Two General Theorems in the Differential Calculus.

By William Brash.

(Received 22nd April 1912. Read 14th June 1912.)

1.

Theorem I. Let ${ }_{n} a_{p}$ denote

$$
\frac{1}{p!}\left\{\delta^{n}\left(z^{p}\right)-p z \delta^{n}\left(z^{p-1}\right)+\frac{p(p-1)}{1.2} z^{2} \delta^{n}\left(z^{p-2}\right)-\ldots \pm p z^{p-1} \delta^{n}(z)\right\},
$$

where $\delta \equiv \frac{d}{d x}$. Then for any change in the independent variable x, say $z=f(x)$, the coefficient of $\frac{d^{p}}{d z^{p}}$ in $\frac{a^{n}}{d x^{n}}$ is ${ }_{n} a_{p}$.

This theorem is true for all positive integral values of n and p. The expression under the brackets becomes symmetrical on adding the term $2^{p} \delta^{n}\left(z^{\circ}\right)$, which is zero, and is left out except in the particular case of $n=0$, when it is z^{p}.

Example: $x=\epsilon^{2}$, or $z=\log x$.
By the above theorem

$$
\begin{aligned}
\frac{d^{3}}{d x^{3}} & =\left\{\frac{d^{3}}{d x^{3}}(\log x)\right\} \frac{d}{d z}+\frac{1}{2!}\left\{\frac{d^{3}}{d x^{3}}(\log x)^{2}-2 z \frac{d^{3}}{d x^{3}}(\log x)\right\} \frac{d^{2}}{d z^{2}}+\frac{1}{x^{3}} \frac{d^{3}}{d z^{3}}, \\
& =e^{-s z}\left\{2 \frac{d}{d z}-3 \frac{d^{2}}{d z^{2}}+\frac{d^{3}}{d z^{3}}\right\}, \\
& =e^{-s z}\left(\frac{d}{d z}-2\right)\left(\frac{d}{d z}-1\right) \frac{d}{d z},
\end{aligned}
$$

agreeing with a result well known in the theory of differential equations.

Proof of Theorem I. by Induction.

We have

$$
\begin{align*}
& \delta\left(_{n} a_{p}\right)=\frac{1}{p!}\left[\left\{\delta^{n+1}\left(z^{p}\right)-p z \delta^{n+1}\left(z^{p-1}\right)+\ldots \pm p z^{p-1} \delta^{n+1}(z)\right\}\right. \\
& \left.-p \delta(z)\left\{\delta^{n}\left(z^{p-1}\right)-(p-1) z \delta^{n}\left(z^{p-2}\right)+\ldots \mp(p-1) z^{p-1} \delta^{n}(z)\right\}\right] \\
& ={ }_{w+1} a_{p}-\delta(z) \cdot{ }_{n} a_{p-1} \tag{A}
\end{align*}
$$

Now if

$$
\frac{d^{d} u}{d x^{\top}}=a_{1} \frac{d u}{d z}+\ldots+a_{\nu-1} \frac{d^{p-1} u}{d z^{\mu-1}}+a_{y} \frac{d^{p} u}{d z^{p}}+\ldots
$$

then

$$
\begin{aligned}
\frac{d^{d^{+1} u}}{d x^{+1}} & =\delta\left(a_{1}\right) \cdot \frac{d u}{d z}+\ldots+\left\{a_{p-1} \cdot \delta(z)+\delta\left(a_{0} a_{p}\right) \frac{d^{p} u}{d z^{p}}+\ldots,\right. \\
& ={ }_{\downarrow+1} a_{1} \frac{d u}{d z}+\ldots+{ }_{\imath+1} a_{p} \frac{d^{p} u}{d z^{p}}+\ldots, \text { by (A). }
\end{aligned}
$$

Thus if the theorem holds for all positive integral values of p when $n=s$, it also holds when $n=s+1$.

Again, when $n=1,{ }_{1} a_{1}=\delta(z)$
and

$$
\begin{aligned}
(p>1),{ }_{1} a_{p} & =\frac{1}{p!}\left\{\delta\left(z^{p}\right)-p z \delta\left(z^{p-1}\right)+\ldots \pm p z^{p-1} \delta(z)\right\}, \\
& =\frac{z^{p-1} \delta(z)}{(p-1)!}\left\{1-(p-1)+\frac{p(p-1)}{1.2}-\ldots \pm 1\right\} \\
& =0,
\end{aligned}
$$

whence $\frac{d u}{d x}=\delta(z) \frac{d u}{d z}$.
So when $n=2, \quad{ }_{2} a_{1}=\delta^{2}(z)$,

$$
{ }_{2} a_{2}=\{\delta(z)\}^{2},
$$

$$
(p>2), \quad a_{p}=0
$$

whence $\frac{d^{2} u}{d x^{2}}=\delta^{2}(z) \cdot \frac{d u}{d z}+\{\delta(z)\}^{2} \cdot \frac{d^{2} u}{d z^{2}}$.
Hence the theorem holds for all values of p when $n=1,2$. It follows in the usual way that the theorem holds for all values of p and n.

Cor. When $p>n,{ }_{n} a_{p}=0$.
Note.-A more rigorous proof of this theorem can be based on a ' p ' induction for all values of n. The above proof, however, has the advantage of much greater simplicity.

2.

In (A) let $n=p-1$, then ${ }_{n} a_{p}=0$.

$$
\begin{array}{rlrl}
\therefore \quad{ }_{p} a_{p} & =\delta(z) \cdot{ }_{p-1} a_{p-1} \\
& =(\delta z)_{p-2}^{2} a_{p-2} \\
& \text { etc. } & & { }_{p} a_{p}
\end{array}=\{\delta z\}^{p} \ldots \ldots . .
$$

Again, from (A) we have, putting $n=p+1$ and using (B), ${ }_{p+1} a_{p}=\delta\left\{(\delta z)^{p}\right\}+\delta(z) \cdot{ }_{p} a_{p-1}$,
$=p(\delta z)^{p-1} \delta^{2}(z)+\delta(z)\left\{(p-1)(\delta z)^{p-2} \delta^{2} z\right\}+(d z)^{2}\left\{(p-2)(d z)^{p-3} . \delta^{2} z\right\}$ $+\ldots+(\delta z)^{p-1}\left\{\delta^{2} z\right\}$,
$\therefore{ }_{p+1} a_{p}=\langle\delta z)^{p-1} \delta^{2} z\{p+(p-1\rangle+(p-2)+\ldots+1\}$.
$=\frac{(p+1) p}{2} .(\delta z)^{p-1} \delta^{2} z$.
Or ${ }_{p} a_{p \sim 1}=\frac{p(p-1)}{2}(\delta z)^{p-2} \delta^{2} z$
Similarly
${ }_{p} a_{p-2}=\frac{p(p-1)(p-2)(p-3)}{2.4}\left(\delta^{2} z\right)^{2}(\delta z)^{p-1}+\frac{p(p-1)(p-2)}{2 . .3} .(\delta z)^{p-3} \delta^{3}(z)$.
${ }_{p} a_{p-3}$ is of the form $a\left(\delta^{2} z\right)^{3}(\delta z)^{p-6}+\beta\left(\delta^{2} z\right)\left(\delta^{3} z\right)(\delta z)^{p-5}+\gamma(\delta z)^{p-4} \delta^{4} z$,
where a, β, γ involve p and not z.
And ${ }_{p} x_{r}$ is a sum of terms of the form

$$
\begin{aligned}
& \mathbf{A}(\delta z)^{a}\left(\delta^{\natural} z\right)^{\beta}\left(\delta^{3} z\right)^{\gamma} \ldots \ldots \\
& a+2 \beta+3 \gamma+\ldots=p,
\end{aligned}
$$

where
and A involves p and r, but not z.
Now in the transformation of $\frac{d^{p}}{d x^{p}}$ by means of the substitution $\hat{z}=f(x)$, we are dealing with the coefficients ${ }_{p} a_{r},[r=p, p-1, \ldots 1]$.

To find when all these coefficients will be constant multiples of one another. We must have from (B) and (C) the relation

$$
\begin{array}{ll}
& (\delta z)^{p}=k(\delta z)^{p-2} \delta^{2} z, \\
\text { or } & k \delta^{2} z=\langle\delta z)^{2} \ldots \ldots \ldots \\
\therefore \quad & \delta z=\frac{1}{c x+d} . \\
\therefore \quad & z=\log (c x+d) .
\end{array}
$$

By (F) the terms in $p_{p} \boldsymbol{r}_{r}$ all reduce to the form

$$
\mathrm{A}(\delta z)^{\alpha}(\delta z)^{2 \beta}(\delta z)^{3 \gamma} \ldots,
$$

i.e. to the form $A(\delta z)^{p}$,
and (F) therefore denotes a necessary and sufficient condition.

Hence $z=\log (c x+d)$ alone transforms $\frac{d^{p}}{d x^{p}}$ into

$$
\phi(x)\left\{a \frac{d^{p}}{d z^{p}}+b \frac{d^{p-1}}{d z^{p-1}}+\ldots+k \frac{d}{d z}\right\},
$$

where $a, b, \ldots k$ are constants. $\phi(x)$ has then the value $\frac{k}{(c x+d)^{p}}$ and we see that $z=\log (c x+d)$ transforms the differential equation $\Sigma(c x+d) \frac{n^{n} y}{d x^{n}}=0$ into a linear equation with constant coefficients.

The conditions that $z=f(x)$ transforms

$$
\mathrm{X}_{p} \frac{d^{p} y}{d x^{p}}+\mathrm{X}_{p-1} \frac{d^{p-1} y}{d x^{p-1}}+\ldots+\mathrm{X}_{0} y=0
$$

where $\mathrm{X}_{\mathrm{p}} \ldots \mathrm{X}_{0}$ are functions of x, into an equation with constant coefficients are

$$
\begin{aligned}
& X_{p} a_{p}=a, \\
& X_{p} a_{p-1}+X_{p-1 p-1} a_{p-1}=\beta, \\
& X_{p p} a_{p-2}+X_{p-1},-1 \\
& \quad \text { etc. }
\end{aligned}
$$

Thus if $\mathrm{X}_{p}=x^{p}$, these conditions give $\mathrm{X}_{p-1}=a x^{p-1}, \mathrm{X}_{p-2}=b x^{p-2}$, etc. This is the case above discussed.

If $\mathrm{X}_{\mathrm{p}}=\frac{1}{\cos ^{2} x}$ and $a=1, \quad \therefore \quad z=\sin x$,

$$
\therefore \quad X_{p-1}=\frac{a}{\cos x}+\frac{\sin x}{\cos ^{3} x},
$$

Thus the equations

$$
\begin{aligned}
& y^{\prime \prime}+(a \cos x+\tan x) y^{\prime}+\cos ^{2} x \cdot y=0, \\
& y^{\prime \prime}+\quad \tan x \cdot y^{\prime}+\cot ^{2} x \cdot y=0,
\end{aligned}
$$

are both reducible by the substitution $z=\sin x$.

3.

Theorem II. For a genoral transformation of the form

$$
z=f(x), y=u \cdot \phi(x),
$$

the coefficient of $\frac{d^{\top} u}{d z^{\pi}}$ in $\frac{d^{m} y}{d x^{n}}$ is
$\frac{1}{r!}\left[\delta^{n}\left\{\phi(x) . z^{r}\right\}-r z . \delta^{n}\left\{\phi(x) . z^{r-1}\right\}+\frac{r(r-1)}{1.2} z^{2} \delta^{n}\left\{\phi(x) . z^{r-2}\right\}-\ldots z^{r n n}\{\phi(x)\}\right.$

In particular the coefficient of u in $\frac{\dot{d}^{n} y}{d x^{n}}$ is $\delta^{n}\{\phi(x)\}$,
and the coefficient of $\quad \frac{d^{n} u}{d z^{n}}$ in $\frac{d^{n} y}{d x^{n}}$ is $\phi(x)(\delta z)^{n}$.
Example: $x=e^{x}, y=u e^{2 x}=u x^{2}$.
By the theorem, the coefficient of

$$
\begin{aligned}
\frac{d^{2} u}{d z^{2}} \text { in } \frac{d^{3} y}{d x^{3}} & =\frac{1}{2}\left[\delta^{3}\left\{x^{2}(\log x)^{2}\right\}-2 \log x \delta^{3}\left\{x^{2} \log x\right\}\right] \\
& =\frac{1}{2}\left[\frac{6}{x}+4 \frac{\log x}{x}-\frac{4 \log x}{x}\right] \\
& =3 / x=3 e^{-x}
\end{aligned}
$$

the coefficient of

$$
\frac{d^{3} u}{d z^{3}} \text { in } \frac{d^{3} y}{d x^{3}}=x^{2}\left(\frac{d z}{d x}\right)^{3}=x^{2} e^{-3 x}=e^{-z}
$$

and the coefficient of u in $\frac{d^{3} y}{d x^{3}}=0$.
These results agree with the formula used in differential equations, viz.,

$$
\begin{aligned}
\frac{d^{3} y}{d x^{3}} & =e^{-z} \frac{d}{d z}\left(\frac{d}{d z}+1\right)\left(\frac{d}{d z}+2\right) u \\
& =e^{-z}\left\{\frac{d^{3} u}{d z^{3}}+3 \frac{d^{2} u}{d z^{2}}+2 \frac{d u}{d z}\right\}
\end{aligned}
$$

Theorem II. follows at once from Theorem I., and the Theorem of Leibniz, for if $y=u \cdot \phi(x)$,

$$
\frac{d^{n} y}{d x^{n}}=\phi \cdot \frac{d^{n} u}{d x^{n}}+{ }_{n} c_{1} \delta \phi \cdot \frac{d^{n-1} u}{d x^{n-1}}+\ldots+u \delta^{n} \phi
$$

and the coefficient of $\frac{d^{r} u}{d z^{r}}$ on the right

$$
\begin{aligned}
& =\phi_{n} a_{r}+{ }_{n} c_{1} \delta \phi \cdot{ }_{n-1} a_{r}+\ldots+\delta^{n} \phi \cdot{ }_{o} a_{r} \\
& =\frac{1}{r!}\left[\left\{\phi \delta^{n}\left(z^{r}\right)+{ }_{n} c_{1} \delta \phi \cdot \delta^{n-1}\left(z^{r}\right)+\ldots+\delta^{n} \phi \cdot z^{r}\right\}-\text { etc. }\right] \\
& =\frac{1}{r!}\left[\delta^{n}\left\{\phi \cdot z^{r}\right\}-r z \delta^{n}\left\{\phi \cdot z^{r-1}\right\}+\frac{r(r-1)}{1.2} z^{2} \delta^{n}\left\{\phi \cdot z^{r-2}\right\}\right. \\
& \left.\quad-\ldots \mp r z^{r-1} \delta^{n}\{\phi . z\} \pm z^{r} \delta^{n} \phi\right] .
\end{aligned}
$$

Also, since ${ }_{p} a_{p}=(\delta z)^{p}$, it follows that the coefficient of

$$
\frac{d^{n} u}{d z^{n}} \text { in } \frac{d^{n} y}{d x^{n}} \text { is } \phi(x)\left(\frac{d z}{d x}\right)^{n},
$$

and the coefficient of u is clearly $\delta^{n}\{\phi(x)\}$. Hence Theorem II. is proved.

4.

Theorem: By the substitution $z=(a x+b) /(c x+d), y=u(c x+d)^{n-1}$ $\frac{d^{n} y}{d x^{n}}$ is transformed into $\frac{p^{n}}{(c x+d)^{n+1}} \frac{d^{n} u}{d z^{n}}$, where $p=a d-b c$.

This Theorem follows from Theorem II. Thus, using the substitution $z=f(x), y=u \cdot \phi(x)$,
$\frac{d^{n} y}{d x^{n}}$ becomes $\sum_{r=0}^{r=n} \frac{1}{r!}\left[\delta^{n}\left\{\phi(x) \cdot z^{r}\right\}-r z \delta^{n}\left\{\phi(x) \cdot z^{r-1}\right\}+\ldots \pm z^{r} \delta^{n}\{\phi(x)\}\right] \frac{d^{r} u}{d z^{r}}$,
The sufficient conditions that all the differential coefficients up to the $(n-1)^{\text {th }}$, as well as the term in u, may vanish, are

$$
\begin{aligned}
\delta^{n}\{\phi(x)\} & =0 \ldots \ldots(\mathrm{i}), \\
\delta^{n}\{\phi(x) \cdot z\} & =0 \ldots \ldots(\mathrm{ii}), \\
\delta^{n}\left\{\phi(x) \cdot z^{2}\right\} & =0 \ldots \ldots(\mathrm{iii}), \\
\delta^{n}\left\{\phi(x) \cdot z^{n-1}\right\} & =0 \ldots \ldots(n) .
\end{aligned}
$$

-(i) gives
$\phi(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$.
(n) then gives $\quad z^{n-1}=\frac{\mathrm{A}_{0}+\mathrm{A}_{1} x+\ldots+\mathrm{A}_{n-1} x^{n-1}}{a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}}$,
and from (i) it follows that $z=(a x+b) /(c x+d)$.
Hence also $\phi(x)=(c x+d)^{n-1}$, and the theorem follows at once.
Thus if we take the equation

$$
\left(a x^{2}+\beta x+\gamma\right)^{n} y^{(n)}=k y \quad \text { where } \quad a x^{2}+\beta x+\gamma=(a x+b)(c x+d)
$$

and apply the substitution $z=(a x+b) /(c x+d), \quad y=u(c x+d)^{n-1}$, it becomes $(a x+b)^{n}(c x+d)^{n} \frac{p^{n}}{(c x+d)^{n+1}} \frac{d^{n} u}{d z^{n}}=k u(c x+d)^{n-1}$,
i.e.

$$
\begin{aligned}
\left(\frac{a x+b}{c x+d}\right)^{n} \frac{d^{n} u}{d z^{n}} & =k^{\prime} u, \\
z^{n} \frac{d^{n} u}{d z^{n}} & =k^{\prime} u,
\end{aligned}
$$

which has the solution

$$
u=\sum_{m=m_{1}}^{m-m_{n}} A_{m} z^{m}
$$

where m_{1}, \ldots, m_{n} are the roots of the equation

$$
m(m-1) \ldots(m-n+1)-k^{\prime}=0
$$

5.

Generally speaking, it is only when we are dealing with linear equations that the discovery of a particular integral helps us to the complete solution. Thus for the equation

$$
9 x y^{2} y^{\prime \prime}+2=0
$$

it is easy to find the particular integral $y=x^{1 / 3}$, but since the equation is not linear, this does not lead to a complete solution. If we apply the transformation $z=1 / x, y=u x$, which is a particular case of the transformation of $\S 4, p=1$, and the equation reduces to

$$
u^{2} u^{\prime \prime}+2 / 9=0
$$

The complete solution

$$
\int \frac{d u}{\left(1 / u+c_{1}\right)^{1 / 2}}=2 / 3\left(z+c_{2}\right)=2 / 3\left(1 / x+c_{2}\right)
$$

is now easily obtained.
In this example we reduced the equation to a known form. We shall consider from this point of view the general equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\psi(x y)=0 \tag{1}
\end{equation*}
$$

Putting $z=f(x)$, and $y=u \cdot \phi(x)$, (1) becomes

$$
\frac{d^{2} u}{d z^{2}}+\mathbf{P} \frac{d u}{d z}+\mathbf{Q}=0
$$

where $\mathrm{P}=\frac{\delta^{2}\{z \cdot \phi\}-z \delta^{2} \phi}{\phi \cdot(\delta z)^{2}}=\frac{2 \delta z \cdot \delta \phi+\phi \cdot \delta^{2} z}{\phi \cdot(\delta z)^{2}}$
and $\quad \mathrm{Q}=\frac{u \delta^{2} \phi+\psi(x y)}{\phi \cdot(\delta z)^{2}}$.

$\frac{d \mathrm{P}}{d z}=\frac{2 \phi \cdot(\delta z)^{2} \cdot \delta^{2} \phi-2 \phi . \delta z \cdot \delta^{2} z \cdot \delta \phi+\phi^{2} \delta z \cdot \delta^{3} z-2(\delta z)^{2}(\delta \phi)^{2}-2 \phi^{2}\left(\delta^{2} z\right)^{2}}{\phi^{2}(\delta z)^{4}}$.
Hence P and Q are independent of z if

$$
\begin{equation*}
\phi . \delta z \cdot u \delta^{3} \phi+\phi \delta z \psi_{x}+\phi \delta z \psi_{y} u \delta \phi-\left(u \delta^{2} \phi+\psi\right)\left(\delta \phi . \delta z+2 \phi . \delta^{2} z\right)=0 \tag{A}
\end{equation*}
$$

and $2 \phi(\delta z)^{2} \delta^{2} \phi-2 \phi \delta z \delta^{2} z \delta \phi+\phi^{2} \delta z \delta^{3} z-2(\delta z)^{2}(\delta \phi)^{2}-2 \phi^{2}\left(\delta^{2} z\right)^{2}=0$.

We have a particular solution of (B) when $P=0$,
i.e. when
$\phi \delta^{2} z+2 \delta \phi . \delta z=0$
or
$\delta z=a / \phi^{2}$

Using (a) in (A) it reduces to

$$
\delta z \cdot\left\{\phi \cdot \psi_{k}+u \phi \cdot \delta \phi \cdot \psi_{y}+3 \delta \phi \cdot \psi+u\left(\phi \delta^{3} \phi+3 \delta^{2} \phi \cdot \delta \phi\right)\right\}=0 .
$$

or $\phi \psi_{z}+y \delta \phi \cdot \psi_{y}+3 \delta \phi \cdot \psi+y \delta^{8} \phi+\frac{3 y \delta^{2} \phi \cdot \delta \phi}{\phi}=0 \quad[\delta z \neq 0], \quad$ (C)
The Lagrangian Subsidiary System is

$$
\begin{aligned}
& \frac{d x}{\phi}=\frac{d y}{y \cdot \phi^{\prime}}=\frac{d \psi}{-3 \phi^{\prime} \psi-y \phi^{\prime \prime \prime}-\frac{3 y \phi^{\prime \prime} \phi^{\prime}}{\phi}} \\
& \frac{d x}{\phi}=\frac{d y}{y \phi^{\prime}} \text { gives } \frac{d \phi}{\phi}=\frac{d y}{y} . \\
\therefore & y / \phi=a \text { (const.). }
\end{aligned}
$$

Using this in the last equation, we have

$$
\begin{aligned}
& \frac{d \psi}{d \phi}+\frac{3}{\phi} \cdot \psi+a \frac{\phi^{\prime \prime \prime}}{\phi^{\prime}}+3 a \frac{\phi^{\prime \prime}}{\phi}=0, \\
& \text { i.e. } \frac{d}{d \phi}\left\{\phi^{2}\left(\psi+a \phi^{\prime \prime}\right)\right\}=0 . \\
& \phi^{3}\left(\psi+a \phi^{\prime \prime}\right)=b \\
& \phi^{3}\left(\psi+y \frac{\phi^{\prime \prime}}{\phi}\right)=b \text { (const.). }
\end{aligned}
$$

Hence
or
Hence the general solution of (C) may be written
or

$$
\begin{aligned}
\psi & =\frac{1}{\phi^{3}} x(y / \phi)-y / \phi \cdot \phi^{\prime \prime} \quad[x \text { arbitrary }] \\
& =\frac{1}{y^{3}} x(y / \phi)-y / \phi \cdot \phi^{\prime \prime}
\end{aligned}
$$

Hence $\frac{d^{2} y}{d x^{2}}+\frac{1}{y^{3}} x(y / \phi)-y / \phi \cdot \phi^{\prime \prime}=0 \quad$ can be reduced to $\frac{d^{2} u}{d z^{2}}+Q=0$, where Q does not contain z, by means of the substitution

$$
y=u \phi, z=\int \frac{1}{\phi^{2}} d x
$$

Special cases:

$1^{\bullet} \phi^{\prime \prime}=0, \therefore \phi=a x+b$ and $\psi=\frac{1}{y^{3}} x\left(\frac{y}{a x+b}\right)$, and $\operatorname{from}(\beta), z=\frac{c x+d}{a x+b}$.
Hence substitution $y=u(a x+b), z=\frac{c x+d}{a x+b}$ will reduce the equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\frac{1}{y^{3}} x\left(\frac{y}{a x+b}\right)=0 \\
& \phi^{\prime \prime}=c / \phi^{3} .
\end{aligned}
$$

2°

$$
\therefore \quad \phi^{\prime 2}=\frac{a \phi^{2}+\beta}{\phi^{2}},
$$

$$
\text { i.e. } \frac{\phi d \phi}{\sqrt{a \phi^{2}+\beta}}=d x \text {. }
$$

$$
\therefore \quad x+\gamma=1 / a \sqrt{a \phi^{2}+\beta}
$$

$$
\text { or } \quad \phi=\sqrt{a x^{2}+b x+c} \quad \therefore \psi=\frac{1}{y^{3}} \because\left(\frac{y}{\sqrt{a x^{2}+b x+c}}\right) \text {. }
$$

\therefore the substitution $y=u . \sqrt{a x^{2}+b x+c}, z=\int \frac{d x}{a x^{2}+b x+c}$
reduces the equation $\frac{d^{2} y}{d x^{2}}+\frac{1}{y^{3}} x\left(\frac{y}{\sqrt{a x^{2}+b x+c}}\right)=0$.
6.

The substitution $z=(a x+b) /(c x+d), y=u(c x+d)^{n-1}$ will reduce the more general equation $\frac{d^{n} y}{d x^{n}}+\psi(x y)=0$ to a known form if

$$
\psi=\frac{1}{(c x+d)^{n-1}} x\left(\frac{1}{(c x+d)^{n-1}}\right), \quad x \text { arbitrary } .
$$

7.

The equation $\frac{d^{2} y}{d x^{2}}+\frac{1}{y^{3}} x(y / x)=0$ (1) is homogeneous in the sense that all the terms are of the same order when y and x are considered of order 1 , and $y^{\prime \prime}$ of order -3 . In certain cases it is also homogeneous when y is considered of order n, y^{\prime} of order $n-1$, etc., and x of order 1 , when it will be reducible to an equation of the lst order by the substitution $x=e^{2}, y=u x^{n} \quad$ (2).

Therefore, corresponding to the cases where (1) is homogeneous in both senses, we have a soluble class of equations of the lst order.
(1) is homogeneous in the 2nd sense when and only when $4 n-2=a(n-1) \quad(3), \quad$ and the equation is $y^{3} y^{\prime \prime}=\mathrm{A}(y / x)^{a}$.

Using (2) and putting $p=\frac{d u}{d z}$, this equation becomes

$$
p \frac{d p}{d u}+(2 n-1) p+n(n-1) u-\frac{\mathrm{A}}{u^{3}-a}=0
$$

Hence

$$
p \frac{d p}{d u}+(2 n-1) p+n(n-1) u+\mathbf{A} u^{\frac{n+1}{n-1}}=0
$$

is a soluble class of equations.

Examples:

1°

$$
\begin{aligned}
& y \frac{d^{2} y}{d x^{2}}-y^{2}=\sec ^{2} x \text { can be put in the form } \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{\cos ^{3} x} \cdot\left(\frac{\cos x}{y}\right)+y
\end{aligned}
$$

which is of the form of $\S 5$ when $\phi^{\prime \prime}=-\phi$, i.e. $\phi=\cos x$.
Therefore substitution $z=\tan x, y=u \cos x$ reduces this equation.
So for $y y^{\prime \prime}+y^{2}=\operatorname{sech}^{2} x$.
2°

$$
\begin{aligned}
& z=\frac{1}{x^{3}}, y=u x^{2} \text { reduces } \\
& y^{\prime \prime}=2 y\left(\frac{1}{x^{3}}-\frac{1}{x^{2}}\right) . \\
& p \frac{d p}{d u}+3 p+2 u+u^{3}=0 \\
& p \frac{d p}{d u}-3 p+2 u+1=0 \\
& p \frac{d p}{d u}-p+\frac{1}{u}=0
\end{aligned}
$$

are of soluble type of $\$ 7$.

