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Abstract. The purpose of this paper is to give an explicit formula of the
Yojasiewicz exponent of an isolated weighted homogeneous singularity in terms of
its weights.
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Let f: (C",0) — (C, 0) be a holomorphic function with an isolated critical point at
0.The Lojasiewicz exponent L(f') of f is by definition

L(f) = inf{x > 0 : | gradf |> const. | z |* near zero },

It is well known (see [11]) that the Lojasiewicz exponent can be calculated by means of
analytic paths

L = sup | S 1)

ord(¢(1))

where ord(¢) := inf,;{ord(¢;)} for ¢ € C{z}". By definition, we put ord(0) = +o0.

Lojasiewicz exponents have important applications in singularity theory, for
instance, Teissier [22] showed that C-sufficiency degree of f (i.e., the minimal integer r
such that /" is topologically equivalent to f/ + g for all g with ord(g) > r + 1) is equal to
[L(f)] + 1, where [L(f)] denote integral part of L(f). Despite deep research of experts in
singularity theory, it is not proved yet that Lojasiewicz exponent L(f) is a topological
invariant of / (in contrast to the Milnor number). An interesting mathematical problem
is to give formulas for L(f) in terms of another invariants of f or an algorithm to
compute it. In the two-dimensional case, there are many explicit formulas for L(f) in
various terms (see [S, 6, 10]). Estimations of the t.ojasiewicz exponent in the general
case can be found in [1,7,14,19].

The aim of this paper is to compute the Lojasiewicz exponent for the classes of
weighted homogeneous isolated singularities in terms of the weights. In particular,
we generalize a formula for L(f) of Krasinski, Oleksik and Ptoski [9] for weighted
homogeneous surface singularity. Here, we give an alternative proof of the result of
Tan, Yau and Zuo [21]. We were motivated by their papers. However, our considerations
are based on other ideas. More precisely, we use the notion of weighted homogenous
filtration introduced by Paunescu in [18], the geometric characterization of p-constancy

2 0# (1) € C{1", ¢(0) = 0} : (M
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in [13,22] and the result of Varchenko [23], which described the p-constant stratum of
weighted homogeneous singularities in terms of the mixed Hodge structures.

Moreover, we show that the Lojasiewicz exponent is invariant for all u-constant
deformation of weighted homogeneous singularity, which gives an affirmative partial
answer to Teissier’s conjecture [22].

NotATION. To simplify the notation, we will adopt the following conventions: for a
function F(z, t) we denote by d F the gradient of F and by 9, F the gradient of F with
respect to variables z.

Let ¢, ¥: (C",0) > R be two function germs. We say that ¢(x) < ¥(x) if there
exists a positive constant C > 0 and an open neighbourhood U of the origin in C"
such that ¢(x) < C ¥(x), for all x € U. We write ¢(x) ~ ¥(x) if ¢(x) < ¥ (x) and
P(x) S @(x). Finally, |¢(x)| < [¥(x)| (when x tends to xp) means lim,._, ,, % =0.

1. Weighted homogeneous filtration. Let N be the set of non-negative integers and
O, denote the ring of analytic function germs f: (C", 0) — (C, 0). The Milnor number
of a germ f, denoted by u(f), is algebraically defined as the dim O, /J(f), where J(f)
is the Jacobian ideal in O, generated by the partial derivatives {3—’(l e, j—f} Let
F: (C"x C,0)— (C,0) be the deformation of " given by F(z, t) = f(z) + )_ c,(¢)z",
where ¢, : (C, 0) — (C, 0) are germs of holomorphic functions. We use the notation
F,(z) = F(z, t) when ¢ is fixed.

From now, we shall fix a system of positive integers w = (wy, ..., w,) € (N — {0})",
the weights of variables z;, w(z;) = w;, 1 <i < n, and a positive integer d > 2w; for
i=1,...,n, then a polynomial /' € C[zy, ..., z,] is called weighted homogeneous of
degree d with respect the weight w = (wy, ..., w,) (or type (d; w)) if f may be written
as a sum of monomials z{" - - - z% with

aywy + -+ ow, =d. 2)
Comparing these weights with the w’ = (w] ..., w;) defined in [9,21], from (2), we

get w'(z;) = wii fori=1,...,n,so it follows that w; > 2 if and only if d > 2w;. Also,
we have

mfalx(w; — 1) = max <i - 1) .

i=1 w;

There is another (weaker) definition of a weighted homogeneous polynomial. A
polynomial f € Clzy, ..., z,] is called a weak weighted homogeneous polynomial, if
there exist n integers positive (weights) w = (wy, ..., w,) such that f may be written as
a sum of monomials z{" - - - z& with

aw) + -+ aw, =d.

We droop only the hypothesis d > 2w; fori=1,...,n.

2
We may introduce (see [18]) the function p(z) = (|z¢|*r +--- + |z,,|ﬁ)%. We also
consider the spheres associated to this p

S, ={zeC" : p(z)=r}, r>D0.
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Here - means the weighted action, with respect to the C* action defined below
t-z={"z1,...,1"zy).

DEFINITION 1. Using p, we define a singular Riemannian metric on C" by the
following bilinear form

w0 w0 1 ifi=j
pro— P ) == oo
ax; 0x; 0 ifi#j

We will denote by grad,, and || ||,,, the corresponding gradient and norm associated
with this Riemannian metric (for more details about these see [18]).

Let f € O,. We denote the Taylor expansion of /" at the origin by ) _ ¢,z". Setting
Hj(z) = )_ c¢,z” where the sum is taken over n with < w, v >= wv; +--- + w,v, =J,
we can write the weak weighted Taylor expansion f

S(2) = Ha(2) + His1(2) + -+ s Hy # 0.

We call d the weak weighted degree of f and H, the weak weighted initial form of f
about the weight. Furthermore, for any ' € O, we get

lgrad,.f (Dl S p™(2), ©)

where d,,(f) denotes the degree of / with respect to w. Indeed, as all non-zero z, we

aH; . .
find ﬁ -z € 81, moreover, we have -~ is zero or a weak weighted homogeneous

polynomial of degree d — w;, then we obtain

1 llgrad,, H;(z)lw
”grade‘( ’Z> ”w = SJ 1.
"\ p(2) p(zy

Therefore,

I grad, /) 1bS D |l grad, Hy2) WS p*P(z).
J=du(f)

PROPOSITION 2. Let [ € O, be a weak weighted homogeneous isolated singularity of
type (d;w) at 0 € C". Then

lgrad, /() 2 p(z)". (4)

Proof. Since f has only isolated singularity at the origin, then for small values of r
we have

1

2\ 2
) >1, VzeS,. (5)

n

lgrad, /(2)lw = (Z

i=1

win .
P
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On the other hand, aa_/ is weak weighted homogeneous of degree d — w; fori=1,...,n
and also, p("z) -z € S, for all non-zero z. Thus, by (5) we obtain
r lgrad, ./ (2)llw
lgrad,.f (— ~Z) [y = 1= > .
o(2) p(2)?

This completes the proof of the proposition. O

2. The maximal and minimal coordinates. The class of weak weighted
homogeneous polynomials is broader than the class of weighted homogeneous
polynomials. In order to extend the main result announced by Tan, Yau and Zuo
in [21] to this class, we introduce the maximal and the minimal coordinate.

DEerINITION 3. Let f € C[zy, ..., z,] be a weak weighted homogenous of type
(d;wy, ..., w,), we set

Mw)=1{ic{l,....,n} | d<2w]),
Inax, = max {i € M(w)}, Inax, = max {i € M(w) — {Imax, }} . - -
Imaxk = max {l S M(w) - {Imaxla M) Imaxk,l}} ’

where k is the cardinal of M(w). We have M(w) = {Imax,, - - - » Imax, }- We set

Inay, if il don’t appearin f Vi=1,...n,
Imim == . . . )
min {l efl,....n} | zz,,, appear mf} .
I Inax, if ZiZ L g, don’t appearin f Vi=1,...n,
2T ) min {i ef{l,....n} = {Inin,} | zi1,,, appear in_f} )
s Iax, if zizp,,, don’tappearinf Vi=1,...n,
T min {i ef{l,....n} = (Iminys - - Imin,} | ZiZ1,,,,, appear inf} :
We put I(f) = {Inin,. - - .. Imin,}, We define the maximal coordinates of the

variables, the z;, for i € M(w), i.e., the coordinates of weights w(z;) = w; > ‘51, also
we called the minimal coordinates of the variables, the z;, for i € I(f). Finally, we
set M(f) = M(w) U I(f), £(f) the cardinal of M(f) and wyr) = (i, ..., W, . .., Wy),
where the hat means omission of all wy such that k € M(f).

3. The results. The main result of this paper is the following:

THEOREM 4. Let f € O, be a weak weighted homogeneous polynomial of type

(d;wy, ..., wy,) defining an isolated singularity at the origin. Then
L) = maxigm (L —1) i L) <n
1 if L(f) = n.

Note that if d > 2w; for all i=1,...,n, then M(f) =@ and we recover the
following Theorem 5.
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THEOREM 5. Let f: (C", 0) — (C, 0) be weighted homogeneous polynomial of type
(d; w), withd > 2w, fori =1, ..., ndefining an isolated singularity at the origin 0 € C".
Then

n d
L(f) = max (— — 1) .
i=1 wi
COROLLARY 6. Let f: (C", 0) — (C, 0) be a weak weighted homogeneous polynomial
of type (d; w), defining an isolated singularity at the origin in C". For any deformation
F(z) =f(z) + _ cu(0)z" for which w(F,) = u(f) is called j-constant, then L(F,) is also
constant.

COROLLARY 7. Let f: (C",0) — (C,0) be a holomorphic function If the weak
weighted initial forms Hy of f define an isolated singularity at the origin, then

maxigvqry (o — 1) if U(Hg) <n

L=y, if 0(Hy) = n.

4. Proofs of the Theorem 5. Before starting the proofs, we will recall some
important results on the geometric characterization of p-constancy.

THEOREM 8 Greuel [8], Lé-Saito [13], Teissier [22]. Let F: (C" x C", 0) —
(C, 0) be the deformation of a holomorphic f: (C", 0) — (C, 0) with isolated singularity.
The following statements are equivalent:

(1) Fisa p-constant deformation of f.
2 g—f € J(F,;), where J(F;) denotes the integral closure of the Jacobian ideal of F;
generated by the partial derivatives of F with respect to the variables zy, ..., z,.

(3) The deformation F(z, t) = F;(z) is a Thom map, that is,

>

Jj=1

or
0

L 0 Flas(z,1)— (0,0).

(4) The polar curve of F with respect to {t = 0} does not split, that is,

{(z,) e C" x C" | 9, F(z,t) =0} = {0} x C" near (0, 0).

4.1. Proof of Theorem 5. First, by the Proposition 2 we get

. NN PN
lerad, S = Y| Lo 2 o
i=1 !
Therefore,
p(2)™ | gradf (2)]| Z p(2).
Hence,

n d—min{w;}
1 d—min w; d_
lerad/ ()] 2 (Z |z,~|"”> > 12l S e,

i=1
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it follows that L(f) < max_ (£ — 1).

In order to show the opposite inequality we need the following lemma.

LEMMAO. Let f € O, be a weighted homogeneous isolated singularity of type (d; w).
Suppose that wy = min?_, w; and V., (f) € {zx = 0}, where

L

9 9 9 9
Vil = {ZeC" : ai(z)=~~= LA (z):...zi(z)zo}_
2 0zk—1 0Zk41 3z,
Then L(f) = wik —1= max?’zl(wii — 1)
Proof. See [9], Proposition 2. 0

We now want to prove the opposite inequality. Modulo a permutation coordinate
of C", we may assume that w; < wp < --- < w,. Since f be a weighted homogeneous
of degree d with isolated singularity. It is easy to check that the monomial z{' or z¥'z;
appear in the expansion of /. There are three cases to be considered.

Case 1. In this case, we suppose z;z; appear in the expansion of f,, since f defining
an isolated singularity at the origin 0 € C”, there exist the terms z}" or zi'z; with
non-zero coefficients in f.

We first consider the case whereby z,'z; appear in f, from the hypotheses d =
wy + w; > 2w, > --- > 2w, then we may write

d = guw, + w; > (¢p — Dw, + w; + w; > w; + w; > w; +wy
=d>wi+w >w +w =d.
Therefore, g, = 1 and w; = wy = -+ - = w,,.
We will next consider the case whereby z;;" appear in f, since 9 f(0) = 0, we have
qn > 2, it follows that

dzqnwnE(qn_l)wn+wi2wl+wi=da

hence g, =2 and wy = wy = -+ - = w,,.

In the homogenous case w; = wy = --- = w,, for any non-zero a € C", along
the curve (f) =t - a = (" ay, ..., 1""a,), we obtain 3 f(¢(¢)) = 1Y~ 8 f(a), it follows
from (1) that

Ord(af(q)(t)) _ d _ n i _
ordlg(n)  —wy LTI, D

This ends the proof of Theorem 5 in the first case.

L(f) =

Case 2. In this case, we suppose z{' appear in the expansion of / and z;z; doesn’t
appear fori = 2, ..., n. Take an analytic path ¢(¢) = (¢, 0, ..., 0), then from (1) we get

ord@f () _ Ay (i_l),

=z —aem — 91 =0 nax\

This ends the proof of Theorem 5 in the second case.
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Case 3. In this case, we suppose that z{'z; appear in the expansion of f* with
¢1 > 2. By lemma 9, it is enough to prove that V., (f) € {z; = 0}. Indeed, suppose that
V..(f) C {z1 = 0}. Then, we let the deformation F(z, 1) = f(z) + 1z{" of f. Since,

VilF) ={(z,) e C" x C | 0: F(z,1) =0} C V., (F)) = V>,(f) C {z1 =0},
this means that
3. F(z,t) =0ifand only if 3 f(z) =0.

Since f defining an isolated singularity, and hence, by (4) in Theorem 8 we get that F;
is pu-constant. According to the result of Varchenko’s theorem [23], the monomial z{'
verifies dw(z‘l“) =qyw; > d.Butd = qyw; + w; > qyw; > d, which is a contradiction.
This completes the proof of Theorem 5.

5. Proofs of the Theorem 4, Corollary 6 and Corollary 7

5.1.Proof of Theorem 4

Proof. Without loss of generality, we suppose that w; < w, < --- < w,. By the
proof of the Theorem 5, only the first case in the opposite inequality can be considered.
This remains us to consider the case where z;z; appears in the expansion of f.

Let d<2wy_jy <--- < 2w, and SO Mw)y=1{n,....,n—k+1} =
{Imax,s - - - » Imax, }- Since f defining an isolated singularity, it is easy to check
that the monomial z} or z3z; appear in expansion of f,, then qw, = d or qw, + w; = d,
but 3/(0) =0 and d < 2w, so that z,z; appear in f. Moreover, for any monomial
zy' 2% of f with e, # 0, we have

2wn>d=2ajwj~|—anwnz Zotj wy +w, > w +w; =d.

j<n j<n

Then, ), o, =1,a,=1and w; = w,.

j<n .
Therefore we may write

S(2) = ag,, 21y, 20 + Z azizn + (21, 2021, 0), ap, #0,
j?élminl

for a; # 0, we have d = w, + Wiy, = Wn + Wj = Wi + wj, SO We obtain w; = Wiy, =
wi. After permutation of coordinates with same weights it can be written as

f(2) =z1z, + Zajzjz,, +f(z1y ...y Zp1, 0).

j>1
Then we may assume, by a change of coordinates & =21+2j>1ajzj, that

f@) =zizy +f(z1, .. Zue1, 0) = 21(2, + 2(2)) + f(0, 25 . .., z,_1, 0) also by a change of
coordinates &, = z, + g(z), we can assume that

f(2) =21z, + f(0, z3, ..., 2,1, 0).
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We set h(zi,...,zp—2) =f(0,z1,...,2,-2,0), obviously implies L(f)= L(h). For
M(f) # {1, ..., n}, it follows by elimination of the maximal and minimal coordinates
that L(f) = L(h), where h € O,y be weighted homogenous of type (d;was)).
Therefore by Theorem 5, we get

L(f) = L(h) = max (i - 1.
igM(f) w;

For M(f) = {1, ..., n}, then we can suppose, by the splitting lemma, that f(z) = z% +
-+ 22, thus L(f) = 1. The Theorem 4 is proved. O

5.2. Proof of Corollary 6. Let fi(z) =f(z)+ Y, c,(9)z" be a deformation pu-
constant of a weighted homogeneous polynomial f of degree d with isolated singularity.
Since ¢, (0) = 0, we can write

Ji(2) =1(2) + 18:(2).

By a result of Varchenko’s theorem [23], the deformation g, verifies d,,(g;) > d for all
t. This together with (3) and (4) gives

lgrad, fi(2)llw > llgrad,,/(2)]lw — [#]lgrad, g(2)]lw
Z '), asl <1

Moreover, by a similar argument to the proof of the first inequality in Theorem 5 we
find the following:

L(f; < m'alx (i — 1>.

= wi

Also, using the processes of elimination of the maximal and minimal coordinates, we
can get

maxg (i — 1) if6() <n

Lov = {1 if o) = n.

By the semi-continuity of the L.ojasiewicz exponent in holomorphic p-constant
families of isolated singularities [20,22], we find that

maxigu( (L —1)  if L) <n

1 e =n L.

- |
Then the result follows.

5.3. Proof of Corollary 7. Letd = d,(f), it says that f can be written in the form
f(2)=Haq(2) + Hy1(2) + - s Ha # 0.
Take the following family of singularities

fi(2) := Hy(2) + tHy 1 (2) + PHypo(z) + -+ ,t € C.
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It follows from the isolated singularity of H; and the theorem in ([2] Section 12.2) that
ft 1s a p-constant deformation of H,, and so by the above corollary we find

maxieéM(HL,)(% —1) ife(Hy)<n

L(f) = L(f;) = L(Hq) = {1 if ¢(Hy) = n.

This completes the proof of the corollary.

REMARK 10. For three variables n = 3, Krasinski, Oleksik and Ptoski proof in [9]
that

L(f) = min (m%x (i — 1> , /L(f)) .
=1 \ w;

1

But this is not valid for n greater than 3, indeed, let
fGrz2 23, 28) = niza+ 210 + 55 + 33,

is weak weighted homogeneous of type (10; 1, 2, 2, 9). Since u(f) = ]_[?(% — 1) by the
Milnor-Orlik formula [16], then u(f) = 16. Moreover, it easy to cheek that L(f)=4
and max/_, (£ — 1) = 10, hence L(f) < min(max/_, (£ — 1), u(f)).

ExAaMPLE 11. Let
f(2)=z1z6 + Z}z + zpz5 + zg + zi + zg,
fis weak weighted homogenous of type (12; 1, 2, 3, 4, 10, 11) with isolated singularity,
since M(w) = {5, 6} and M(f) = {1,2,5,6} C {1,..., 6}, then by Theorem 4 we get

igM(f) \ W;

L(f) = max (i — 1) =3.
ExXAMPLE 12. Let

f(2) = z1z6 + 2225 + 2324,

f is weak weighted homogenous of type (12;1, 2, 3,9, 10, 11) defining an isolated
singularity, since M(w) = {4, 5, 6} and M(f) = {1, ..., 6}, then by Theorem 4 we get
L(f) = 1. Also f can be seen as weighted homogenous of type (2;1,1,1,1,1, 1), and
hence by Theorem 5, L(f) = 1.

NoOTE. A. Parusinski called my attention to S. Brzostowski’s result [3], which has
independently proved the Theorem 5 of this paper. But his proof is different from
ours.
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