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Abstract

Fast-and-frugal trees (FFTs) are simple algorithms that facilitate efficient and accurate decisions based on limited information.
But despite their successful use in many applied domains, there is no widely available toolbox that allows anyone to easily
create, visualize, and evaluate FFTs. We fill this gap by introducing the R package FFTrees. In this paper, we explain how
FFTs work, introduce a new class of algorithms called fan for constructing FFTs, and provide a tutorial for using the FFTrees
package. We then conduct a simulation across ten real-world datasets to test how well FFTs created by FFTrees can predict
data. Simulation results show that FFTs created by FFTrees can predict data as well as popular classification algorithms such
as regression and random forests, while remaining simple enough for anyone to understand and use.

Keywords: decision trees, heuristics, prediction.

1 Introduction

An emergency room physician facing a patient with chest
pain needs to quickly decide whether to send him to the
coronary care unit or to a regular hospital bed (L. Green &
Mehr, 1997). A soldier guarding a military checkpoint needs
to decide whether an approaching vehicle is hostile or not
(Keller & Katsikopoulos, 2016). A stock portfolio adviser,
upon seeing that, at 3:14 am, an influential figure tweeted
about a company she is heavily invested in, needs to decide
whether to move her shares or sit tight (Akane & Shane,
2017). Binary classification decisions like these have impor-
tant consequences and must be made under time-pressure
with limited information. How should people make such
decisions? One effective way is to use a fast-and-frugal de-
cision tree (FFT, Martignon, Katsikopoulos & Woike, 2008;
Martignon, Vitouch, Takezawa & Forster, 2003). In con-
trast to compensatory decision algorithms such as regression,
FFTs allow people to make fast, accurate decisions based on
limited information without requiring statistical training or
a calculation device. FFTs have been successfully used to
both describe decision processes and to provide prescriptive
guides for effective real-world decision making in a variety
of domains, including medical (Fischer et al., 2002; Jenny,
Pachur, Williams, Becker & Margraf, 2013; Super, 1984;
Wegwarth, Gaissmaier & Gigerenzer, 2009), legal (Dhami,
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2003; Dhami & Ayton, 2001; Dhami & Harries, 2001), fi-
nancial (Aikman et al., 2014; Woike, Hoffrage & Petty, 2015)
and managerial (Luan & Reb, 2017) decision making.

Despite their proven effectiveness, FFTs are still not used
as often as other decision algorithms. We believe that there
are two key reasons for this: First, while there are many tools
in popular software packages to create regression models and
non-frugal decision trees, no such tool currently exists to cre-
ate FFTs. Although one could construct an FFT from data
with a pencil, paper, and calculator using a heuristic tree
construction algorithm (Martignon et al., 2008), the pro-
cess can be tedious, especially for large datasets. Second,
as complex, computationally demanding algorithms, such
as random forests and support vector machines increase in
popularity, simple algorithms like FFTs are increasingly per-
ceived as being outdated and inferior prediction algorithms.
This paper addresses both of these reasons by introducing
FFTrees (Phillips, Neth, Woike & Gaissmaier, 2017b), a
toolbox written in the free and open-source R language (R
Core Team, 2016). As we will show, FFTrees makes it
easy for anyone to create, visualize, and evaluate FFTs that
can compete with the predictive power of more complex al-
gorithms, while staying simple and transparent enough for
anyone to apply in real-world decision environments.

The rest of this paper is structured as follows: Section 1
provides a theoretical background on binary classification
tasks, explains how FFTs solve them and introduces a new
class of “fan” algorithms for constructing FFTs. Section 2
provides a 4-step tutorial on using the FFTrees package
to create and evaluate FFTs from data. Finally, Section 3
presents simulation results comparing the performance of
the fan algorithms to existing FFT construction algorithms
and more complex algorithms such as logistic regression and
random forests.
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Decision  Criterion Accuracy
“Prediction”  “Truth” Comparing prediction to truth
TRUE TRUE  / hi="Hit"
TRUE FALSE X fa = “False Alarm”
FALSE TRUE X mi= “Miss”
FALSE FALSE  cr = “Correct Rejection

Ficure 1: The structure of a binary classification task. The data underlying the task are arranged as a combination of
cases (e.g., patients) and each case’s values on several cues (e.g., age, sex, and various medical tests indicated by the labels
trestbps, thal, slope, cp, and ca). Classification accuracy is evaluated by comparing the algorithm’s decisions to the true
criterion values. The goal of the algorithm is to maximize correct decisions (hits and correct rejections), while minimizing

errors (misses and false-alarms).

2 Binary Classification Tasks

FFTs are supervised learning algorithms used to solve bi-
nary classification tasks. In a binary classification task, a
decision maker seeks to predict a binary criterion value for
each of a set of individual cases on the basis of each case’s
values on a range of cues (a.k.a., features, predictors). The
structure of the task can be illustrated by a table in which
each row represents a case, each column represents a cue,
and individual cells represent cue values for specific cases.
Figure 1 illustrates data from a set of patients (cases), where
each case is characterized by their values on several measures
(cues), ranging from demographic variables, such as sex and
age, to biological measurements, such as cholesterol level
and other medical tests. The binary criterion is the patients’
heart disease status which can either be true (i.e., having
heart disease) or false (i.e., not having heart disease). The
true criterion values are assumed to be unknown at the time
of the decision and must be inferred from the cue values. The
goal of a decision maker presented with this information is to
accurately classify each case into one of two categories (i.e.,
as high-risk or as low-risk), and make an actionable decision
(i.e., send to the coronary care unit or a regular hospital bed)
on the basis of this classification.

Theoretically, this structure of a binary classification task
is captured by a variety of frameworks that range from the sta-
tistical analysis of clinical judgments (e.g., Hammond, 1955;
Meehl, 1954) and comparisons between linear and non-linear
regression models (Dawes, 1979; Einhorn & Hogarth, 1975)
to the formalization of discrimination performance in signal
detection theory (SDT, D. M. Green & Swets, 1966; Macmil-
lan & Creelman, 2005). Practically, the key question that
arises in this context is: How to make good classifications,
and ultimately good decisions, based on cue information?
One way to do this is to use an algorithm.
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A decision algorithm (for brevity, we use only the term
decision algorithm in this section, although the concepts ap-
ply equally to classification algorithms) is a formal mapping
between cue values and a binary decision. We broadly distin-
guish between two families of decision algorithms: compen-
satory and non-compensatory. Compensatory algorithms,
such as regression and random forests, tend to use most, if not
all, of the available cue information because the value of one
cue could potentially overturn the evidence given by one or
more other cues.! By contrast, non-compensatory algorithms
use only a partial subset of all cue information, because the
value(s) of one or more cues can not be outweighed by any
values of other cues. That is, non-compensatory algorithms
deliberately ignore information because, once a decision is
made based on some information, no additional information
can change the decision.

Non-compensatory algorithms can have both practical and
statistical advantages over compensatory algorithms. First,
because they ignore information, non-compensatory algo-
rithms typically use less information than compensatory al-
gorithms. Second, because non-compensatory algorithms
typically use information in a specific, sequential order, they
can guide decision makers in gathering information. For
these reasons, non-compensatory algorithms are especially
well-suited to decision tasks for which information is costly
(in terms of time, money, or processing resources) and when
information must be gathered sequentially over time.

A prototypical non-compensatory algorithm is a decision
tree (Breiman, Friedman, Olshen & Stone, 1984; Quinlan,
1986, 1987). A decision tree can be applied as a set of

'While many regression models are compensatory, specific cases of re-
gression models can be non-compensatory. For example, a linear regression
model with highly unequal coefficients applied to variables with restricted
ranges, can be non-compensatory. Additionally, some compensatory algo-
rithms, such as regression models built with the lasso do not use all available
information (James, Witten, Hastie & Tibshirani, 2013).
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ordered, conditional rules in the form “If A, then B” that
are applied sequentially until a decision is reached. For-
mally, a decision tree is comprised of a sequence of nodes,
representing cue-based questions, branches, representing an-
swers to questions, and leaves, representing decisions. De-
cision trees are non-compensatory because, once a decision
is made based on some subset of the available information
(i.e., a higher node) no additional information (i.e., in lower
nodes) is considered. However, just because decision trees
ignore information does not guarantee that they are always
simple. Without appropriate restrictions a decision tree can
contain dozens of nodes forming a complex network of ques-
tions (Quinlan, 1986). When decision trees become overly
complex, they become both more difficult for people to un-
derstand and use. Moreover, complex trees can be worse
than simpler trees in predicting new data due to statistical
problem known as overfitting (as we will explain below).
This complexity problem is addressed by imposing strict re-
strictions on the size and shape of decision trees. One of the
most restricted forms of a decision tree is a fast-and-frugal
tree (Martignon et al., 2008, 2003).

2.1 Fast-and-Frugal Trees (FFTs)

Fast-and-frugal trees were defined by Martignon and col-
leagues as decision trees with exactly two branches extending
from each node, where either one or both branches is an exit
branch leading to a leaf (Martignon et al., 2008, 2003). In
other words, in an FFT one answer (or in the case of the final
node, both answers) to every question posed by a node will
trigger an immediate decision. Because FFTs have an exit
branch on every node, they typically make decisions faster
than standard decision trees (to avoid confusion, we refer to
decision trees that are not fast-and-frugal as standard) while
simultaneously being easier to understand and use.

Figure 2 presents an FFT designed to classify patients
as being at high or at low-risk for having heart disease.
The three nodes in the FFT correspond to the results of
three medical tests: thal indicates the result of a thallium
scintigraphy, a nuclear imaging test that shows how well
blood flows into the heart while exercising or at rest. The
result of the test can either be normal (n), indicate a fixed
defect (fd), or a reversible defect (rd). The second node
uses the cue cp, indicating a patient’s type of chest pain,
which can be either typical angina (ta), atypical angina (aa),
non-anginal pain (np), or asymptomatic (a). Finally, ca
indicates the number of major vessels colored by fluoroscopy,
a continuous x-ray imaging tool, whose values can range
from O to 3.

To classify a patient with the FFT, begin with the first
node (the parent node): If a patient’s thal value is either
rd or fd, then immediately classify the patient as high-risk,
ignoring all other information about the patient. Otherwise,
consider the next node: If a patient’s cp value is aa, np, or ta,
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Ficure 2: A fast-and-frugal tree (FFT) for classifying pa-
tients as either low or high-risk for heart disease based on up
to three cues. Each cue is contained in a node, represented as
rectangles. Decisions are made in leafs, represented as cir-
cles. Branches represent answers to questions to cue—based
questions. Branches connecting nodes to leafs are called exit
branches. One can use this tree to make a decision as fol-
lows: If a patient’s thal (thallium scintigraphy result) value
is rd (reversible defect) or fd (fixed defect), classify her as
high-risk. If not, check her cp (chest pain type) value. If this
is aa (atypical angina), np (non-anginal pain), or ta (typical
angina), classify her low-risk. If not, check her ca (number of
major vessels colored by flourosopy) value. If this is positive,
classify her as high-risk, otherwise classify her as low-risk.
Note: After creating the heart. fft object in the tutorial
section “Using the FFTrees package”, this plot can be gen-
erated by running plot(heart.fft, stats = FALSE,
decision.labels = c("Low-Risk", "High-Risk").

then immediately classify the patient as low-risk. Otherwise,
consider the third and final node: If the ca value is positive,
classify the patient as high-risk, otherwise classify the patient
as low-risk.

As an example, consider a 65 year old, female patient with
a normal thal value, an atypical angina (cp = aa), and a ca
value of 1. To classify this patient, we first check if her thal
value is rd or fd. As it is not, we check if her cp value is aa,
np, or ta. As this is the case, we classify her as low-risk and
do not consider any additional information.

For this patient, the non-compensatory FFT in Figure 2
allows making a classifications based on two cues without
requiring a calculator. To classify this patient using lo-
gistic regression—a common compensatory classification
algorithm—will not be as easy. Logistic regression belongs
to the larger family of general linear models that model crite-
rion values as a weighted sum of cue values and cue weights.
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That is, each cue value is multiplied by a weight, added, and
then transformed by an equation to produce a continuous
(probability) prediction. A logistic regression solution for
the heart disease classification problem can be represented
as ln(%) =-2.76+1.53-sex—1.91-cp_np—2.12-cp_ta+
0.02-trestbps + 1.24 - ca, where p is the estimated probability
that a patient has heart disease. To use this equation, we need
to know four cue values (the patient’s sex, cp, trestbps and
ca values) multiply them by a series of constants, sum them,
and then transform the result with an inverse-logit function.
We can then compute, using an external calculation device,
the patient’s probability of having heart disease as 70.7%. To
finally classify the patient as having high or low-risk for heart
disease, we need to compare this probability to a threshold.
For example, using a threshold of 50%, we would classify
the patient as high-risk

2.2 Why use FFTs?

Why use FFTs rather than regression? FFTs have three key
advantages, based on their frugality, simplicity, and predic-
tion accuracy (see also Gigerenzer, Czerlinski & Martignon,
1999; Martignon et al., 2008, 2003). First, FFTs tend to be
both fast and frugal as they typically use very little infor-
mation. The FFT for diagnosing heart disease in Figure 2
requires a maximum of three cue values, but as the previous
example suggests, FFTs frequently make decisions after con-
sidering fewer cue values, as every node has an exit branch
that can trigger an early decision. By contrast, regression
typically requires more information and thus takes longer to
implement. The logistic regression heart disease algorithm
always requires four cue values, as the patient’s value on any
one of these cues could potentially change the final decision.
Thus, FFTs are heuristics by virtue of ignoring information
(Gigerenzer & Gaissmaier, 2011). The fact that heuristics
like FFTs ignore information does not necessarily imply that
they will perform worse than slower and less frugal algo-
rithms. As heuristics are tools that tend to work well under
conditions of uncertainty (Neth & Gigerenzer, 2015), it is an
empirical question whether an FFT’s gain in speed and fru-
gality reduces its predictive accuracy relative to regression
(Gigerenzer, Todd & the ABC Research Group, 1999).

Second, FFTs are simple and transparent, allowing anyone
to easily understand and use them. The heart disease FFT in
Figure 2 can be quickly communicated, learned, and applied
either by a computer or “in the head”. By contrast, the re-
gression variant requires training to understand, and usually
a calculator to implement. The simplicity and transparency
of FFTs make them particularly useful in domains where
decision rules need to be quickly understood, implemented,
communicated, or taught to decision makers.

Finally, FFTs can make good predictions even on the basis
of a small amount of noisy data because they are relatively
robust against a statistical problem known as overfitting. As
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we describe below, overfitting occurs when an algorithm has
systematically lower accuracy in predicting new, unseen data
compared to fitting old, known data. In contrast to regres-
sion (particularly in its classic, non-regularized form), FFTs
tend to be robust against overfitting, and have been found to
predict data at levels comparable with regression (Martignon
et al., 2008; Woike, Hoffrage & Martignon, 2017).

2.3 Why are FFTs not more popular?

Given these advantages of FFTs, it is puzzling that FFTs
are used far less than other classification algorithms such
as regression. We believe that there are three main reasons
for this: First, people use tools that are accessible and easy
to use, and most standard software packages do not contain
algorithms for creating FFTs. Second, people often evaluate
decision algorithms based on their ability to fit known data,
rather than their ability to predict new data. This is both
theoretically and statistically problematic, as it favors overly
complex models that are prone to fitting random noise (see
Gigerenzer & Brighton, 2009; Pitt & Myung, 2002; Roberts
& Pashler, 2000). Consequently, focusing on fitting pun-
ishes simple algorithms like FFTs that tend to be worse than
complex algorithms at fitting past data, but as good, if not
better, at predicting new data (see Gigerenzer & Brighton,
2009; Walsh, Einstein & Gluck, 2013, for a discussion of the
bias-variance dilemma and the robustness of heuristics).
The third reason against a wider adoption of FFTs is skep-
ticism that something as simple as an FFT can be as accurate
as a more complex algorithm. This skepticism is partly
due to a suspected trade-off between information frugality
and prediction accuracy. According to this trade-off, the
more information an algorithm uses, the more accurate it
will be—in other words: “more is better.”” For someone
subscribing to the more-is-better principle, the idea that a
simple FFT that explicitly ignores information could be as
accurate as a compensatory decision that uses all or most of
the available information seems preposterous. But despite
its intuitive plausibility, when it comes to building predic-
tive models, the “more is better’-mantra is often mistaken
(Dawes, 1979; Gigerenzer & Brighton, 2009; Gigerenzer &
Goldstein, 1996). Several studies comparing the accuracy
of simple FFTs to more complex decision algorithms have
found that FFTs can closely match, and even outperform
more complex algorithms in predicting new data in domains
ranging from medical and legal to financial and military deci-
sion making (see Aikman et al., 2014; Dhami & Ayton, 2001;
Fischer et al., 2002; 205 L. Green & Mehr, 1997; Jenny et
al., 2013; Keller & Katsikopoulos, 2016; Martignon et al.,
2008; Wegwarth et al., 2009, for examples). These results
have shown that less can be more, and that FFTs need not
necessarily sacrifice accuracy for the sake of simplicity, clar-
ity, or speed. Rather, FFTs can be accurate because of their
simplicity, not in spite of it (see Gigerenzer & Gaissmaier,
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> ) verage of sensitivity and specificity — i cr
Negative Misses Correct balanced (i.e., wacc with w = 0.5) bace hi+msi x 0.5+ cr+fa x 0.5
Rejections accuracy

Ficure 3: A 2 x 2 confusion table and accuracy statistics used to evaluate a decision algorithm. Rows refer to the frequencies
of algorithm decisions (predictions) and columns refer to the frequencies of criterion values (the truth). Cells /i and cr refer
to correct decisions, whereas cells fa and mi refer to errors of different types. Five measures of decision accuracy are defined

in terms of cell frequencies.

2011, for additional less-is-more effects).

In the following section we explain how to quantify the
accuracy and efficiency of a decision algorithm, and show
how FFTrees creates FFTs that are simultaneously fast, fru-
gal, and accurate. We then present a 4-step tutorial on how
to construct and visualize FFTs from data using FFTrees.
Finally, we conduct a series of simulations on 10 real-world
datasets to compare the prediction performance of FFTrees
to several popular decision algorithms.

2.4 Evaluating and constructing FFTs

To reiterate, the decision problems we address are binary
classification tasks for which data can be organized in a table
(asinFigure 1), where several cases are characterized by their
values on several cues. Cues can either be numeric, such as
age, or nominal, such as sex. The criterion is a column of
binary values—either positive (True or 1) or negative (False
or 0)— that one wishes to predict.

In the present paper, we focus on building prescriptive
FFTs that predict criterion values for any kind of data,
whether it is behavioral data representing actual decisions,
such as a doctor’s diagnoses, or non-behavioral data repre-
senting true states of the world, such as a patient’s health
status. As we will return to in the Discussion, we do not
claim that FFTs, specifically those created by FFTrees, are
necessarily good (or bad) models of the decision process
underlying behavioral data. The purpose of FFTs built by
FFTrees is to efficiently and accurately predict binary cri-
terion values on the basis of cues, without claiming that the
tree does, or does not, capture the original data generating
process.
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2.4.1 Measuring accuracy

To define the accuracy of a decision algorithm, we contrast
its decisions with true criterion values in a confusion table
like the one shown in Figure 3. A confusion table cross-
tabulates the decisions of the algorithm (rows) with true
criterion values (columns) and contains counts of observa-
tions for all four resulting cells. Counts in cells hi and cr
refer to correct decisions due to the match between predicted
and criterion values, whereas counts in cells fa and mi re-
fer to errors due to a mismatch between predicted and true
criterion values. Both correct decisions and errors come in
two types: Cell hi represents hits, positive criterion values
correctly predicted to be positive, and cell cr represents cor-
rect rejections, negative criterion values correctly predicted
to be negative. As for errors, cell fa represents false alarms,
negative criterion values erroneously predicted to be posi-
tive, and cell mi represents misses, positive criterion values
erroneously predicted to be negative. Given this structure, a
decision algorithm aims to maximize frequencies in cells hi
and cr while minimizing those in cells fa and mi.

There are many different ways to combine the cell fre-
quencies in a confusion table into aggregate measures of
accuracy. We focus on five measures: sensitivity (sens),
specificity (spec), overall accuracy (acc), weighted accuracy
(wacc), and balanced accuracy (bacc). The first two mea-
sures define accuracy separately for cases with positive and
negative criterion values. An algorithm’s sensitivity (a.k.a.,
hit-rate) is defined as sens = hi/(hi + mi) and represents the
percentage of cases with positive criterion values that are cor-
rectly predicted by the algorithm. Similarly, an algorithm’s
specificity (a.k.a., correct rejection rate, or the compliment
of the false alarm rate) is defined as spec = cr/(fa + cr) and
represents the percentage of cases with negative criterion
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values correctly predicted by the algorithm. The next three
measures define accuracy across all cases. Overall accu-
racy is defined as the overall percentage of correct decisions
acc = (hi + cr)/(hi + fa + mi + cr), ignoring the difference
between hits and correct rejections.

Although overall accuracy is an important and useful mea-
sure, it can be misleading and must be interpreted relative
to the base rate of the criterion. For instance, in a dataset
with a low base rate of 1% (e.g., 100 cases and only one case
with a positive criterion value), a baseline algorithm that
simply predicts every case to be negative would achieve an
overall accuracy of 99%. Thus, baseline algorithms can have
a high overall accuracy without being very useful because
they do not distinguish between positive and negative cases.
An extremely liberal baseline algorithm that always predicts
“True” will never miss and thus have a seemingly desirable
sensitivity of 100%. But this comes at the cost of many false
alarms and a dismal specificity of 0%. By contrast, an ex-
tremely conservative algorithm that always predicts “False”
will maximize correct rejections and exhibit an impressive
specificity of 100%, but at the cost of many misses and a
sensitivity of 0%. Indeed, there is an inevitable sensitivity—
specificity trade-off in most classification tasks, such that
an increase in one measure corresponds to a decrease in the
other (Macmillan & Creelman, 2005). The shape of this
trade-off can be expressed by a receiver operating charac-
teristic (ROC) curve like the one in Figure 4, which shows
the sensitivity-specificity trade-off of 7 different algorithms
applied to the same data set. Here, algorithms with higher
specificities tend to have lower specificities, and vice-versa.

Different tasks and decision maker preferences can in-
fluence the extent to which sensitivity should be weighted
relative to specificity. For example, consider the head of
airport security who needs to construct a decision algorithm
for bag screening, where any bag can be either truly safe
(i.e., does not contain a safety threat) or unsafe (i.e., does
contain a threat). To construct a good decision algorithm,
she needs to take into account the relative cost of a false-
alarm (falsely identifying a safe bag as unsafe), to the cost of
a miss (falsely identifying an unsafe bag as safe). But what
are these costs? There is no definitive answer to this ques-
tion because the relative costs of both errors depend on the
specific decision made for each case after it is classified. For
example, consider the following two decision rules: “If a bag
is classified as unsafe, hold it for an additional 30 minutes
of manual screening to be certain of its contents. If a bag is
classified as safe, let it pass without additional screening.”
Here, the cost of a miss is the potential loss of life due to a
missed threat, while the cost of a false-alarm is an additional
30 minutes of screening time. Clearly, the cost of a miss
in this scenario exceeds the cost of a false-alarm and thus
calls for a decision algorithm that prioritizes sensitivity over
specificity.? As this example shows, a good decision algo-

2The specific costs of false-alarm and misses depend on the specific
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FIGURE 4: A receiver operating characteristic (ROC) curve
illustrating the trade-off between sensitivity (sens) and speci-
ficity (spec) in classification algorithms. As sensitivity in-
creases, specificity decreases (i.e., 1 — spec increases). Bal-
anced accuracy (bacc) is the average of sensitivity and speci-
ficity. Ideal performance (bacc = 1.0), is represented by the
cross in the upper-left corner. The numbered circles in the
plot represent the accuracy of 7 different algorithms with
different trade-offs between sensitivity and specificity. Their
numbers represent the rank order of algorithm performance
in terms of their bacc values. (Note: The circles correspond
to the fan of 7 FFTs that will be created by the ifan algorithm
for the heart disease dataset in the tutorial.)

rithm should be able to balance sensitivity and specificity as
a function of the specific error costs of a domain.

To quantify how an algorithm balances sensitivity and
specificity, we use weighted accuracy. Formally, weighted
accuracy is defined as wacc = w-sens+(1—w)-spec, where w
(labeled sens.w in FFTrees) is a parameter between 0 and 1
that specifies how sensitivity is weighed relative to speci-
ficity. In decision tasks where sensitivity is more important
than specificity (like threat detection in airport screening),
wacc could be calculated with a value of w larger than 0.5.
In cases where both measures are equally important, the
sensitivity weight w can be set to 0.5. In this special case,
weighted accuracy is called balanced accuracy (bacc).

There are many alternative measures to quantify the ac-
curacy of an algorithm across all cases, most notably d-
prime (d’) and area under the curve (AUC). For simplicity,
we focus on wacc (with bacc as a special case) for the remain-
der of this paper, as it provides a simple way to account for

decision policy. For example, if the bag screening policy was “If a bag is
classified as unsafe, destroy it immediately, otherwise, let it pass” then the
cost of a miss would substantially increase because the cost of destroying a
safe bag is higher than the cost of holding it for an additional 30 minutes of
screening.
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both false-alarms and misses, while using an interpretable
scale of values ranging from O to 1 (where O indicates no
accuracy, and 1 equals perfect accuracy, see Figure 4).

2.4.2 Measuring speed and frugality

Although prediction accuracy is an important characteristic
of an algorithm, algorithms should also be evaluated based
on their efficiency. If two algorithms have similar accuracy,
but one is more efficient than the other, then the more effi-
cient algorithm should be preferred because it will be cheaper
(in terms of time and/or money) to implement, while being
easier to understand, and communicate. For this reason,
in addition to measuring an algorithm’s accuracy, we also
measure its efficiency in terms of speed and frugality. Previ-
ous FFT literature has operationalized an algorithm’s speed
and frugality with a single measure, usually as the number of
cues used when implementing the algorithm, averaged across
cases (e.g., Dhami & Ayton, 2001; Gigerenzer & Goldstein,
1996; Jenny et al., 2013). By contrast, we measure speed
and frugality with two distinct measures that separate how
rapidly an algorithm reaches a conclusion (its speed) from
how much information it ignores (its frugality).

We quantify an algorithm’s speed with the measure mean
cues used (mcu), the average number of cue values used in
making a decision, averaged across all cases. For example,
an algorithm that uses 1 cue to make a decision for half of
the cases, and 2 cues for the remaining half, would have
an mcu value of 1.5. This is the same measure used in
previous FFT research as an overall measure of both speed
and frugality.

We separately define an algorithm’s frugality with the
measure percent cues ignored (pci), defined as 1 minus an
algorithm’s mcu divided by the total number of cues in the
dataset (i.e., the maximum possible mcu value). This mea-
sure quantifies the percentage of information an algorithm
ignores when it is implemented on a specific dataset. For
example, in a dataset with 10 cues, an algorithm that uses 1
cue value to make a decision for every case (resulting in an
mcu value of 1) would ignore 9 cue values for every case,
resulting in a pci value of 1 — 1/10 = 90%. By contrast, an
algorithm that uses 9 cue values to classify every case would
ignore very little information, and thus have a pci value of
1 -9/10 = 10%. Thus, the more data an algorithm ignores
(i.e., the higher its pci value), the more frugal it is.

Itis important to distinguish between an algorithm’s speed
(measured by mcu) and its frugality (measured by pci) for
the following reason: A fast algorithm is not necessarily fru-
gal, nor is a frugal algorithm necessarily fast. For example,
when presented with a large dataset containing 100 cues,
an algorithm that uses 10 cues on average (mcu = 10) to
classify each case would, by most standards, not considered
to be very fast. However, the algorithm would nonetheless
be quite frugal (pci = 90%) relative to a complex algorithm
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that uses all available information. By contrast, the same
algorithm applied to a smaller dataset that includes only
the 10 cues actually used by the algorithm would no longer
be frugal (pci = 0%) because it does not ignore any infor-
mation. This example illustrates a second important point
beyond the distinction between frugality and speed: While
some algorithms will be faster and/or more frugal than oth-
ers on average, the speed and frugality of an algorithm also
depend on the data to which it is applied. In other words,
an algorithm that is fast and frugal for one dataset could be
slow and wasteful for another. For this reason, we consider
and provide both measures when evaluating and comparing
algorithms across datasets.

2.4.3 Training (fitting) vs. testing (prediction)

Regardless of the specific accuracy and efficiency measures
used, a decision algorithm must always be evaluated in ref-
erence to one of two phases in the modeling process. In
the training phase (a.k.a., fitting phase) true criterion values
are provided to the algorithm so that it can adjust its free
parameters to the specific decision task. In regression, these
parameters take the form of regression weights. In an FFT,
they are its cues, decision thresholds, cue order, and exits.
In the festing phase (a.k.a., prediction phase) the algorithm
must predict the criterion values of new data (i.e., data not
used during training) by using the specific parameter values
derived during the training phase. Thus, the purpose of the
testing phase is to evaluate an algorithm’s ability to make
true predictions for data that it has not encountered before.
There is an important reason why one should always dis-
tinguish between an algorithm’s accuracy in training and
testing: Algorithms can have systematically higher accuracy
in training data compared to their accuracy in testing data.
The reason for this discrepancy is a statistical phenomenon
known as overfitting (James et al., 2013). To understand
overfitting, it is helpful to view a dataset as a combination of
signal and noise, where the signal is a stable and systematic
pattern in the data and noise is unpredictable variability due
to measurement error or other random influences. As noise,
by definition, cannot be predicted, while signal can, a good
decision algorithm should detect and model signal and ig-
nore noise (Gigerenzer & Brighton, 2009; Kuhn & Johnson,
2013; Silver, 2012). Generally speaking, overfitting occurs
when an algorithm mistakes noise in a dataset for a signal,
and as aresult, changes its parameters to accommodate noise
rather than (correctly) ignoring it. This leads to an inflated
level of accuracy that can not possibly be maintained when
predicting future data that will inevitably be contaminated
with unpredictable noise. When decision makers want to
maximize their ability to predict new data, decision algo-
rithms should be evaluated based on their prediction accu-
racy in the testing phase rather than on their fitting accuracy
in the training phase. The robustness of a decision algorithm
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can then be expressed in terms of its resistance to overfitting:
An algorithm that avoids confusing noise for a signal is ro-
bust in the sense that it achieves similar levels of accuracy
for training and testing data. Equipped with these measures
and conceptual distinctions, we can now describe the algo-
rithms available in the FFTrees package that can be used to
construct FFTs.

2.5 FFT construction algorithms

Constructing an FFT refers to the training phase in which
the parameters of an FFT are tailored to a specific dataset.
An FFT construction algorithm must solve the following
four tasks (but not necessarily in this order): 1. Select cues;
2. Determine a decision threshold for each cue; 3. Determine
the order of cues; and 4. Determine the exit (positive or
negative) for each cue. Each of these tasks is critical in
constraining how, and how well, an FFT will perform.

Two FFT construction algorithms, max and zig-zag, have
been proposed and tested by Martignon and colleagues (Mar-
tignon et al., 2008, 2003; Woike et al., 2017). Both algo-
rithms use several heuristics that simplify the process of
tree construction. The basic steps in each algorithm are as
follows: First, to determine the decision thresholds of nu-
meric cues, both algorithms use the observed median value
of numeric cues rather than using a value that optimizes any
performance criteria. Second, the individual, marginal posi-
tive predictive and negative predictive validities3 of each cue
are calculated, ignoring any potential dependencies between
cues. For the max algorithm, cues are ranked in order of
the maximum value of their positive and negative validities.
Cues with higher positive than predictive validities are then
assigned positive exits, while those with higher negative than
positive predictive validities are given negative exits.

In contrast to max, zig-zag determines the exit direction
for each node before determining cue order. Specifically,
after the first node is given a positive or negative exit, all
sequential nodes then are given alternating exits.4 Once exits
are determined, zig-zag recursively assigns the cue with the
highest positive predictive value to the next node with a
positive exit, and the cue with the highest negative predictive
value to the next node with a negative exit.

The max and zig-zag algorithms have been shown to pro-
duce FFTs that can compete with logistic regression and
standard decision trees in predictive accuracy (Martignon et

3Using the notation of Figure 3, positive predictive validity (ppv) is
calculated as hi/(hi + fa), while negative predictive validity (npv) is calcu-
lated as cr/(mi+cr). Thus, while sensitivity and specificity are calculated
conditionally on true criterion values, ppv and npv are also calculated con-
ditionally on decision values.

4There are slightly different variants of the zig-zag algorithm that change
how the exit of the first node is determined. In our simulations, we use the
Zy algorithm that determines the first exit direction as a function of the
positive and negative predictive value of the highest ranked cue (Woike et
al., 2017).
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al., 2008). Moreover, because they use several simplifying
heuristics throughout the construction process, they require
very few calculations and can in principle be implemented
with a pencil and paper.

Although max and zig-zag are simple and effective, they
lack two features that can make them unsuited for certain
decision problems. First, they do not have sensitivity and
specificity weighting parameters. This means that they can-
not create FFTs tailored to decision tasks where false-alarms
are more (or less) costly than misses. Second, the algorithms
do not have explicit size restrictions or a process of remov-
ing nodes from a tree (a.k.a., “pruning”). This means that
max and zig-zag create FFTs that use all cues in a dataset,
regardless of whether or not the cues are actually used in
classification. In datasets with only a few cues, this does
not pose a problem; however, in datasets with dozens or
even hundreds of cues, this can lead to extremely long trees
containing nodes that may never be used in practice.

To address the sensitivity weighting and tree size issues
present existing FFT construction algorithms, we introduce
a new class of algorithms called fan with two variants: ifan
and dfan. These algorithms account for different sensitivity
and specificity weights by taking advantage of the effect of
an FFT’s exit structure, its particular sequence of negative
and positive exits, on its balance between sensitivity and
specificity. By definition, every node in an FFT must have
either a negative or a positive exit (or both in the case of the
final node). Martignon et al. (2008) and Luan, Schooler, and
Gigerenzer (2011) have shown that the exit structure of an
FFT can dramatically affect its balance between sensitivity
and specificity. For example, an FFT with either all positive
or all negative exits (except for the last node which must
contain both a positive and a negative exit), known as a rake
(Martignon et al., 2003), tends to maximize one metric to the
detriment of the other. An FFT with only positive exits until
the last node, a “positive-rake”, exhibits high sensitivity at
the expense of low specificity because every node in the tree
can trigger a positive decision. By contrast, an FFT with only
negative exits until the last node, a “negative-rake”, exhibits
high specificity at the expense of low sensitivity because
every node in the tree can trigger a negative decision. In
contrast, an FFT with alternating positive and negative exit
directions, known as a “zig-zag” tree, will tend to balance
sensitivity and specificity. Thus, just as a judge can adjust her
decision criterion in the signal detection theory framework
to shift her balance in decision errors, so can an FFT change
its exit structure (Luan et al., 2011).

Inspired by the role an FFT’s exit structure has on its
error balance, the ifan and dfan algorithms explore a virtual
“fan” of several FFTs with different exit structures and error
trade-offs, ranging from negative-rakes, to zig-zag trees, to
positive-rakes. After the fan is created, the algorithms select
the tree with the exit structure that maximizes the statistic the
unique error trade-off (i.e., weighted accuracy) desired by the
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decision maker. They also have parameters that both limit the
size of FFTs, and remove nodes deemed to be unnecessary
because they either do not classify enough cases (the default),
or because they do not substantially increase accuracy.

Full descriptions of the ifan and dfan algorithms are pre-
sented in the Appendix. Here, we describe the algorithms’
rationale more generally. The ifan algorithm works as fol-
lows: Like max and zig-zag, ifan first calculates a decision
threshold ¢ for each cue. For numeric cues, thresholds are
single values, whereas for factors (i.e., nominal or charac-
ter cues), thresholds are sets of one or more factor values.
Thresholds are also combined with decision directions to
indicate how the threshold would be used to make a positive
classification decision. For example, in using the cue age
to predict the presence of heart disease risk, a threshold and
direction could be > 65, indicating that people over the age
of 65 are predicted to be at high risk for having heart disease.
Unlike max and zig-zag, ifan is not restricted to using cue
medians as thresholds for numeric cues. Instead, it tests sev-
eral different thresholds (for numeric cues, the default value
is 20) to find one that that maximizes the cue’s accuracy
goal.chase (by default, goal.chase = bacc) when applied to
entire training dataset and ignoring all other cues.

Next, ifan ranks the cues in order of their maximum val-
ues of goal (by default, goal = bacc).> It then selects the top
max.levels cues (by default, max.levels = 4), and dis-
cards all remaining cues. The algorithm then creates a set of
gmaxlevels—I ERETg with these cues, keeping their order con-
stant, using all possible exit structures. This set of trees
represents the “fan”. For example, the seven points in Fig-
ure 4 represent seven different FFTs within one fan. Next,
the algorithm removes any lower nodes in the FFTs that clas-
sify fewer than stopping.par (by default, stopping.par = 10%)
percent of the data.® If lower nodes are removed, the final re-
maining node is forced to have both a positive and a negative
exit branch. Due to the option of removing low-data nodes,
the final number of cues in an FFT may be lower than, but
cannot exceed max.levels.

Once the set of FFTs has been created, ifan selects the tree
with the highest goal value. By default, its goal is weighted
accuracy (wacc), calculated with a sensitivity weight param-
eter (sens.w) specified by the user. To be clear, by default,
the value of sens.w does not change how the set of FFTs
are constructed (as long as goal.chase = bacc): rather, it
changes which specific tree in the set of FFTs with different
exit structures is selected to make classification decisions.”

5In their FFT construction algorithm, Luan et al. (2011) rank cues by d’,
which is the difference in standardized values of sensitivity and 1 — speci-
ficity. We do not claim that bacc is necessarily a better metric for ranking
cues than d’.

6This 10% value is arbitrary and can be adjusted by the user using the
stopping.par argument in FFTrees ().

7In our experience, having ifan use wacc (with values of sens.w other
than 0.5) in actually constructing FFTs (i.e., selecting cue thresholds and
ranking cues) leads to FFTs of lower overall weighted accuracy (wacc) than
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A key restriction that ifan shares with max and zig-zag
is that it ignores potential interactions between cues—both
in their decision thresholds and their ranked accuracy. That
is, these algorithms calculate decision thresholds and then
rank cues based on their marginal accuracy. Does assum-
ing cue independence hurt the performance of an algorithm?
Intuition suggests that it would, as one can easily imagine
scenarios where cues are not independent. For example, in
diagnosing heart disease, we could hypothesize an interac-
tion between weight and sex such that relationship between
weight and heart disease is, substantially and reliably, not
the same for men and for women. If so, a decision algo-
rithm would make better predictions by calculating a differ-
ent decision threshold for the weight of men versus women.
Indeed, most algorithms for constructing standard decision
trees (such as ID3 and C4.5, Quinlan, 1986, 1993) implicitly
take cue interactions into account by sequentially calculat-
ing new thresholds during tree construction. However, one
must be careful in assuming cue dependence for following
reason stated by Martignon et al.: “the fact that cue interac-
tions can exist [. .. ], does not imply that they must exist; it
says nothing about the frequency of their occurrence” (2003,
p- 210). The reason why one should be careful in assuming
cue interactions is that this assumption can come at a cost:
If an algorithm that takes cue interactions into account is
applied to a dataset where cue interactions either do not ex-
ist, or cannot be reliably estimated from training data, then
the algorithm is likely to overfit the training data and can
lead to poorer predictions than an algorithm that explicitly
ignores cue interactions (see Gigerenzer & Brighton, 2009;
Martignon & Hoffrage, 2002, for a more detailed discus-
sion). In other words, algorithms that routinely incorporate
cue interactions may commit false-alarms in detecting (and
subsequently predicting) cue interactions that may be spuri-
ous or unreliable. For this reason, many successful heuristics
(such as as take-the-best, Gigerenzer & Goldstein, 1996) and
FFT construction algorithms (such as max and zig-zag, Mar-
tignon et al., 2008, 2003) explicitly ignore cue interactions
to reduce both processing time and the risk of overfitting.

In decision domains where substantial interactions be-
tween cues are likely to exist and can reliably be measured
in training data, FFT construction algorithms that assume
dependencies between cues may provide better predictions
than algorithms that do not. To provide users with a fitting
FFT construction tool for such tasks, we provide a variant
called dfan that does not assume cue independence. The
dfan algorithm starts like ifan by ranking cues based on
goal (by default, goal = bacc). But instead of calculating cue
thresholds based on all cases and ranking cues based on their

constructing FFTs by chasing balanced accuracy (bacc) (and using wacc
only to select FFTs after a fan of trees have been constructed). However, if
users of FFTrees should wish to maximize wacc with sens.w values other
than 0.5 for selecting cues and calculating cue thresholds, they can do so by
using the optional argument goal.chase = ‘wacc’.


https://doi.org/10.1017/S1930297500006239

Judgment and Decision Making, Vol. 12, No. 4, July 2017

accuracy only once, it iteratively re-calculates cue thresholds
and accuracies based on the subsets of cases that occur dy-
namically as the FFT is being constructed. This allows dfan
to detect and exploit cues that may exhibit poor overall ac-
curacy, but are highly predictive for specific subsets of cases
partitioned by other cues.

In the next section, we provide a tutorial for creating,
evaluating, and visualizing FFTs with the FFTrees package.
We illustrate each step with example code from a dataset
on heart disease (Detrano et al., 1989), which is included
in the FFTrees package, and ultimately arrive at the exact
FFT for predicting heart disease presented in Figure 2, and
the ROC curve in Figure 4. While we use the heart disease
data throughout, we remind the reader that FFTrees is in no
way restricted to medical data and can be used to model any
dataset with a binary criterion.

3 FFTrees Tutorial

FFTrees should be used with versions 2.1.0 of R or
greater. R can be downloaded for free from https://cloud.
r-project.org. We recommend also using the RStudio
programming environment from https://www.rstudio.com/
products/rstudio/. Reproducible code corresponding to the
tutorial is provided in Figure 5 and is also available at
https://osf.io/m726x/ (Phillips, Neth, Woike & Gaissmaier,
2017a). The code and documentation presented here is valid
for FFTrees version 1.3.2, but should also be valid for future
package versions. The latest developer version of FFTreesis
available at http://www.github.com/ndphillips/FFTrees. We
welcome bug reports, feature requests, and code contribu-
tions at http://www.github.com/ndphillips/FFTrees/issues.

3.1 Step 1: Install the FFTrees package

FFTrees can be installed from CRAN by evaluating
install.packages("FFTrees"). Once the package has
been installed on a computer, it does not need to be installed
again (except to check for a more recent version). Once
the package is installed and loaded, a package guide con-
taining instructions and examples can be opened by running
FFTrees.guide().

3.2 Step 2: Create FFTs with FFTrees()

The main function for creating FFTs is FFTrees(). The
function has two mandatory arguments formula and data.
The formula argument should be of the form formula
= criterion ~ a + b + ... specifying the criterion
(criterion) and one or more cues (a, b, ...) to be
considered, but not necessarily used in the FFT. For exam-
ple, including formula = diagnosis ~ sex + age will
create FFTs predicting diagnosis that only consider the cues
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sex and age. One can also use the generic formula =
criterion ~ . notation, which allows to consider all cues
in the training data. Unless there are specific cues in the
training data that should, or should not, be considered, we
recommend using the generic formula notation.

The second mandatory argument to the FFTrees () func-
tion is data, a training dataset containing all cues specified
in formula. The training data should be stored as a data
frame consisting of m rows (cases) and n columns. One of
the columns must be the binary criterion specified in the for-
mula argument. Although there are no explicit restrictions
on the number and classes of cues, we recommend not in-
cluding factor cues with many (i.e., more than 20) unique cue
values, as this can lead to long processing times and potential
overfitting. Missing values are (currently) not permitted.

The optional data.test argument allows specifying a
testing dataset used to test the prediction performance of the
tree. In the absence of separate training and test datasets, one
can use the train.p = p argument to automatically split
the original training data (specified with the data argument)
into separate training and test subsets. Setting train.p =
p will split all cases contained in data into a proportion p
used for training and 1-p for testing. For example, setting

train.p = .10 will randomly split the original data into a
10% training set, and a 90% testing set.®
Additional optional arguments include main and

decision.labels, with which users can specify verbal
labels for the dataset and/or decision outcomes. These argu-
ments are passed to other functions such as plot(). There
are several additional optional arguments one can use to cus-
tomize how the trees are constructed. The algorithm argu-
ment specifies the FFT construction algorithm. The default
algorithm s ifan (i.e., algorithm = “ifan”), however, the
user can also specify “max”, “zig-zag”, or “dfan” to
create FFTs using one of these algorithms. For the fan al-
gorithms, the arguments max.levels and sens.w, additionally
control tree size and sensitivity weights (for the ifan and dfan
algorithms only), while goal and goal.chase specify which
accuracy statistic is maximized when growing the tree(s),
and selecting the final tree, respectively. Additional details
about these and other arguments are provided in the package
documentation.

3.3 Step 3: Inspect FFTs

The FFTrees () function returns an object of the FFTrees
class. An overview of the trees contained in the object is
available in three ways: by printing the object to the console,
by summarizing it with summary (), or by obtaining a verbal
description of it with inwords(). Most of the following

8Due to the random split, this can yield different results every time the
FFTrees(train.p = p) function is evaluated. For reproducible results,
we advise either fixing the sampling seed (via set.seed()) or creating an
explicit data.test set.
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# 4 Steps to create and visualize a fast-and-frugal tree (FFT)
# predicting heart disease using FFTrees

# Step 0: Install the FFTrees package (only necessary once)
install.packages("FFTrees")

# Step 1: Load the FFTrees package and open the package guide
library("FFTrees") # Load the package

FFTrees.guide() # Open the package guide

# Step 2: Create FFTs from training data and test on testing data

heart.fft <- FFTrees(formula = diagnosis ~ ., # Criterion
data = heart.train, # Training data
data.test = heart.test, # Testing data
main = "Heart Disease", # Optional labels

decision.labels = c("Low-Risk", "High-Risk™))

# Step 3: Inspect and summarize FFTs

heart. fft # Print statistics of the final FFT

inwords (heart.fft) # Print a verbal description of the final FFT
summary Cheart. fft) # Print statistics of all FFTs

# Step 4: Visualize the final FFT and performance results
# a) plot final FFT applied to test data:
plot(heart.fft, data = "test")

# b) plot individual cue accuracies in ROC space:
plot(heart.fft, what = "cues")

Ficure 5: Complete, reproducible code showing four basic steps to create, visualize, and evaluate FFTs predicting heart
disease with FFTrees. The datasets used for training (heart.train) and testing (heart.test) are included in FFTrees
and an expanded tutorial for this code is available in the package by evaluating vignette("FFTrees_heart"). A link to
a video tutorial corresponding to this code is also available at https://osf.io/m726x/ (Phillips et al., 2017a).
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TaBLE 1: Printing an FFTrees object provides summary
statistics on the created FFTs, selects the FFT with the high-
est weighted accuracy (wacc) in training and shows its per-
formance measures for training and testing data.

Heart Disease
7 FFTs predicting diagnosis (Low-Risk vs. High-Risk)
FFT #1 contains 3 cues: {thal, cp, ca}

Measure Label Training Testing
cases n 150 153
speed mcu 1.74 1.73
frugality pci 0.88 0.88
accuracy acc 0.80 0.82
weighted accuracy wacc 0.80 0.82
sensitivity sens 0.82 0.88
specificity spec 0.79 0.76

functions will automatically return details of the FFT with
the highest weighted accuracy (wacc) in the training data.
However, users can also return results from other trees in the
fan by specifying an integer value in the tree argument.

Printing an FFTrees object (i.e., evaluating the object
by its name) displays basic statistics—including the number
of cases and metrics for accuracy, speed, and frugality in
training vs. testing data—to the console (see Table 1).

Applying the summary () function to an FFTrees object
returns detailed information on each of the FFTs, including
their cues, decision thresholds, exits and exit directions, as
well as accuracy and efficiency statistics.

Finally, applying the inwords () function to an FFTrees
object returns a verbal description of the tree. For exam-
ple, evaluating inwords (heart. fft) on the heart disease
FFTrees object returns the sentence: “If thal = {rd, fd}, pre-
dict High-Risk. If cp != {a}, predict Low-Risk. If ca <=0,
predict Low-Risk, otherwise, if ca > 0, predict High-Risk.”

3.4 Step 4: Visualize and evaluate FFTs

To visualize a specific FFT contained in an FFTrees ob-
ject, as well as its associated accuracy statistics when ap-
plied to either the training or testing data, apply the generic
plot() function to the object. By default, the FFT with
the highest weighted accuracy (wacc) in the training data is
shown. Figure 6 shows heart disease FFT applied to the test-
ing data. Colored icon arrays (Galesic, Garcia-Retamero &
Gigerenzer, 2009) illustrate how the tree made decisions for
all 153 cases in the testing data. The bottom panel provides
cumulative accuracy statistics. Additionally, the accuracies
of each tree in the fan of seven FFTs generated by ifan are
visible in the ROC curve in the bottom-right of the plot (these
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are identical to the points in Figure 4). Using the additional
arguments tree and data allows users to select which FFT
in the fan is plotted, and which dataset (training or testing)

is displayed.
To visualize the marginal accuracy of every cue in
the dataset, include the what = “cues” argument when

plotting an FFTrees object. This option illustrates the
individual, marginal accuracies for each cue in ROC space.
Figure 7 shows the resulting plot for the heart disease
data. Inspecting the graph reveals that the three cues
(thal, cp, ca) used in FFT #1 (shown in Figure 6) have the
highest individual balanced accuracies. Note that this is
to be expected as the ifan algorithm explicitly selects and
ranks cues by this statistic by default. Figure 7 also shows
that the two next best cues are oldpeak and slope. This
information can be useful in guiding a top-down process of
future FFT construction. For example, if those cues were
of particular interest, one could build a new FFT with these
cues by evaluating heart2.fft <- FFTrees(formula
= diagnosis ~ thal + oldpeak + slope, data =

heart), and then compare the performance of the two trees.

3.5 Additional options

The commands described so far cover the four basic steps
in constructing and evaluating FFTs with the FFTrees pack-
age. Although these steps will be sufficient for many datasets
and applications, the package offers additional functions
and options that users might find helpful. We will now
briefly describe five of the additional functionalities and
direct users to the documentation and package guide (by
evaluating FFTrees.guide()) for additional options and
examples.

3.5.1 Accessing additional outputs

An FFTrees object created with the FFTrees() function
contains several detailed outputs that can be accessed by
evaluating x$output, where x is an FFTrees object cre-
ated by the FFTrees() function, and output is a named
output of that object. To see all named outputs from
an FFTrees object, run names(x). Key outputs include:
x$cue.accuracies, which contains the decision thresh-
olds and marginal accuracies for each cue; x$decision,
which contains the classification decisions for all cases;
x$levelout, which indicates at which level in the FFT each
case was classified; and x$1levelstats, which shows the
cumulative classification statistics for each level of the FFTs.

3.5.2 Predicting classes of new data

To make classification predictions for a new dataset using
an FFTrees object, use the predict(x, newdata) func-
tion, where x is an FFTrees object, and newdata is a data
frame of new data. For example, one could use the heart
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Ficure 6: Visualization of an FFTrees object created by plot(heart.fft, data = "test"). The top panel shows
information about the dataset, including the frequencies and base rates of negative and positive criterion classes. The middle
panel contains the FFT and icon arrays showing the the number and accuracy of cases classified at each node. This particular
FFT’s interpretation has been described above (on p. 346 and in Figure 2). The bottom panel shows the FFT’s cumulative
classification performance, including a confusion table and levels for a range of statistics. The bottom right plot shows the
performance of all seven FFTs created by the FFTrees () function in ROC space (green circles with numbers correspond
to FFTs). The FFT currently being plotted is highlighted (here, FFT #1, with the highest weighted accuracy in training).
Additional points in this plot correspond to the performance of competing classification algorithms (see Simulation section):
standard decision trees (CART), logistic regression (LR), random forests (RF), and support vector machines (SVM). In this
case, FFT #1 has a higher sensitivity than competing algorithms, but at the cost of a lower specificity. Additionally, FFT #1
dominates CART in this example by having a higher sensitivity and comparable specificity.
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Ficure 7: Visualizing marginal (training) cue accuracies
from the heart. fft object by running plot Cheart. fft,
what = “cues”, data = “train”). Accuracy statistics
are calculated for each cue using the threshold that max-
imizes bacc. Numbers indicate a cue’s ranked accuracy
across all cues in terms of bacc. The top five cues are col-
ored and described in the legend. All other cues in the data
are shown as black points.

disease FFT (heart.fft) to predict the diagnoses of a new
set of patients whose cue information is stored in a data
frame called heart.new by running predict Cheart. fft,
heart.new). This will return a vector of classification pre-
dictions for each case in heart.new.

3.5.3 Defining an FFT in words

Some users might wish to implement a specific FFT to data,
rather than using an FFT construction algorithm to construct
an optimized FFT. To do this, users can verbally define a
tree as a sentence by using the my.tree argument when
calling the FFTrees() function. FFTrees will attempt to
extract the cues, decision thresholds, directions and exits
from the sentence, and then apply the FFT described to
the specified data. For example, in the heart disease data,
one can directly define and implement a new heart disease
FFT by running the code: FFTrees(diagnosis ~ .,
data = heart.train, my.tree = “If chol > 350,
predict True. If cp != {a} predict False.

If age <= 35, predict False. Otherwise,
predict True”). Additional grammatical rules for
verbally defining FFTs are available in the package
documentation.
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3.5.4 Including cue costs

If the cues in a dataset have specific and known implemen-
tation costs—Ilike the financial cost of a measurement, or
the amount of time it takes to implement—they can be in-
cluded as a data frame in the cost.cues argument when
creating an FFTrees object. The cost.cues data frame
should have two columns: one specifying the name of a cue,
and one specifying the cost of that cue. The specific units
used in specifying costs (e.g., hours or $) are arbitrary, as
long as they are comparable across different cues. When
cost.cues is included, FFTrees will calculate the classifi-
cation cost of each case when applying an FFT to data. For
example, in the heart disease data, each cue has a cost rang-
ing from a minimum of $1 (age) to $102.9 for the thallium
scintigraphy (thal) test.® The costs are stored in the FFTrees
package as a data frame called heart.cost, with a column
cue indicating the names of the cues, and a column cost in-
dicating their costs. By including the argument cost.cues
= heart.cost when creating the heart disease FFT in Fig-
ure 6, one can see in the summary output that using this
FFT would cost approximately $123 per patient on average.
In contrast, using all cues in classification would have cost
approximately $300 per patient, more than twice as much.
Note that including cue costs does not affect how trees are
constructed. We will return to the topic of incorporating cue
costs in FFT construction in the Discussion.

3.5.5 Creating a forest of FFTs

Additional insights into the role of cues in a dataset can be
gained by using the FFForest() function. This function
conducts a bootstrap simulation that applies the FFTrees ()
function to random subsets of the data, thus creating a for-
est of many FFTs, each constructed from different sets of
cases.!? This forest of FFTs can be used to explore the im-
portance of each cue in a dataset, where cue importance is
defined as the proportion of FFTs in the forest for which a
particular cue is selected. The more often a cue is selected,
the more important it is deemed to be. Moreover, informa-
tion about the co-occurrence of cues within FFTs across the
forest allows judging whether two cues tend to jointly con-
tribute to classification decisions within an FFT, or if they
tend to replace one another between FFTs.

9We retrieved the costs of the heart disease data from https://archive.
ics.uci.edu/ml/machine-learning-databases/heart-disease/costs/. The three
cues of the FFT (thal, cp, and ca) have costs of $102.90, $1.00, and $100.90,
respectively. When applied to the data displayed in Figure 6, the total cost
of the FFT would be $102.90 for each of the 72 patients classified at the
first node, $103.90 ($102.90 + $1.00) for each of the 51 patients classified
at the second node and $204.80 ($102.90 + $1.00 + $100.90) for each of
the 30 patients classified at the third node.

19By default, FFForest() creates 10 FFTs created from 10 random
50% subsets of the original data. The number of simulations and size
of the subsetting can be specified using arguments ntree and train.p.
Additional arguments such as sens . w and algorithmcan also be specified.
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Ficure 8: Network plot of relationships between cues in the
heart disease data created by plotting an FFForest object.
The object represents a bootstrap simulation of 100 FFTs
trained on different random subsets of the heart disease data.
The size of a node reflects how often it occurs across different
FFTs in the forest (i.e., its importance), while the weight of
the connection between two nodes reflects how often they
co-occur within individual FFTs.

Figure 8 shows the result of plotting the result of
FFForest () applied to the heart disease data.!! This shows
that the three cues (thal, cp, ca) of the FFT shown in Figure 6
were deemed the most important (i.e., most commonly oc-
curring) cues over the entire range of FFTs (as indicated by
their size) and were most likely to co-occur (as indicated by
the width of their connecting lines). This increases our con-
fidence that the three chosen cues are robust across a wide
range of subsets of the original data.

4 Prediction Simulation

FFTs are decision algorithms designed to provide simple
rules of thumb that can be easily understood and applied un-
der cognitive and time constraints, rather than solely maxi-
mizing decision accuracy. That said, accuracy is certainly an
important criterion in selecting a decision algorithm. More-
over, while people might not be able to implement complex
algorithms “in the head”, they now often have easy access
to a computer or mobile phone that can quickly implement
a computationally intensive decision algorithm in negligi-
ble time. So how well do FFTs predict data relative to more
complex algorithms when there are no computational restric-
tions? Priorresearch has suggested that FFTs can predict data
as well as algorithms such as logistic regression and stan-
dard decision trees (Martignon et al., 2008; Woike, Hoffrage
& Hertwig, 2012; Woike et al., 2017). However, logistic
regression (in a non-regularised form) and standard decision

UFor this example, 100 FFTs were constructed from 100 simulations
using 50% of the full heart disease data.

https://doi.org/10.1017/51930297500006239 Published online by Cambridge University Press

FFTrees 358

trees have strong competition from other algorithms. Sup-
port vector machines (SVM) and random forests (RF, Kuhn
& Johnson, 2013) are known to be highly robust against
overfitting and thus should provide a stronger challenge to
FFTs. Thus, we are left with an important question: If com-
putational resources are no issue and we only care about
prediction performance, how good are FFTs created by the
FFTrees package relative to the benchmarks provided by
complex compensatory algorithms? To answer this ques-
tion, we conducted a series of prediction simulations.

4.1 Simulation method

We obtained 10 real-world datasets from the UCI machine
learning repository (Lichman, 2013). A summary of the
datasets is presented in Table 2. The datasets differed in a
variety of ways, from their content domain, to the amount
of cases (ranging from 68 to 17,895), to the number (from
6 to 280) and classes (numeric and factor) of cues, to the
base-rate of the criterion.

We implemented the prediction simulations using the
benchmark function in the m1r package (Bischl et al., 2016).
Each simulation proceeded as follows: The original dataset
was split into a 50% training set for model fitting and a 50%
testing set for prediction. FFTs were constructed using four
different algorithms: ifan, dfan, max, and zig-zag. For both
ifan and dfan, the maximum number of levels was set to 4.
As the max and zig-zag algorithms do not specify size re-
strictions or pruning procedures (Martignon et al., 2008), we
did not restrict the size of FFTs created by either algorithm.
Model prediction performance was measured with balanced
accuracy (bacc) in the testing set. For simplicity, we do not
consider other accuracy measures such as weighted accuracy
with sensitivity weights other than 0.5, or overall accuracy,
and do not claim that our results will generalize to these or
other accuracy measures. The speed and frugality of the
FFTs was measured by mcu and pci.

In addition to the four FFT construction algorithms, we
performed similar simulations for five competing decision
algorithms: standard decision trees (CART), using the
rpart package (Therneau, Atkinson & Ripley, 2015); lo-
gistic regression (LR), using the stats package (R Core
Team, 2016);!2 regularised regression (RLR), using the
glmnet package (Friedman, Hastie & Tibshirani, 2010);
naive Bayes (NB), using the e107 1 package (Meyer, Dimitri-
adou, Hornik, Weingessel & Leisch, 2015); random forests
(RF), using the randomForest package (Liaw & Wiener,
2002); and support vector machines (SVM), also using the
e1071 package (Meyer et al., 2015). We used default param-

12Because GLM models in R cannot make predictions for data with new
factor values unseen during training, we forced the logistic regression model
to predict FALSE (the most common class) for all simulations in which new
factor values were present. In addition, in predicting data with logistic
regression, we included all predictors, not just significant ones.
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Ficure 9: Comparisons of the four different fast-and-frugal tree construction algorithms collapsed across all simulations
and datasets. For the left panel (speed, measured by mean cues used, mcu), lower values are better. For the middle and right
panels (measuring frugality by percent cues ignored, pci, and balanced accuracy, bacc) higher values are better. Horizontal
lines in distributions represent means. Plots were created using the yarrr package (Phillips, 2016).

eter values for all of these algorithms. We conducted 100
simulations for each dataset, resulting in a total of 100 sim-
ulations for each model-data combination. Complete sim-
ulation code and results are available on the Open Science
Framework at https://osf.io/m726x/ (Phillips et al., 2017a).

4.2 Simulation results

We begin by comparing the four FFT construction algo-
rithms, before comparing the performance of FFTs to alter-
native prediction algorithms.

4.2.1 Comparing FFT construction algorithms

The results for speed (mcu), frugality (pci), and balanced
accuracy (bacc) collapsed across all simulations and testing
datasets are presented in Figure 9. The two fan algorithms
had virtually identical performance in all measures; there-
fore, we report their results simultaneously. With respect to
efficiency, the fan algorithms were faster!®> and more frugal
than both max and zig-zag. Both fan algorithms had mean
mcu values of 1.85 (IQR =[1.65, 2.0]), whereas zig-zag had
a mean mcu value of 4.85 (IQR = [2.0, 6.2]), and max had
a mean mcu value of 6.5 (IQR = [2.6, 7.1]).'* Both fan

13The fan algorithms were not faster in terms of actual tree construction
processing times. Using a 2015 Apple Macbook Pro with 16GB of RAM
and a 3.1Ghz Intel Core i7 processor, the max and zig-zag algorithms had
median processing times of 0.59 and 0.57 seconds respectively, while the
ifan and dfan algorithms had median times of 2.61 and 15.93 seconds, up
to 30 times slower than max and zig-zag.

14These results parallel those of Newell, Rakow, Weston and Shanks
(2004) who found that take-the-best, a strategy which—Ilike max and zig-
zag—ranks cues by positive and predictive validity, can be less frugal than
a strategy that ranks cues by other measures, such as their likelihood of
discriminating cases.
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algorithms were also more accurate than max and zig-zag.
The fan algorithms both had mean bacc values of 0.81 (IQR
= [0.73, 0.93]) compared to means of 0.64 (IQR = [0.50,
0.74]) and 0.75 (IQR = [0.61, 0.93]) for max and zig-zag,
respectively.

4.2.2 Comparing FFTs to other algorithms

We now compare the predictive accuracy of FFTs built with
ifan to alternative prediction algorithms. The mean predic-
tion balanced accuracy for each algorithm and dataset across
all simulations are presented in Table 2 and Figure 10. Re-
sults show that FFTs were competitive with other algorithms
in prediction performance. Collapsed across all datasets,
the best performing algorithm was support vector machines
(SVM), with a mean balanced accuracy of 0.86, followed
closely by fast-and-frugal trees (FFT), regularized logistic
regression (RLR), and random forests (RF), each with mean
balanced accuracy scores of 0.83.15

Figure 11 shows the complete distribution of prediction
performance within each individual dataset as well as an FFT
constructed from the entire dataset.'® These results show
that there was variability in the rank order of algorithms
across datasets, but FFTs were consistently competitive in
their prediction performance. Relative to other algorithms,
FFTs performed worst in the occupancy dataset, achieving a
mean balanced accuracy of .96, while most other algorithms

15As the SVM algorithm repeatedly crashed for both the arrhythmia and
audiology data for unknown reasons, the mean balanced accuracy of SVM
does not reflect its performance in these datasets.

16To clarify, our simulations produced different FFTs for different random
training datasets. Thus, the variability in performance for the FFTrees
algorithm is due to both different datasets and different FFTs.
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Ficure 10: Distributions of prediction performance, measured as balanced accuracy (bacc) in testing across datasets. FFT
results are for FFTs built with the ifan construction algorithm. The SVM results do not include data for the arrhythmia or
audiology datasets due to repeated crashing. Wide horizontal lines represent means and vertical lines represent the 25th
and 75th percentiles. Credible intervals for means are not shown because they are virtually identical to the sample means.
Distributions for individual datasets are presented in Figure 11.

TaBLE 2: Dataset descriptions, FFT efficiency, and prediction accuracy measured in balanced accuracy (bacc) in the
prediction simulations. All FFTs were constructed using the ifan algorithm. The efficiency measures apply only to FFTs.

Dataset Efficiency’ Prediction accuracy (bacc)?
Title Cases Cues Base rate mcu  pci FFT CART LR RLR NB RF SVM
arrhythmia 68 280 0.29 1.81 0.99 0.66 0.64 052 070 0.71 069 —3
audiology 26 70 0.10 165 098 0.84 065 093 085 083 072 —23
breast 683 10 0.35 1.42  0.86 094 094 096 096 097 0.97 097
cme 1,473 10 0.35 220 0.78 0.61 0.58 0.56 0.53 059 0.59 0.57
credit 666 16 045 1.88 0.88 0.85 085 083 0.87 0.76 0.87 0.87
dermatology 358 35 0.31 1.69 0.95 099 098 099 099 0.69 1.00 1.00
heart 303 14 0.46 1.74 0.88 0.78 0.76 081 0.82 0.82 0.81 0.82
occupancy 17,895 6 021 1.89  0.68 096 099 099 099 098 0.99 0.99
voting 435 17 0.61 1.51 091 092 09 092 096 090 0.96 0.95
yeast 1,484 9 0.16 1.84 0.80 0.74 0.69 067 0.64 060 0.70 0.71
Overall — — — 1.76  0.87 0.83 0.80 0.82 0.83 0.78 0.83 0.86

! Efficiency measures only apply to FFTs: mcu is mean cues used per case (speed), and pci is percent of cues ignored (frugality).

2 Prediction accuracy measures show mean balanced accuracy (bacc) for six algorithms: FFT = fast-and-frugal trees using the ifan
construction algorithm, CART = standard decision trees, LR = logistic regression, RLR = regularized logistic regression, NB =
naive Bayes, RF = random forests, and SVM = support vector machines.

3 The SVM algorithm was unable to make predictions for both the arrhythmia or the audiology datasets due to repeated crashing.
The overall accuracy prediction accuracy value for SVM thus only includes results from the other eight datasets.

reached .99. In the cmc and yeast datasets, FFTs slightly  only small FFTs with a maximum of two cues, other datasets,

outperformed all other algorithms on average. such as audiology, credit and bridges, produced larger FFTs
The 100% training FFTs in Figure 11 also illustrate the that contained four cues (the maximum allowed).
diversity of FFTs created for different datasets. For example, In addition to making accurate predictions, the FFTs cre-

while some datasets such as breast and dermatology required  ated by FFTrees were very efficient. Average mcu values,
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Ficure 11: Distributions of prediction balanced accuracy (bacc) for each model and dataset in the prediction simulation.
Horizontal lines within plots represent means. FFT results are for FFTs built with the ifan construction algorithm. The
support vector machines (SVM) algorithm could not make predictions in the arrhythmia and audiology datasets due to
repeated crashes. Next to each simulation is a 100% training FFT produced by the ifan algorithm applied to the full dataset.

representing how much information was necessary to make
decisions, were low, ranging from a minimum of 1.42 in the
breast dataset, to a maximum of 2.20 in the cmc dataset.
Across all datasets, the mean mcu value was 1.76, indicating
that the FFTs required fewer than two cues on average to
make a fast classification decision. FFTs were not just fast,
they were also frugal. Mean pci values, representing how
much information the FFTs ignored, ranged from a mini-
mum of 68% in the occupancy dataset, to a maximum of
99% in the arrhythmia dataset. Across all datasets, the mean
pci value was 87%, indicating that FFTs ignored 87% of all
available data. Together, these simulation results replicate
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and extend the findings of others (Martignon et al., 2008;
Woike et al., 2017): Despite their simplicity and deliberate
ignorance, FFTs can compete with state-of-the-art decision
algorithms in pure prediction accuracy.

5 Discussion

FFTs are elegant, transparent and effective algorithms for
making binary classification decisions. Because they are
predictive, efficient and easy to implement, they have suc-
cessfully been used in many applied domains ranging from
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terrorism threat detection (Keller & Katsikopoulos, 2016)
to depression diagnosis (Jenny et al., 2013). However, until
now there has been no straightforward toolbox for anyone
to easily create FFTs from data. The FFTrees package fills
this gap. Importantly, our simulation results show that FFTs,
especially those constructed with the ifan algorithm, can be
as accurate as state-of-the-art classification algorithms. This
reinforces previous research showing that there is no inher-
ent trade-off between frugality and accuracy (Gigerenzer,
Todd & the ABC Research Group, 1999). Thus, users of the
FFTrees package not only can construct FFTs, but can use
them with confidence for making important predictions.

5.1 When and how should we use an FFT?

Although we have argued that FFTs are under-utilized, we
also believe that there are domains where an FFT is not the
most appropriate algorithm to use. To help decision makers
decide whether to consider FFTs or a alternative algorithm
for making binary classification decisions we recommend
using the FFT presented in Figure 12. It answers the ques-
tion “Should I consider an FFT?” by considering four cues
that matter when choosing a classification algorithm: imple-
mentation, cost, transparency, and prediction accuracy.

Implementation Will the algorithm be implemented by a
person without a computational aid? If a decision needs to
be implemented in real time by a human mind without a com-
putational aid then FFTs provide a functional and accurate
tool that can be quickly learned and easily used.

Costs Are there substantial monetary or temporal costs in-
volved with implementing the decision? If it is costly to
gather decision-relevant information, then FFTs are partic-
ularly effective because they use so little information, re-
ducing costs in terms of money, time, and unnecessary tests
(Gigerenzer, 2015; Luan etal., 2011; Martignon et al., 2003).
Consider the domain of medical decision making: Here, the
speed and frugality of effective FFTs are attractive because
medical tests can be expensive. As we have shown in the
heart disease dataset, the FFT in Figure 6 would have been
almost 60% cheaper to implement than an algorithm that
uses all possible cues, with perhaps no decrease in accuracy.

Transparency Is it important to understand how the al-
gorithm works? Because an FFT can be explained either
visually or verbally as a set of simple rules, it is easy for
decision makers to understand how an FFT works and com-
municate it to others. By contrast, it is difficult for anyone
without extensive statistical training to understand and im-
plement more complex models like regression.

The transparency of FFTs not only makes them easier to
understand, use, and communicate, it also facilitates trouble-
shooting when they fail. As with a simple machine with only
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Ficure 12: An FFT to decide whether to consider an FFT
or use an alternative algorithm for classifying cases for a
decision task. The list of cues in this FFT are meant to be
illustrative and not exhaustive.

a few moving parts, it should be relatively straightforward
to see where and why an FFT might be going wrong. For
example, imagine a doctor making heart disease diagnoses
using the FFT presented in Figure 6. In her first year using
the FFT, the tree has a balanced accuracy of 90%, but in the
following year, its accuracy suddenly drops to 50%. What
went wrong? Is one of the cues in the tree no longer accurate?
If so, which one? To find out, the doctor could perform a few
relatively simple checks. She could start by first considering
the first node: “If the thallium scintigraphy test (thal) shows
either a reversible defect (rd) or a fixed defect (fd), predict
high-risk.” To see if the accuracy of classifications made by
this cue has changed, she could compare the classification of
this node (i.e., those with reversible or fixed defects) between
years. If she finds that the accuracy rate for patients clas-
sified at this node decreased from 85% to 40%, this might
suggest that the test is not being administered correctly, or
that her patient population has changed and that the test is
less accurate for this new population. On the other hand,
if there was no substantial change in accuracy for patients
diagnosed at this node in the FFT, she could be confident
that the problem lies with a node further down the tree.

In short, the simplicity and transparency of FFTs is not
only beneficial when the algorithm works well, but also al-
lows decision makers faced with a poorly performing tree to
quickly diagnose why and where it is failing. In contrast, de-
tecting the cause(s) behind a failing compensatory decision
algorithm, which could hide behind a variety of parameters,
is considerably more difficult.
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Prediction accuracy Do FFTs reach similar (or better)
prediction performance as other algorithms in the problem
domain? Like all decision algorithms, FFTs are neither in-
herently good nor bad at prediction (Gigerenzer, Todd &
the ABC Research Group, 1999). Rather, their performance
depends on their match to the task environment, and the
demands of the decision maker. Indeed, there is “no free
lunch” in classification tasks, meaning that no single learn-
ing algorithm is better a priori than any other when fac-
ing an unknown dataset (Wolpert, 1996). Our simulations
across 10 diverse datasets have shown that FFTs can compete
with complex machine learning algorithms in data prediction
alone, they do not prove that FFTs always will.

This raises an important question: When can we expect
that FFTs will perform well and when can we expect that
they will not? While a complete answer to this question is
beyond the scope of this paper, we can point to one general
class of datasets for which FFTs will not predict data as well
as compensatory algorithms: namely, those with many cues
that each are weakly predictive of the criterion, but where a
function of the cues (i.e., a weighted linear combination) is
highly predictive. For example, one could generate a dataset
containing 10 cues X, X», . . ., X109, with a binary, Bernoulli-
distributed criterion y and a probability of success defined
by logit(l -X1+1-Xo+1-X3+...41-X19). An FFT would
tend to make poor predictions for this data as each individ-
ual cue is not very predictive of the criterion. By contrast,
a logistic regression model with a sufficiently large training
dataset could make accurate predictions for these data be-
cause the sum of all cues, which a regression equation can
easily capture, is highly predictive of the criterion. How-
ever, if we allow for some cues to be more predictive than
others, then FFTs can make good predictions even when the
true generative model is a linear weighed combination of the
cues. For example, if the probability of success was defined
as a weighted sum of the cues with highly skewed weights,
such as logit(100- X; +50- X, +25- X3 +...+ 1 Xjg), an
FFT could perform quite well by focusing on a few highly
predictive cues (i.e., X1, X», and X3), and ignoring the rest.

Ultimately, the question which algorithm yields the best
predictive performance for a dataset is an empirical, rather
than an ideological question. While it is helpful to under-
stand which properties of data generally affect the relative
performance of different decision algorithms, one should be
cautious in discarding an algorithm a priori, without actually
evaluating its prediction (rather than fitting) performance for
a dataset. When viewing prediction algorithms as tools,
whose function partly depends on their fit to the features of
specific datasets, even algorithms that, by all logic “should”
fail can be surprisingly successful.

https://doi.org/10.1017/51930297500006239 Published online by Cambridge University Press

FFTrees 363

5.2 Future directions

The FFTrees package is a growing toolbox for creating,
customizing, and applying fast-and-frugal trees. As such,
the FFT construction algorithms, metrics, and visualizations
currently included in FFTrees provide just a starting point
rather than a final product. Although we have ideas and plans
for extensions, the goals and directions of future versions
will also depend on the feedback from users, inputs from
developers, and needs of practitioners. We now identify
three key areas for further developing FFTrees.

5.2.1 Incorporating cue costs in FFT construction

In decision tasks such as medial diagnoses, information can
come at significant costs in terms of time, money, or other
factors, such as physical and psychological stress. As we
have described, FFTs are almost inherently cheap to use as
they typically require very little information to make a deci-
sion. However, this does not mean that all FFTs are equally
cost efficient—one FFT might be much cheaper to use than
another, either because it uses less expensive cues, or be-
cause it uses them in a more cost efficient order. While
FFTrees can calculate classification costs when applying
FFTs to data (when the user specifies cue costs using the
cost.cues argument) these costs are not currently used
during FFT construction. When cue costs are ignored, an
FFT construction algorithm might construct trees containing
cues that are relatively expensive to use, but miss slightly less
accurate trees that would be much cheaper to implement. For
instance, in the heart disease dataset, FFTrees puts a rela-
tively expensive cue (thal: $102.90) at the first node of
the FFT, and a very cheap cue (cp: $1) at the second node.
However, inspecting the cue accuracies in Figure 7 shows
that the cues have comparable accuracies. Thus, we would
expect that simply changing the order of these cues could
substantially reduce the cost of applying the FFT with very
little reduction in decision accuracy. As the ifan construction
algorithm ignored cue costs, it returned a relatively expen-
sive FFT and missed a much cheaper variant that may yield a
similar accuracy. The issue of considering explicit costs for
test construction has been discussed in the medical decision
making literature (e.g., Hershey, Cebul & Williams, 1986),
and costs have been incorporated into standard decision tree
construction algorithms (Lomax & Vadera, 2013). One ma-
jor feature of a future FFTrees toolbox would be to allow
users to specify the cost of obtaining values from each cue,
and then incorporate both cue costs and decision accuracy
in constructing FFTs.

5.2.2 Detecting and adapting to performance changes

Many decision tasks occur in dynamic environments, where
conditions are not static, but can change over time. Terrorists
can change how they approach military checkpoints (Keller


https://doi.org/10.1017/S1930297500006239

Judgment and Decision Making, Vol. 12, No. 4, July 2017

& Katsikopoulos, 2016), financial institutions can vary their
investment strategies (Aikman et al., 2014), and new pa-
tient populations can enter emergency rooms (Trzeciak &
Rivers, 2003). In decision tasks where FFTs are applied to
potentially dynamic data, a change detection algorithm such
as those used in image processing (e.g., Radke, Andra, Al-
Kofahi & Roysam, 2005) and time series (e.g., Kim, 2000;
Ray & Tsay, 2002) could be useful in tracking changes in
the performance of an FFT over time as it is applied to new
batches of data (see Todd & Dieckmann, 2004, for a simi-
lar discussion). Consider how a change detection algorithm
could improve doctors’ use of the heart disease FFT. Given
historical training data, a change detection algorithm could
maintain a series of expected probabilities that future pa-
tients will be classified at each exit branch in the tree, as well
as the probability of classification success at each branch.
For example, the algorithm might predict that 50% of future
patients should be classified at the first node of the tree, and
of those patients, 75% should be correctly classified. As
new patients are classified using the tree over time, the algo-
rithm could compare the classification rates of new patients
to its expectations from historical data. If the algorithm de-
termines that the new classification rates are substantially
different from what was expected, FFTrees could notify the
user that a meaningful change may have occurred. This
could spur the user to re-evaluate how well specific cue val-
ues are being measured (i.e., a malfunctioning medical test)
or to consider constructing a new FFT trained on more recent
data.

5.2.3 Modeling behavioral data

In this paper, we have focused on using FFTs to predict
matters of fact or objective states (like patients with high
vs. low risks for heart disease). However, FFTrees could
also be used to model behavioral data with binary outcomes
(like doctors’ decisions based on classifying patients). Both
fast-and-frugal and standard decision trees have successfully
been used to model decision making processes in mem-
ory (Batchelder & Riefer, 1990) and quantitative judgments
(Gigerenzer & Goldstein, 1999; Gigerenzer, Todd & the
ABC Research Group, 1999; Rieskamp & Hoftrage, 1999).
Software packages such as multiTree (Moshagen, 2010)
exist that automate the modeling process. FFTrees could
also in principle be used to model individual-level decision
processes. While we support such efforts, we also caution
against a naive interpretation of FFTs as process models
without a modicum of skepticism and additional supporting
evidence. When applied to behavioral data, the FFT con-
struction algorithms in FFTrees will prefer cues that predict
the criterion value without any consideration of their their
psychological plausibility. An FFT could rank cues in an or-
der that makes no psychological sense, or might select cues
that were not even encoded by the decision maker. While a
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good fit—or better, successful prediction—of some statisti-
cal model may be necessary to be considered as a process
model, it is not sufficient. A convincing case for FFTs as
process models should include process predictions (Johnson,
Schulte-Mecklenbeck & Willemsen, 2008), such as increas-
ing response latencies corresponding to lower levels of a tree
(see Fific, Little & Nosofsky, 2010, for a a related exam-
ple), and a conceptual scope of the decision making process
(Jarecki, Tan & Jenny, 2016).

6 Conclusion

The purpose of this article is to highlight the effectiveness
of fast-and-frugal trees, and to make them accessible to in-
terested users via FFTrees. By focusing on the creation
and evaluation of FFTs, we have been silent about how they
are or should be used. For instance, FFTs can model some-
one’s judgment or some objective state or fact, and can be
interpreted in both a descriptive or a normative fashion. Ir-
respective of one’s stance in this debate, an FFT is designed
to provide accurate and robust predictions at low costs. If it
achieves this goal, its transparency provides a suggestion for
revising our beliefs about the causal texture of a particular
task or domain. Thus, while it would seem inflated to view
any successful FFT as a process model or theory, it could
certainly serve as a tool to inform our theorizing.

Realizing that simple FFTs can be as accurate as far more
complex models raises new issues regarding their acceptance
and justification. Even if skeptics were persuaded that fru-
gality does not always decrease accuracy it will remain a
challenge how ignoring information can be justified when
errors occur. Imagine a doctor making a frugal classifica-
tion decision that proves to be wrong. Can she really claim
with authority and confidence that it was legitimate and in
the patient’s best interest to ignore most of the available in-
formation? Given our results, there is no a priori reason
to believe that a more comprehensive or complex algorithm
would have been less error-prone than an FFT. Nevertheless,
it is clear that a society or institution that primarily aims to
assign blame, rather than learn from errors, may be reluctant
to adopt fast-and-frugal algorithms.

At the same time, practical concerns and persistent pres-
sures to reduce costs push decision makers towards more
frugal models. Just as ignoring information may be hard
to justify, it is difficult to insist on using irrelevant informa-
tion that provides no benefit in predictive accuracy. Thus,
answering the question if and how FFTs should be used
touches upon many issues of public policy and of legal or
moral responsibility. Whenever making predictions for im-
portant tasks, we ultimately strive for an acceptable balance
between accuracy and frugality. The FFTrees package helps
us to find, measure, and better understand this balance.
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Appendix

6.1 FFT fan construction algorithms

The following are descriptions of the fan FFT construction
algorithms, ifan and dfan as implemented in FFTrees ver-
sion 1.3.2. Our terminology is as follows:

Criterion: Y is a binary vector of length M indicating the
true criterion value (True or False) for all cases.

Cue Matrix: Z is an M - N matrix (or in R terms, a data
frame) of cues (predictors), containing M rows (cases)
and N columns (cues).

Cues: X;,i € 1,2,...N are N cue vectors of length M,
where some vectors are nominal factors, and others are
on a numeric (either continuous or discrete) scale.

Decision threshold and decision direction: 7; is a deci-
sion threshold, and D; is a decision direction for the
i-th cue that jointly map cue values to positive (i.e., cri-
terion = True or 1) decisions. For numeric cues, 7; is a
number and D; a direction D; € {>, <}. For example,
for a numeric cue age, the threshold and direction com-
bination age > 30, where T = 30 and D =>, means
that age values greater than 30 are predicted to have
positive criterion values, while age values less than or
equal to 30 are predicted to have negative (i.e., crite-
rion = False or 0) criterion values. For factor cues,
T; is a set of factor values and D; € {€,¢} For ex-
ample, color € {blue, green} has a decision threshold
T = {blue, green} and decision direction D = €, mean-
ing that colors equal to blue or green are predicted to
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have positive criterion values, and colors not equal to
blue or green (¢) are predicted to have negative criterion
values.

6.2 Fan algorithm parameters

Both fan algorithms have the following five parameters:

goal.chase: A statistic that is maximized when calculating
cue thresholds and ranking cues. Default: goal.chase
= bacc.

goal: A statistic that is maximized when selecting a final
FFT from an existing set of FFTs. Default: goal =
wacc.

max.levels: The maximum number of levels allowed in an
FFT. Default: max.levels = 4.

max.numcat: The number of (equally spaced) numeric
thresholds compared when calculating thresholds for
numeric cues. Default: max.numcat = 20.

stopping.par: The minimum percentage of training data
required by each node. Default: stopping.par =
. 10.

6.3 The ifan algorithm

The ifan algorithm assumes independence between cues and
is defined as follows:

1. Calculate decision thresholds and directions for each
cue: For each cue X;, calculate a decision threshold T;
and decision direction D; that maximizes goal.chase
when the decisions made by this cue (and ignoring all
other cues) are compared to the true criterion values for
all M cases. In version 1.3.0 of FFTrees, this is done
in a brute-force fashion and comprises several sub-steps
that distinguish between numeric and factor cues:

(a) For numeric cues, test max.numcat - 2 different
thresholds and direction pairs by combining all
possible combinations of max.numcat (with a de-
fault value of 20) decision thresholds (equally
spaced numeric values ranging from the minimum
to the maximum cue value) with 2 decision direc-
tions (> and <). Select the threshold-direction
pair with the highest goal.chase value.

(b) For factor cues, the exit direction for each factor
level is determined in a two-step procedure:

i. Calculate the goal.chase of all possible com-
binations of individual factor levels and de-
cision directions (€ and ¢). For example,
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given a cue color with three possible val-
ues red, green and blue, test six combina-
tions of decision thresholds and directions:
color € red, color ¢ red, color € green,
color ¢ green, color € blue, color ¢ blue.

ii. For each factor level, remove the decision di-
rection with the lower goal.chase value from
the set. For example, if color € red has a
balanced accuracy of 0.75, and color ¢ red
has a balanced accuracy of 0.45, then remove
the combination color ¢ red.

iii. For each decision direction, rank cue thresh-
olds in order of goal.chase. For example,
considering the € direction, the color thresh-
olds could be ranked as color € red =0.75,
color € green = 0.6 (here, we assume that
the color € blue threshold was removed be-
cause the threshold color ¢ blue had ahigher
value of goal.chase).

iv. Determine a candidate set of cue thresholds
by sequentially combining individual thresh-
olds in order of rank, starting with the high-
est ranked threshold. As each additional
threshold is added to the set, re-calculate the
goal.chase of the set. Continue adding fac-
tor values to the set as long as goal.chase
increases. As soon as goal.chase decreases
with an additional factor value, stop the pro-
cess and use the previously defined thresh-
old set. Complete this process for both the
€ and the ¢ decision directions, resulting in
two candidate sets of factor values (one for
the € direction and one for the ¢ direction).

v. Compare the goal.chase values of the final
two sets of factor values and select the set
with the higher goal.chase value as the fi-
nal decision threshold, with a corresponding
decision direction.

2. Rank order cues by goal.chase: Rank order cues (com-

bined with their corresponding decision thresholds and
directions calculated in Step 1) by their goal.chase val-
ues. Select the top max.levels cues and discard the
rest.

. Create a fan of several FFTs: Create 2™3evels=1 FRTg
{F1, F2, . . ., Fomaxieves-1 } by placing the cues selected and
ordered in Step 2 in sequential nodes, using all possible
FFT exit structures, where nodes 1 through max.levels—
1 can have either a positive or a negative exit, and the
final max.levels node has both a positive and negative
exit.

. Prune FFTs: For each tree F;, classify all cases. If any
lower nodes in the tree contain fewer than stopping.par
percent of all cases, remove those nodes and force the

https://doi.org/10.1017/51930297500006239 Published online by Cambridge University Press

FFTrees 368

final remaining (lowest) node in the tree to have both a
positive and negative exit.

Select FFT with highest goal: Calculate the goal value
of each tree. Select the tree with the highest goal value
as the final tree.

6.4 The dfan algorithm

The dfan algorithm assumes dependencies (or interactions)
between cues and is defined as follows:

1.

Create FFTs with different exit structures:
Given max.levels, create 2maxlevels-l  ppTy
{Fi, Fa, ... Fomaews-1} by using all possible FFT

exit structures, where nodes 1 through max.levels — 1
can have either a positive or a negative exit, and the
final (max.levels.) node has both a positive and a
negative exit. For example, if max.levels = 3, then four
FFT skeletons are created: FFT #1 = {0, 0, .5}, FFT #2
={0,1, .5}, FFT#3 = {1,0, .5}, FFT #4 = {1, 1, .5},
where 0, 1, and .5 represent negative exits, positive
exits, and both negative and positive exits, respectively.

Create new decision thresholds, rank cues, and select
top ranked cue for next empty level: Calculate decision
thresholds, and directions for all cues using the pro-
cedure outlined in Step 1 of the ifan algorithm. Rank
order cues by their goal.chase values. Select the top
ranked cue and assign to the current node.

Classify cases in current node: Make classification de-
cisions for cases that satisfy the decision criteria for the
current node.

Repeat Steps 2 and 3: Recursively repeat Steps 2
and 3, calculating new decision thresholds and direc-
tions for each cue based on cases not yet classified by
earlier nodes, and assigning the cue with the highest
goal.chase to the next empty node. Repeat until all
cases are classified.

5. Prune FFTs: See ifan Step 4 (above).
6. Select FFT with highest goal: See ifan Step 5 (above).
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