5.3], the subfunctor D̃ of Cmi can be chosen as the cotensor
product k �Ẽ Cmi under the coalgebra map

q|Cmi : Cmi → Ẽ

and so there is a left exact sequence

PnD̃ ↪→ PnCmi
Pnq|Cmi−−−−−−→ Ẽ (5.3)

for any n.
By restricting the map f as the composite in (5.1) to the primitives, we have the map

Pnf : PnT
PnrC−−−→ PnCmi ↪→ PnT

Pnr−−→ PnB[k − 1] ↪→ PnT.

If n �= mip
t for t � 0, then Pnf = 0 because PnCmi = 0. If n = mip

t for some t � 0 with
n < nk, then Pnf is the identity map because PnCmi = PnT and PnB[k − 1] = PnT =
Lres

n as the sub-Hopf algebra B[k − 1] contains Lmips for s � 0. Thus,

PnC̃ = PnCmi

for n < nk. From decomposition (5.2), we have

PnCmi = PnC̃ ⊕ PnD̃ (5.4)

for all n and so PnD̃ = 0 for n < nk. It follows that D̃n = 0 for 0 < n < nk and

D̃nk
= Pnk

D̃. (5.5)

Now consider the case Pnf for n = nk = mip
r. Since PnCmi = PnT , PnrC = id and so

Pnf ◦ Pnf = Pnf with
Pnf(α) = Pnr(α)

for α ∈ PnT . Thus, the composite

Im(Pnf) = PnB[k − 1]
Pnq|B[k−1]−−−−−−−→ PnẼ = colimPnf PnT
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is an isomorphism. From the exact sequence (5.3), we have

PnD̃ = Ker(Pnr : PnCmi = PnT → PnB[k − 1]).

Let j : PnB[k − 1] ↪→ PnCmi = PnT be the inclusion. From the commutative diagram

PnD̃ = Ker(Pnr)� �

��

∼=

��������������

PnC̃
� � i ��

∼=

�������������� PnCmi

Pnr
����

�� �� Coker(i)

PnB[k − 1]

the summation PnB[k − 1] + PnD̃ in PnT = PnCmi is a direct sum and there is a
decomposition

PnCmi = PnT = PnB[k − 1] ⊕ PnD̃.

From definition of B[k], PB[k](V ) is the restricted sub-Lie algebra of Lres(V ) = PT (V )
generated by Lni(V ) for 1 � i � k. It follows that PnB[k] = Lres

n = PnT = PnCmi and

QnB[k] ∼= PnB[k]/PnB[k − 1] = PnCmi/PnB[k − 1] ∼= PnD̃.

From decomposition (5.2), D̃n is a natural summand of Cmin
n . Since Cmin is a coalgebra

retract of T , Cmin
n is a natural summand of Tn. Thus, D̃n is Tn-projective. By iden-

tity (5.5), PnD̃ is Tn-projective. Thus, QnB[k] is Tn-projective. By Theorem 5.2, B[k] is
coalgebra-split. The induction is finished and hence the result. �

By inspecting the proof, we obtain the following slightly stronger statement.

Theorem 5.3. Let M = {mi}i∈I be a finite or infinite set of positive integers prime
to p with each mi > 1. Let f : I → {0, 1, 2, . . . } ∪ {∞} be a function. Then the sub-Hopf
algebra BM,f (V ) of T (V ) generated by

Lmipr (V ) for i ∈ I, 0 � r < f(i),

is natural coalgebra-split.

6. Decompositions of Lie powers

Let m = kpr with k �≡ 0 mod p and k > 1. According to [22, Theorem 10.7], the functor
Lkpr admits the following functorial decomposition:

Lkpr = L′
kpr ⊕ Lp(L′

kpr−1) ⊕ · · · ⊕ Lpr (L′
k)

for each r � 0 starting with L′
k = Lk, where each L′

kpr is a summand of Tkpr , which is
called Tkpr -projective in our terminology. By evaluating on V , one gets the decomposition
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of the k(GL(V ))-module Lkpr (V ) given in [3, Theorem 4.4] by using an approach different
from representation theory, where L′

kpr (V ) was denoted by Bkpr in [3]. From Theorem 5.3,
we can obtain various new decompositions of Lkpr , and therefore, by evaluating on V ,
new decompositions of the k(GL(V ))-module Lkpr (V ).

Let M = {mi}i∈I be a finite or infinite set of positive integers prime to p with each
mi > 1. Let f : I → {0, 1, 2, . . . } ∪ {∞} be a function. Let BM,f (V ) be the sub-Hopf
algebra of T (V ) generated by

Lmipr (V ) for i ∈ I, 0 � r < f(i).

According to Theorem 5.3, BM,f is coalgebra-split and so QnBM,f is Tn-projective by
Theorem 5.2. Since BM,f (V ) is a sub-Hopf algebra of the primitively generated Hopf
algebra T (V ), it is primitively generated by [18, Proposition 6.13] and so there is a
natural epimorphism

φn : PnBM,f � QnBM,f .

From Proposition 2.10 (iv), the map φn admits a natural cross-section because QnBM,f

is Tn-projective. Thus, there is a subfunctor DM,f
n of PnBM,f such that

φn| : DM,f
n → QnBM,f

is a natural isomorphism. Since DM,f
n is Tn-projective, we obtain

DM,f
n ⊆ PnBM,f ∩ Ln

along the lines of the proof of Lemma 5.1. Thus, DM,f
n is a Tn-projective subfunctor of

Ln. From the fact that DM,f ∼= QnBM,f and BM,f is isomorphic to the tensor algebra
generated by QnBM,f with n � 1, the inclusion

∞⊕
n=1

Dn ↪→ BM,f

induces a natural isomorphism

T

( ∞⊕
n=1

Dn

)
∼= BM,f . (6.1)

Since the algebra BM,f is generated by Lmipr (V ) for mi ∈ M and 0 � r < f(i), we have

DM,f
n = 0 if n �= mip

r for some mi ∈ M and some 0 � r < f(i). (6.2)

Let {mip
r | mi ∈ M, 0 � r < f(i)} = {n1, n2, . . . } with n1 < n2 < · · · and let α be

the cardinality of the set {mip
r | mi ∈ M, 0 � r < f(i)}. Then decomposition (6.1)

becomes

T

( α⊕
i=1

Dni

)
∼= BM,f (6.3)
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and so we obtain a natural isomorphism

PT

( α⊕
i=1

Dni

)
= Lres

( α⊕
i=1

Dni

)
∼= PBM,f = BM,f ∩ Lres. (6.4)

According to Proposition 4.1, the sub-Hopf algebra BM,f is also a natural coalgebra
retract of T if we change the ground ring R to the p-local integers. Notice that PT = L

and PBM,f = BM,f ∩ L when R = Z(p). By changing the ground ring back to Z/p and
then extending it to k, we have the following decomposition:

L

( α⊕
i=1

Dni

)
∼= BM,f ∩ L. (6.5)

We shall apply ideas from the Hilton–Milnor Theorem to determine BM,f ∩ Ln. Recall
the terminology of a basic product from [27, p. 512]. Let x1, . . . , xk be letters. A monomial
means a formal product w = xi1xi2 · · ·xin

with 1 � i1, . . . , it � k, where the word length
n is called the weight of w. We define the basic products of weight n by induction on
n and, for each such product, a non-negative integer r(w), called its rank. These are to
be linearly ordered, in such a way that w1 < w2 if the weight of w1 is less than the
weight of w2. The serial number s(w) is the number of basic products � w in terms of
this ordering. The basic products of weight 1 are the letters x1, . . . , xk with the order
x1 < x2 < · · · < xk. Set r(xi) = 0 and s(xi) = i. Suppose that the basic products of
weight less than n have been defined and linearly ordered in such a way that w1 < w2

if the weight of w1 is less than that of w2, and suppose that the rank r(w) of such a
product has been defined. Then the basic products of weight n are all monomials w1w2

of weight n, for which w1 and w2 are basic products, w2 < w1 and r(w1) � s(w2). Give
these an arbitrary linear order, and define r(w1w2) = s(w2).

Let Wk be the set of all basic products on the letters x1, . . . , xk by forgetting the
ordering. Then

Wk ⊆ Wk+1

for each k. Let

W∞ =
∞⋃

k=1

Wk.

The elements in W are called basic products on the sequence of the letters xi for i � 1.
For each basic product w = xi1 · · ·xit ∈ Wα, define

w(DM,f ) = DM,f
ni1

⊗ · · · ⊗ DM,f
nit

(6.6)

with the tensor length with respect to DM,f

d(w) = ni1 + ni2 + · · · + nit

and the natural transformation

φw : w(DM,f )(V ) → T

( α⊕
i=1

Dni(V )
)

∼= BM,f (V )
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given by
φw(z1 ⊗ z2 ⊗ · · · ⊗ zt) = [[z1, z2], . . . , zt]

for zj ∈ DM,f
nij

(V ). Then the map φw extends uniquely to a natural transformation of
Hopf algebras

Tφw : T (w(DM,f )) → T

( α⊕
i=1

Dni(V )
)

∼= BM,f (V )

by the universal property of tensor algebras. Now by taking homology as in the Hilton–
Milnor Theorem [27, Theorem 6.7], we have the natural isomorphism of coalgebras

θ :
⊗
w

T (w(DM,f ))
∼=−→ T

( α⊕
i=1

Dni

)
∼= BM,f , (6.7)

where w runs over all basic products in Wα, the tensor product is linearly ordered and the
natural transformation θ is given by the ordered product of Tφw, which is well defined
because the tensor length d(w) tends to ∞ as the weight of w tends to ∞. By restricting
to Lie powers, we have the decomposition

θ| :
⊗
w

L(w(DM,f ))
∼=−→ L

( α⊕
i=1

Dni

)
∼= BM,f ∩ L. (6.8)

By taking tensor length, we obtain the following decomposition theorem.

Theorem 6.1. Let M = {mi}i∈I be a finite or infinite set of positive integers prime
to p with each mi > 1 and let f : I → {0, 1, 2, . . . }∪{∞} be a function. Then there exists
a Tmipr -projective subfunctor DM,f

mipr of Lmipr for each mi ∈ M and 0 � r < f(i) such
that

Lmipr =
⊕

d(w)|mipr

Lmipr/d(w)(w(DM,f ))

for mi ∈ M and 0 � r < f(i), where w runs over basic products with d(w)|mip
r.

Remarks.

• Since each Dni
is Tni

-projective, the tensor product w(DM,f ) is Td(w)-projective.
If mip

r/d(w) is prime to p, then the Lie power Lmipr/d(w)(w(DM,f )) is Tmipr -
projective. Thus, the non-Tmipr -projective summands of Lmipr occur in the factors
Lmipr/d(w)(w(DM,f )) with mip

r/d(w) ≡ 0 mod p.

• The multiplicity of each factor Lmipr/d(w)(w(DM,f )) can be determined as follows.
Let w be a basic product involving the letters xj1 , . . . , xjk

such that xji occurs li
times and d(w)|mip

r. According to [27, (6.4), p. 514], the multiplicity of the factor
Lmipr/d(w)(w(DM,f )) is given by the formula

1
l

∑
d|l0

µ(d)
(l/d)!

(l1/d)! · · · (lk/d)!
,

where µ is the Möbius function, l0 is the greatest common divisor of l1, . . . , lk and
l = l1 + · · · + lk.
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Example 6.2. Let k be of characteristic 2. Let M = {m1 = 3} and let f(1) = 3.
Then we have the natural coalgebra-split sub-Hopf algebra

BM,f (V ) = 〈L3(V ), L6(V ), L12(V )〉

of T (V ) with DM,f
3 = L3, DM,f

6
∼= L′

6 = L6/L2(L3) and

DM,f
12

∼= L12/([L′
6, L

′
6] ⊕ [[L′

6, L3], L3] ⊕ L4(L3)).

From Theorem 6.1, we have the decomposition

L12 = D12 ⊕ L(D3 ⊕ D6) ∩ L12

= D12 ⊕ L4(D3) ⊕ L2(D6) ⊕ [[D6, D3], D3]
∼= D12 ⊕ L4(L3) ⊕ L2(L′

6) ⊕ [[L′
6, L3], L3].

By comparing this with [22, Theorem 10.7] or [3, Theorem 4.4], the T12-projective sum-
mand

[[L′
6, L3], L3] ∼= L′

6 ⊗ L3 ⊗ L3

can be recognized in our decomposition for L12.

Let M be the set of all positive integers mi with mi prime to p and mi > 1 and let
f(i) = ∞ for all i. Then we have

{mip
r | mi ∈ Mr � 0} = N \ {1, p, p2, p3, . . . }.

Let

D̄n = DM,f
n

for n not a power of p. As a special case of Theorem 6.1, we have the following.

Corollary 6.3. There exists a Tn-projective subfunctor D̄n of Ln for each n not a
power of p such that

Lm =
⊕

d(w)|m
Lm/d(w)(w(D̄))

for any m not a power of p, where w runs over basic products with d(w)|m.
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