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Two General Theorems in the Differential Calculus.

By "WILLIAM BRASH.

(Received 22nd April 1912. Read l^th June 1912.)

1.

Theorem I. Let nap denote

where S = —. Then for any change in the independent variable x,
CLX

dp dn

say z =f(x)t the coefficient of —— in -J-JJ is nap.

This theorem is true for all positive integral values of n and p.
The expression under the brackets becomes symmetrical on adding
the term zpb>(z°), which is zero, and is left out except in the
particular case of n = 0, when it is zp.

Example : x = t', or z = logK.
By the above theorem

d3 f d3 }d I f d3
 t d3 \d^ I d 3

agreeing with a result well known in the theory of differential
equations.

Proof of Theorem I. by Induction.
We have

... + (p -
(A)
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Now

then

if
d'u du

><h~dz

• M »

d"u

= . + 1 a l ^ + . . . + , + 1 a p — + ..., by (A).

Thus if the theorem holds for all positive integral values of p
when n = s, it also holds when n = s + 1.

Again, when n = 1, JOJ = S(z)

and (D

(p-
= 0,

whence -r— = 8(z)-r- •
dx dz

So when n = 2,

whence _ - 8 » . _ + { « ( » ) } • . _ .

Hence the theorem holds for all values of p when n= 1, 2. It
follows in the usual way that the theorem holds for all values of
p and n.

Cor, When p>n, nap = 0.
Note.—A more rigorous proof of this theorem can be based on

a 'p' induction for all values of «. The above proof, however,
has the advantage of much greater simplicity.

2,

In (A) let n = p-l, then nap = 0.

etc.

(B).
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Again, from (A) we have, putting n = p + l and using (B),
8(z).pap_l,

2) + 8(z){(p -

(C).

Similarly

-l) (P-2) (p - 3)

pap_3 is of the form a(S2
z)

3(8z)^ + /3{S'z)(S!lz)

where a, /3, y involve p and not z.

And par is a sum of terms of the form

A{Sz)a(S'z'f(S3z)y (E)

where a + 2/J + 3y + ... =p,

and A involves p and r, but not z.

d"
Now in the transformation of -— by means of the substitution

s =f(x), we are dealing with the coefficients pan [r=p, p-l, ...1].

To find when all these coefficients will be constant multiples of
one another. We must have from (B) and (C) the relation

or A;S*z = (&s)2 (F).

cx + d

.-. z = \og(cx + d).

By (F) the terms in pir all reduce to the form

i.e. to the form

and (F) therefore denotes a necessary and sufficient condition.
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d*
Hence z = log(ea: + d) alone transforms -7— into

f d* dr-1 d \
<t>(x){ a— h b——; + ... + «— J,r v '\ dz* dz*-1 dz)

k
where a,b, ...k are constants. <f>(x) n a s then the value -3—

and we see t h a t z = log(cx + d) transforms the differential equation

) n - ~ = 0

The conditions that z =f(x) transforms

2(ea: + d)n-~ = 0 into a linear equation with constant coefficients.

where X,...X, are functions of x, into an equation with constant
coefficients are

etc.

Thus if Xp = af, these conditions give Xp_1 = aaf~1, Xp_3=bxp~t,
etc. This is the case above discussed.

If X_ = —— and o = l, .•. 2 = sina;,
^ cos**

Y a sinx
Y

*~* cosa; cos**'
Thus the equations

y" + (acosx + ta,nx)y' + cos1*. y = 0,
y"+ tana:. y' + cot̂ JB.y = 0,

are both reducible by the substitution z — sinx.

3.

Theorem II. For a general transformation of the farm
Z=*AX)> y = «*.<£(*),

the coefficient of —r— in -rr2- is
as dor
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In particular the coefficient of u in -r-~- is S?{<j>(x)},

and the coefficient of -^ in - j -^- is <j>(x) (8z)n.

Example : x = «*, y = we21 = war8.

By the theorem, the coefficient of

g- in g-
6 logx 41oga!-|
« x a; J

the coefficient of
d*u . <?« »

5?" m ^ = a :

and the coefficient of u in -—- = 0.
dx*

These results agree with the formula used in differential
equations, viz.,

ndu
2

Theorem II. follows at once from Theorem I., and the Theorem
of Leibniz, for if y = M . <£(»:),

dru
and the coefficient of -r— on the right

dz

Also, since pap •» (pzf, it follows that the coefficient of

—- in -r?- is 4>(x)(-?\
dzn
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and the coeflScient of u is clearly 8"{<£(a:)}. Hence Theorem II.
is proved.

4.

Theorem: By the substitution z = (ax + b)/(cx + d), y = u(cx + rf)""1

-~ is transformed into ,— n ,, ——, where p = ad-bc.
dx" (cx + d)"+1 dz"

This Theorem follows from Theorem II. Thus, using the
substitution z =J\x), y = u. <f>(x),

T^-becomes 2 — 5"{<£(a?) . zr} - rz8"{<£(a;) . z'"1} + ... ±sax r=o »•! L
The sufficient conditions that all the differential coefficients up

to the (n — l)th, as well as the term in u, may vanish, are

} = 0 (i),
}=0 (ii),

8"{<f>(x).z*}=0 (Hi),

•(i) gives <t>(x) — a0 + a tx + ...

(n) then gives zn~l = ——
a0 + a-p + ...+ an_ia;"~

and from (i) it follows that z = (ax + b)/(cx + d).
Hence also <j>(x) - (cx + )̂"~'> a n d the theorem follows at once.
Thus if we take the equation
(ox2 + /3x + y)ny("' = ley where ax* + fix + y = (ax + b) (cx + d)

and apply the substitution z = (ax + b)/(cx + d), y = u(cx + of)""1,
ipn dnu

it becomes (ax + b)n(cx + d)n —- = ku(cx + d)""1,

/ax + b\"d"u ,,
i.e. I 1 = * «

or zn-— = A; M,
dz^

which has the solution u — 2 Am3m

where mlt ..., «»B are the roots of the equation
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5.

Generally speaking, it is only when we are dealing with linear
equations that the discovery of a particular integral helps us to
the complete solution. Thus for the equation

it is easy to find the particular integral y = xl/s, but since the
equation is not linear, this does not lead to a complete solution.
If we apply the transformation z = \/x, y = ux, which is a
particular case of the transformation of §4, p= 1, and the equation
reduces to

v?u." + 2/9 = 0.

The complete solution

I = 2/3(1/*+ c2)

is now easily obtained.

In this example we reduced the equation to a known form.

We shall consider from this point of view the general equation

(1)

Putting 2=^*) , and y = u.<j>(x), (1) becomes
dru

where P = •

and Q =

dQ _ <£. Sz . u. 83</> + <f>. Sz. ifx + <ft • 82 . </>„ . uS<f) - (u$?<f> + f) (8<j!>. 82 + 2</>. ^2
~d7= tf.2(S3)4

d?_ _ 2<j>. (Szf. 8><l> - 2<t>. &z . &z . S<f> + ^ 8 2 . 83z - 2(8zf(S<t>Y - 2ff(822)!!

~dz <t>\8z)4 "

H e n c e P a n d Q a re i n d e p e n d e n t of z if

4>. Sz . uS1^ + <f>Sz^t + < £ S 2 « ^ M S < £ - (uS2<j> + f ) ( t y . S z + 2<t>. &z) = 0 , ( A )

a n d 2<l>(SzyS>4> - 2^S«8228<^> + c ^ S ' z - 2(Sz)2(8<^)' - 2<f>2(8lzy = 0. (B)
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We have a particular solution of (B) when P = 0,
».«. when <f>8>z + 28<i>.8z = 0 (a)
o r fiz = a / ^ s (/3).

Using (a) in (A) it reduces to

Sz.{<j>. f , + u<f,. 8<f>. fa + 3S<f> . f + u(<f>S'<l> + 3ST-<j> .8<l>)}= 0 .

or Wx + y8<j>.fa + 38<f>.f + V$><l> + ?y?^£ = 0 [&*0], (C).
<p

The Lagrangian Subsidiary System is

dx dy dxf/
<j> y . <f> - Z $ i \ i - y<f>'" - 3y<f)"<f)'

dx dy . dd> dy
-r = —~-, gives —- = — •<f> y<f> <f> y

Using this in the last equation, we have

Hence <)>»(<(> +a<t>") = b

or

Hence the general solution of (C) may be written

$ = •^X(y/<t>) - Vl4> • 4>" [X arb i t ra ry] ,

or = p
cPu 1

Hence -r-? + -rx{yl<t>) - y/<f> • <j>" = 0 can be reduced to

d?u
J T + Q ^ O I WQere Q does not contain z, by means of the
substitution
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Special cases:

1 <bf — 0) • *• <f> — CLX -H o & n d w s* — ̂

y \\/v*v -

Hence substitution y = u(ax + b), z = r will reduce the

equation *y, * / y \ o
dx* yiX\ax + b)

2°

.•. the substitution y = u. Jcuf + bx + c, *

r
J

cP« 1 / v \
reduces the equation - ^ + -rXl —, — I = 0.

6.

The substitution z = (ax + b)/(cx + d), y = tt(ca; + c?)"""1 will reduce

the more general equation —— + Mxy) = 0 to a known form if
dx*

r - ) X arbitrary.

7.

The equation -rr + -jx(y/x) = Q (*) is homogeneous in the
axr y^

sense that all the terms are of the same order when y and x are
considered of order 1, and y" of order - 3. In certain cases it is
also homogeneous when y is considered of order n, y' of order
n - 1 , etc., and x of order 1, when it will be reducible to an
equation of the 1st order by the substitution x — e1, y — uxn (2).
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Therefore, corresponding to the cases where (1) is homogeneous
in both senses, we have a soluble class of equations of the 1st
order.

(1) is homogeneous in the 2nd sense when and only when
4n-2 = a(n- 1) (3), and the equation is i/y" = A(y/x)a.

Using (2) and putting p = —r, this equation becomes
az

2±?dp 2±?
Hence p^- + (2n- 1) p + n(n- 1) u + Aw—' = 0

du

is a soluble class of equations.

Examples :

1 y~TT ~V sec2a; can be put in the form

cPy 1

which is of the form of § 5 when <j>" =-</>, i.e. <f> — cosa;.

Therefore substitution a = tanz, y = u cosx reduces this equation.

So for yy" + y- = sech2a;.

2° e = ~3> y = ux* reduces

3°

J 9 ^
du
dP 1

Py--P + —
du r u

are of soluble type of § 7.
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