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Let f : (�n, 0) → (�, 0) be a holomorphic function with an isolated critical point at
0.The Łojasiewicz exponent L(f ) of f is by definition

L(f ) = inf{λ > 0 : | gradf |≥ const. | z |λ near zero },

It is well known (see [11]) that the Łojasiewicz exponent can be calculated by means of
analytic paths

L(f ) = sup
{

ord(gradf (ϕ(t)))
ord(ϕ(t))

: 0 �= ϕ(t) ∈ �{t}n, ϕ(0) = 0
}

, (1)

where ord(φ) := inf i{ord(φi)} for φ ∈ �{t}n. By definition, we put ord(0) = +∞.
Łojasiewicz exponents have important applications in singularity theory, for

instance, Teissier [22] showed that C0-sufficiency degree of f (i.e., the minimal integer r
such that f is topologically equivalent to f + g for all g with ord(g) ≥ r + 1) is equal to
[L(f )] + 1, where [L(f )] denote integral part of L(f ). Despite deep research of experts in
singularity theory, it is not proved yet that Łojasiewicz exponent L(f ) is a topological
invariant of f (in contrast to the Milnor number). An interesting mathematical problem
is to give formulas for L(f ) in terms of another invariants of f or an algorithm to
compute it. In the two-dimensional case, there are many explicit formulas for L(f ) in
various terms (see [5, 6, 10]). Estimations of the Łojasiewicz exponent in the general
case can be found in [1, 7, 14, 19].

The aim of this paper is to compute the Łojasiewicz exponent for the classes of
weighted homogeneous isolated singularities in terms of the weights. In particular,
we generalize a formula for L(f ) of Krasiński, Oleksik and Płoski [9] for weighted
homogeneous surface singularity. Here, we give an alternative proof of the result of
Tan, Yau and Zuo [21]. We were motivated by their papers. However, our considerations
are based on other ideas. More precisely, we use the notion of weighted homogenous
filtration introduced by Paunescu in [18], the geometric characterization of μ-constancy
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in [13,22] and the result of Varchenko [23], which described the μ-constant stratum of
weighted homogeneous singularities in terms of the mixed Hodge structures.

Moreover, we show that the Łojasiewicz exponent is invariant for all μ-constant
deformation of weighted homogeneous singularity, which gives an affirmative partial
answer to Teissier’s conjecture [22].

NOTATION. To simplify the notation, we will adopt the following conventions : for a
function F(z, t) we denote by ∂ F the gradient of F and by ∂z F the gradient of F with
respect to variables z.

Let ϕ, ψ : (�n, 0) → � be two function germs. We say that ϕ(x) � ψ(x) if there
exists a positive constant C > 0 and an open neighbourhood U of the origin in �n

such that ϕ(x) ≤ C ψ(x), for all x ∈ U . We write ϕ(x) ∼ ψ(x) if ϕ(x) � ψ(x) and
ψ(x) � ϕ(x). Finally, |ϕ(x)| 
 |ψ(x)| (when x tends to x0) means limx→x0

ϕ(x)
ψ(x) = 0.

1. Weighted homogeneous filtration . Let � be the set of non-negative integers and
On denote the ring of analytic function germs f : (�n, 0) → (�, 0). The Milnor number
of a germ f , denoted by μ(f ), is algebraically defined as the dimOn/J(f ), where J(f )
is the Jacobian ideal in On generated by the partial derivatives { ∂ f

∂ z1
, · · · ,

∂ f
∂ zn

}. Let
F : (�n × �, 0) → (�, 0) be the deformation of f given by F(z, t) = f (z) + ∑

cν(t)zν ,
where cν : (�, 0) → (�, 0) are germs of holomorphic functions. We use the notation
Ft(z) = F(z, t) when t is fixed.

From now, we shall fix a system of positive integers w = (w1, . . . , wn) ∈ (� − {0})n,
the weights of variables zi, w(zi) = wi, 1 ≤ i ≤ n, and a positive integer d ≥ 2wi for
i = 1, . . . , n, then a polynomial f ∈ �[z1, . . . , zn] is called weighted homogeneous of
degree d with respect the weight w = (w1, . . . , wn) (or type (d; w)) if f may be written
as a sum of monomials zα1

1 · · · zαn
n with

α1w1 + · · · + αnwn = d. (2)

Comparing these weights with the w′ = (w′
1 . . . , w′

n) defined in [9,21], from (2), we
get w′(zi) = d

wi
for i = 1, . . . , n, so it follows that w′

i ≥ 2 if and only if d ≥ 2wi. Also,
we have

n
max

i=1

(
w′

i − 1
) = n

max
i=1

(
d
wi

− 1
)

.

There is another (weaker) definition of a weighted homogeneous polynomial. A
polynomial f ∈ �[z1, . . . , zn] is called a weak weighted homogeneous polynomial, if
there exist n integers positive (weights) w = (w1, . . . , wn) such that f may be written as
a sum of monomials zα1

1 · · · zαn
n with

α1w1 + · · · + αnwn = d.

We droop only the hypothesis d ≥ 2wi for i = 1, . . . , n.

We may introduce (see [18]) the function ρ(z) = (|z1|
2

w1 + · · · + |zn|
2

wn )
1
2 . We also

consider the spheres associated to this ρ

Sr = {z ∈ �n : ρ(z) = r}, r > 0.
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Here · means the weighted action, with respect to the �∗ action defined below

t · z = (tw1 z1, . . . , twn zn).

DEFINITION 1. Using ρ, we define a singular Riemannian metric on �n by the
following bilinear form

〈
ρwi

∂

∂xi
, ρwj

∂

∂xj

〉
= δi,j :=

{
1 if i = j
0 if i �= j

.

We will denote by gradw and ‖ ‖w, the corresponding gradient and norm associated
with this Riemannian metric (for more details about these see [18]).

Let f ∈ On. We denote the Taylor expansion of f at the origin by
∑

cνzν . Setting
Hj(z) = ∑

cνzν where the sum is taken over n with < w, ν >= w1ν1 + · · · + wnνn = j,
we can write the weak weighted Taylor expansion f

f (z) = Hd (z) + Hd+1(z) + · · · ; Hd �= 0.

We call d the weak weighted degree of f and Hd the weak weighted initial form of f
about the weight. Furthermore, for any f ∈ On we get

‖gradwf (z)‖w � ρdw(f )(z), (3)

where dw(f ) denotes the degree of f with respect to w. Indeed, as all non-zero z, we
find 1

ρ(z) · z ∈ S1, moreover, we have ∂Hj

∂zi
is zero or a weak weighted homogeneous

polynomial of degree d − wj, then we obtain

‖gradwHj

(
1

ρ(z)
· z

)
‖w = ‖gradwHj(z)‖w

ρ(z)j
� 1.

Therefore,

‖ gradwf (z) ‖w�
∑

j≥dw(f )

‖ gradwHj(z) ‖w� ρdw(f )(z).

PROPOSITION 2. Let f ∈ On be a weak weighted homogeneous isolated singularity of
type (d; w) at 0 ∈ �n. Then

‖gradwf (z)‖w � ρ(z)d . (4)

Proof. Since f has only isolated singularity at the origin, then for small values of r
we have

‖gradwf (z)‖w =
(

n∑
i=1

∣∣∣∣ρwi (z)
∂f
∂zi

(z)

∣∣∣∣2
) 1

2

� 1, ∀z ∈ Sr. (5)
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On the other hand, ∂f
∂zi

is weak weighted homogeneous of degree d − wi for i = 1, . . . , n
and also, r

ρ(z) · z ∈ Sr for all non-zero z. Thus, by (5) we obtain

‖gradwf
(

r
ρ(z)

· z
)

‖w = rd ‖gradwf (z)‖w

ρ(z)d
� 1.

This completes the proof of the proposition. �

2. The maximal and minimal coordinates. The class of weak weighted
homogeneous polynomials is broader than the class of weighted homogeneous
polynomials. In order to extend the main result announced by Tan, Yau and Zuo
in [21] to this class, we introduce the maximal and the minimal coordinate.

DEFINITION 3. Let f ∈ �[z1, . . . , zn] be a weak weighted homogenous of type
(d; w1, . . . , wn), we set

M(w) = {i ∈ {1, . . . , n} | d < 2wi} ,

Imax1 = max {i ∈ M(w)} , Imax2 = max
{
i ∈ M(w) − {Imax1}

}
, . . .

Imaxk = max
{
i ∈ M(w) − {Imax1 , . . . , Imaxk−1}

}
,

where k is the cardinal of M(w). We have M(w) = {Imax1 , . . . , Imaxk}. We set

Imin1 =
{

Imax1 if zizImax1
don’t appear in f ∀i = 1, . . . n,

min
{

i ∈ {1, . . . , n} | zizImax1
appear in f

}
.

,

Imin2 =
{

Imax2 if zizImax2
don’t appear in f ∀i = 1, . . . n,

min
{

i ∈ {1, . . . , n} − {Imin1} | zizImax2
appear in f

}
.

,

. . . . . .

Imink =
{

Imaxk if zizImaxk
don’t appear in f ∀i = 1, . . . n,

min
{

i ∈ {1, . . . , n} − {Imin1 , . . . , Imink−1} | zizImax2
appear in f

}
.

.

We put I(f ) = {
Imin1 , . . . , Imink

}
, we define the maximal coordinates of the

variables, the zi, for i ∈ M(w), i.e., the coordinates of weights w(zi) = wi > d
2 , also

we called the minimal coordinates of the variables, the zi, for i ∈ I(f ). Finally, we
set M(f ) = M(w) ∪ I(f ), �(f ) the cardinal of M(f ) and wM(f ) = (w1, . . . , ŵk, . . . , wn),
where the hat means omission of all wk such that k ∈ M(f ).

3. The results. The main result of this paper is the following:

THEOREM 4. Let f ∈ On be a weak weighted homogeneous polynomial of type
(d; w1, . . . , wn) defining an isolated singularity at the origin. Then

L(f ) =
{

maxi/∈M(f )( d
wi

− 1) if �(f ) < n
1 if �(f ) = n.

Note that if d ≥ 2wi for all i = 1, . . . , n, then M(f ) = ∅ and we recover the
following Theorem 5.
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THEOREM 5. Let f : (�n, 0) → (�, 0) be weighted homogeneous polynomial of type
(d; w), with d ≥ 2wi for i = 1, . . . , n defining an isolated singularity at the origin 0 ∈ �n.
Then

L(f ) = n
max

i=1

(
d
wi

− 1
)

.

COROLLARY 6. Let f : (�n, 0) → (�, 0) be a weak weighted homogeneous polynomial
of type (d; w), defining an isolated singularity at the origin in �n. For any deformation
Ft(z) = f (z) + ∑

cν(t)zν for which μ(Ft) = μ(f ) is called μ-constant, then L(Ft) is also
constant.

COROLLARY 7. Let f : (�n, 0) → (�, 0) be a holomorphic function If the weak
weighted initial forms Hd of f define an isolated singularity at the origin, then

L(f ) =
{

maxi/∈M(Hd )( d
wi

− 1) if �(Hd ) < n
1 if �(Hd ) = n.

4. Proofs of the Theorem 5. Before starting the proofs, we will recall some
important results on the geometric characterization of μ-constancy.

THEOREM 8 Greuel [8], Lê-Saito [13], Teissier [22]. Let F : (�n × �m, 0) →
(�, 0) be the deformation of a holomorphic f : (�n, 0) → (�, 0) with isolated singularity.
The following statements are equivalent:

(1) F is a μ-constant deformation of f .
(2) ∂ F

∂ tj
∈ J(Ft), where J(Ft) denotes the integral closure of the Jacobian ideal of Ft

generated by the partial derivatives of F with respect to the variables z1, . . . , zn.
(3) The deformation F(z, t) = Ft(z) is a Thom map, that is,

m∑
j=1

∣∣∣∣∂ F
∂ tj

∣∣∣∣ 
 ‖ ∂ F‖ as (z, t) → (0, 0).

(4) The polar curve of F with respect to {t = 0} does not split, that is,

{(z, t) ∈ �n × �m | ∂z F(z, t) = 0} = {0} × �m near (0, 0).

4.1. Proof of Theorem 5. First, by the Proposition 2 we get

‖gradwf (z)‖2
w =

n∑
i=1

∣∣∣∣ρwi (z)
∂f
∂zi

(z)

∣∣∣∣2

� ρ(z)2d .

Therefore,

ρ(z)min{wi}‖gradf (z)‖ � ρ(z)d .

Hence,

‖gradf (z)‖ �
(

n∑
i=1

|zi|
1
wi

)d−min{wi}
� |z| d−min wi

min wi = |z|maxn
i=1( d

wi
−1),
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it follows that L(f ) ≤ maxn
i=1( d

wi
− 1).

In order to show the opposite inequality we need the following lemma.

LEMMA 9. Let f ∈ On be a weighted homogeneous isolated singularity of type (d; w).
Suppose that wk = minn

i=1 wi and Vzk (f ) � {zk = 0}, where

Vzk (f ) =
{

z ∈ �n :
∂f
∂z1

(z) = · · · = ∂f
∂zk−1

(z) = ∂f
∂zk+1

(z) = · · · = ∂f
∂zn

(z) = 0
}

.

Then L(f ) = d
wk

− 1 = maxn
i=1( d

wi
− 1).

Proof. See [9], Proposition 2. �
We now want to prove the opposite inequality. Modulo a permutation coordinate

of �n, we may assume that w1 ≤ w2 ≤ · · · ≤ wn. Since f be a weighted homogeneous
of degree d with isolated singularity. It is easy to check that the monomial zq1

1 or zq1
1 zi

appear in the expansion of f . There are three cases to be considered.
Case 1. In this case, we suppose z1zi appear in the expansion of f , since f defining

an isolated singularity at the origin 0 ∈ �n, there exist the terms zqn
n or zqn

n zj with
non-zero coefficients in f .

We first consider the case whereby zqn
n zj appear in f , from the hypotheses d =

w1 + wi ≥ 2wn ≥ · · · ≥ 2w1, then we may write

d = qnwn + wj ≥ (qn − 1)wn + wi + wj ≥ wi + wj ≥ wi + w1

= d ≥ wi + wi ≥ w1 + wi = d.

Therefore, qn = 1 and w1 = w2 = · · · = wn.
We will next consider the case whereby zqn

n appear in f , since ∂ f (0) = 0, we have
qn ≥ 2, it follows that

d = qnwn ≥ (qn − 1)wn + wi ≥ w1 + wi = d,

hence qn = 2 and w1 = w2 = · · · = wn.
In the homogenous case w1 = w2 = · · · = wn, for any non-zero a ∈ �n, along

the curve ϕ(t) = t · a = (tw1 a1, . . . , twn an), we obtain ∂ f (ϕ(t)) = td−w1 ∂ f (a), it follows
from (1) that

L(f ) ≥ ord(∂ f (ϕ(t))
ord(ϕ(t))

= d
w1

− 1 = n
max

i=1
(

d
wi

− 1).

This ends the proof of Theorem 5 in the first case.

Case 2. In this case, we suppose zq1
1 appear in the expansion of f and z1zi doesn’t

appear for i = 2, . . . , n. Take an analytic path ϕ(t) = (t, 0, . . . , 0), then from (1) we get

L(f ) ≥ ord(∂ f (ϕ(t))
ord(ϕ(t))

= q1 − 1 = d
w1

− 1 = n
max

i=1

(
d
wi

− 1
)

.

This ends the proof of Theorem 5 in the second case.
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Case 3. In this case, we suppose that zq1
1 zi appear in the expansion of f with

q1 ≥ 2. By lemma 9, it is enough to prove that Vz1 (f ) � {z1 = 0}. Indeed, suppose that
Vz1 (f ) ⊂ {z1 = 0}. Then, we let the deformation F(z, t) = f (z) + tzq1

1 of f . Since,

Vt(F) = {(z, t) ∈ �n × � | ∂z F(z, t) = 0} ⊂ Vz1 (Ft) = Vz1 (f ) ⊂ {z1 = 0},

this means that

∂z F(z, t) = 0 if and only if ∂ f (z) = 0.

Since f defining an isolated singularity, and hence, by (4) in Theorem 8 we get that Ft

is μ-constant. According to the result of Varchenko’s theorem [23], the monomial zq1
1

verifies dw(zq1
1 ) = q1w1 ≥ d. But d = q1w1 + wi > q1w1 ≥ d, which is a contradiction.

This completes the proof of Theorem 5.

5. Proofs of the Theorem 4, Corollary 6 and Corollary 7

5.1.Proof of Theorem 4

Proof. Without loss of generality, we suppose that w1 ≤ w2 ≤ · · · ≤ wn. By the
proof of the Theorem 5, only the first case in the opposite inequality can be considered.
This remains us to consider the case where z1zi appears in the expansion of f .

Let d < 2wn−k+1 ≤ · · · ≤ 2wn, and so M(w) = {n, . . . , n − k + 1} =
{Imax1 , . . . , Imaxk}. Since f defining an isolated singularity, it is easy to check
that the monomial zq

n or zq
nzj appear in expansion of f , then qwn = d or qwn + wj = d,

but ∂ f (0) = 0 and d < 2wn, so that znzj appear in f . Moreover, for any monomial
zα1

1 · · · zαn
n of f with αn �= 0, we have

2wn > d =
∑
j<n

αjwj + αnwn ≥
⎛⎝∑

j<n

αj

⎞⎠ w1 + wn ≥ w1 + wi = d.

Then,
∑

j<n αj = 1, αn = 1 and wi = wn.
Therefore we may write

f (z) = aImin1
zImin1

zn +
∑

j �=Imin1

ajzjzn + f (z1, . . . , zn−1, 0), aImin1
�= 0,

for aj �= 0, we have d = wn + wImin1
= wn + wj = w1 + wi, so we obtain wj = wImin1

=
w1. After permutation of coordinates with same weights it can be written as

f (z) = z1zn +
∑
j>1

ajzjzn + f (z1, . . . , zn−1, 0).

Then we may assume, by a change of coordinates ξ1 = z1 + ∑
j>1 ajzj, that

f (z) = z1zn + f (z1, . . . zn−1, 0) = z1(zn + g(z)) + f (0, z2 . . . , zn−1, 0) also by a change of
coordinates ξn = zn + g(z), we can assume that

f (z) = z1zn + f (0, z2, . . . , zn−1, 0).

https://doi.org/10.1017/S001708951600029X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600029X


500 OULD M. ABDERRAHMANE

We set h(z1, . . . , zn−2) = f (0, z1, . . . , zn−2, 0), obviously implies L(f ) = L(h). For
M(f ) �= {1, . . . , n}, it follows by elimination of the maximal and minimal coordinates
that L(f ) = L(h), where h ∈ On−�(f ) be weighted homogenous of type (d; wM(f )).
Therefore by Theorem 5, we get

L(f ) = L(h) = max
i/∈M(f )

(
d
wi

− 1).

For M(f ) = {1, . . . , n}, then we can suppose, by the splitting lemma, that f (z) = z2
1 +

· · · + z2
n, thus L(f ) = 1. The Theorem 4 is proved. �

5.2. Proof of Corollary 6. Let ft(z) = f (z) + ∑
ν cν(t)zν be a deformation μ-

constant of a weighted homogeneous polynomial f of degree d with isolated singularity.
Since cν(0) = 0, we can write

ft(z) = f (z) + tgt(z).

By a result of Varchenko’s theorem [23], the deformation gt verifies dw(gt) ≥ d for all
t. This together with (3) and (4) gives

‖gradwft(z)‖w ≥ ‖gradwf (z)‖w − |t|‖gradwgt(z)‖w

� ρd (z), as |t| 
 1.

Moreover, by a similar argument to the proof of the first inequality in Theorem 5 we
find the following:

L(ft) ≤ n
max

i=1

(
d
wi

− 1
)

.

Also, using the processes of elimination of the maximal and minimal coordinates, we
can get

L(ft) ≤
{

maxi/∈M(f )( d
wi

− 1) if �(f ) < n
1 if �(f ) = n.

By the semi-continuity of the Łojasiewicz exponent in holomorphic μ-constant
families of isolated singularities [20, 22], we find that

L(f ) =
{

maxi/∈M(f )( d
wi

− 1) if �(f ) < n
1 if �(f ) = n.

≤ L(ft).

Then the result follows.

5.3. Proof of Corollary 7. Let d = dw(f ), it says that f can be written in the form

f (z) = Hd (z) + Hd+1(z) + · · · ; Hd �= 0.

Take the following family of singularities

ft(z) := Hd (z) + tHd+1(z) + t2Hd+2(z) + · · · , t ∈ �.

https://doi.org/10.1017/S001708951600029X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600029X


ŁOJASIEWICZ EXPONENT 501

It follows from the isolated singularity of Hd and the theorem in ([2] Section 12.2) that
ft is a μ-constant deformation of Hd , and so by the above corollary we find

L(f ) = L(ft) = L(Hd ) =
{

maxi/∈M(Hd )( d
wi

− 1) if �(Hd ) < n
1 if �(Hd ) = n.

This completes the proof of the corollary.

REMARK 10. For three variables n = 3, Krasiński, Oleksik and Płoski proof in [9]
that

L(f ) = min
(

n
max

i=1

(
d
wi

− 1
)

, μ(f )
)

.

But this is not valid for n greater than 3, indeed, let

f (z1, z2, z3, z4) = z1z4 + z10
1 + z5

2 + z5
3,

is weak weighted homogeneous of type (10; 1, 2, 2, 9). Since μ(f ) = ∏n
i ( d

wi
− 1) by the

Milnor–Orlik formula [16], then μ(f ) = 16. Moreover, it easy to cheek that L(f ) = 4
and maxn

i=1( d
wi

− 1) = 10, hence L(f ) < min(maxn
i=1( d

wi
− 1), μ(f )).

EXAMPLE 11. Let

f (z) = z1z6 + z12
1 + z2z5 + z4

3 + z3
4 + z6

2,

f is weak weighted homogenous of type (12; 1, 2, 3, 4, 10, 11) with isolated singularity,
since M(w) = {5, 6} and M(f ) = {1, 2, 5, 6} � {1, . . . , 6}, then by Theorem 4 we get

L(f ) = max
i/∈M(f )

(
d
wi

− 1
)

= 3.

EXAMPLE 12. Let

f (z) = z1z6 + z2z5 + z3z4,

f is weak weighted homogenous of type (12; 1, 2, 3, 9, 10, 11) defining an isolated
singularity, since M(w) = {4, 5, 6} and M(f ) = {1, . . . , 6}, then by Theorem 4 we get
L(f ) = 1. Also f can be seen as weighted homogenous of type (2; 1, 1, 1, 1, 1, 1), and
hence by Theorem 5, L(f ) = 1.

NOTE. A. Parusiński called my attention to S. Brzostowski’s result [3], which has
independently proved the Theorem 5 of this paper. But his proof is different from
ours.
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14. B. Lichtin, Estimation of Łojasiewicz exponents and Newton polygons, Invent. Math.
64 (1981), 417–429.

15. J. Milnor, Singular points of complex hypersurfaces (Princeton University Press,
Princeton, NJ, 1968).

16. J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous
polynomials, Topology 9 (1970), 385–393.

17. D. B. O’Shea, Topologically trivial deformations of isolated quasihomogeneous
singularities are equimultiple, Proc. A.M.S. 101(2) (1987), 260–262.

18. L. Paunescu, A weighted version of the Kuiper-Kuo-Bochnak-Łojasiewicz theorem, J.
Algebr. Geom. 2 (1993), 69–79.

19. A. Płoski, Sur l’exposant d’une application analytique. I, Bull. Polish Acad. Sci. Math.
32 (1984), 669–673.

20. A. Ploski, Semicontinuity of the Lojasiewicz exponent, Univ. Iagel. Acta Math. 48
(2010), 103–110.

21. S. Tan, S. S.-T. Yau and H. Zuo, Łojasiewicz inequality for weighted homogeneous
polynomial with isolated singularity, Proc. Amer. Math. Soc. 138 (2010), 3975–3984.

22. B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267–292
23. A. N. Varchenko, A lower bound for the codimension of the stratum μ-constant in term

of the mixed Hodge structure, Vest. Mosk. Univ. Mat. 37 (1982), 29–31

https://doi.org/10.1017/S001708951600029X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600029X

