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SUMMARY

Using multivariable models, we compared whether there were significant differences between

reported outbreak and sporadic cases in terms of their sex, age, and mode and site of disease

transmission. We also determined the potential role of administrative, temporal, and spatial

factors within these models. We compared a variety of approaches to account for clustering

of cases in outbreaks including weighted logistic regression, random effects models, general

estimating equations, robust variance estimates, and the random selection of one case from

each outbreak. Age and mode of transmission were the only epidemiologically and statistically

significant covariates in our final models using the above approaches. Weighing observations in a

logistic regression model by the inverse of their outbreak size appeared to be a relatively robust

and valid means for modelling these data. Some analytical techniques, designed to account for

clustering, had difficulty converging or producing realistic measures of association.

INTRODUCTION

Humans infected with E. coli O157 may show a

range of clinical outcomes including asymptomatic

shedding, gastroenteritis, haemorrhagic colitis, and/

or haemolytic uraemic syndrome [1]. Infection with

E. coli O157 has been associated with exposure to

contaminated food [2, 3], contaminated drinking

and recreational water [4, 5], shedding humans and

animals [6, 7], and contaminated environments [8].

The young and elderly are often considered to be at

the greatest risk of infection and/or complications

following infection with E. coli O157 [1, 9–11]. Due to

the potential severity of clinical symptoms, the level of

underreporting of clinical cases is lower than disease

associated with many other enteric pathogens [12, 13].

Current knowledge concerning risk factors associated

with E. coliO157 comes generally from the analysis of

databases on outbreaks and sporadic cases kept by

public health agencies [14–16].

In a previous study in Alberta, Canada, we found

variation in the spatial distribution of reported out-

break and sporadic cases [17]. We also demonstrated

that the location of areas with significantly higher

rates of E. coliO157, after correcting for demographic

factors, was impacted by the choice to use only
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sporadic cases or both sporadic and outbreak cases in

our statistical analyses. Subsequently, we questioned

whether the mode and site of transmission and the

characteristics of individuals that became infected

with E. coliO157 were different depending on whether

they were identified as a sporadic or outbreak case

(i.e. two or more cases related to a common ex-

posure). Understanding these differences may have

important implications for which groups and acti-

vities should be targeted for disease prevention

programmes or increased surveillance. Studies on

secondary transmission of E. coli O157 and a number

of outbreaks dominated by children suggest young

children may be at increased risk of being involved in

outbreaks [6, 18].

Comparing outbreak and sporadic cases may pose

some analytical challenges. Cases associated with a

particular outbreak are not independent. Ignoring

this lack of independence can result in an under-

estimation of variability and increase the probability

of making a type I error (i.e. falsely rejecting the null

hypothesis) [19–21]. It can also result in incorrect

estimates of measures of association. A variety of

techniques including robust variance estimates, gen-

eral estimating equations (GEE), and random effects

models have been created to deal with clustered data

[19–21]. However, in our study, only cases associated

with outbreaks had a true hierarchical structure.

Consequently, methods, such as GEE or random

effects models, that correct both measures of associ-

ation and measures of variance by accounting for

the correlation among cases, may fail to converge or

provide unreliable estimates if faced with few repli-

cations at a hierarchical level. Other possible tech-

niques for controlling for clustering may include the

random selection of one case from each outbreak to

remove the clustering effect by design rather than

through a statistical technique. Analytical weights

could also be used to down-weight the impact of

multiple cases from a single outbreak; similar ap-

proaches have been developed for dealing with com-

plex survey designs where the probability of being

sampled may vary among cases [21].

Using a database of reported cases of E. coli O157

from Alberta, Canada in 2000–2002, we determined

whether there were significant differences between

sporadic and outbreak cases in terms of age, sex,

the mode of transmission (e.g. food), and the site

of transmission (e.g. home). We also determined

whether the following temporal, spatial, and admin-

istrative factors were significant predictors of whether

a case was more likely to be part of an outbreak:

a region in the province where there was a higher

proportion of outbreak cases than sporadic cases

(outbreak cluster) [17] ; a yearly period from May to

October when reported cases cluster [17] ; year of

study; and whether a case had been hospitalized.

We also tested the significance of interactions between

age, sex, and mode and site of transmission. We

created multivariable logistic models using a variety

of methods to correct for clustering for comparative

purposes.

METHODS

Data

We obtained a list of all reported cases of E. coli O157

infection in Alberta during the 2000–2002 period. The

data were obtained from Notifiable Disease Reports

(NDR) stored electronically in the Communicable

Disease Reporting System (CDRS) maintained by

the Disease Control and Prevention Branch of

Alberta Health and Wellness using methods designed

to preserve patient anonymity. The protocol for this

research was approved by the University of Guelph

Research Ethics Board.

In total 875 cases were recorded during this period,

but six cases were excluded from subsequent analyses

because of insufficient demographic and/or spatial

data [17]. From the NDR we obtained/calculated the

following information for each case: a unique identi-

fier (NDR number), age at onset of clinical symp-

toms, year case occurred, sex, mode of transmission,

site of transmission, case hospitalization (yes/no),

a unique identifier used for community outbreaks

(Exposure Indicator Number), cases identified

through an epidemiological link that did not require

definitive laboratory results (EPI-linked), the NDR

numbers that connected EPI-linked cases, and a

unique identifier created to identify cases sharing a

common address. Mode of transmission included the

following categories : food and water, animal contact,

person-to-person, other, and unknown. Site of trans-

mission included the following categories : home, food

services establishment, high-contact housing (nursing

home, daycare, campsite), travel, other, unknown.

The categories for mode and site of transmission were

slightly modified from the categories used in the NDR

to avoid small cell sizes in subsequent statistical

analyses. The ‘other’ category in the mode and site of

transmission variables were known/suspected by the
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public health worker, but did not fall into the re-

maining categories. In the electronic database, only

‘other ’ was recorded, but we added three obser-

vations, believed to be attributed to the pathogen

being aerosolized, to the ‘other ’ category for mode of

transmission, and 20 cases believed to have occurred

at the workplace to the ‘other’ category in site of

transmission. Cases were classified as outbreak cases if

they shared a common Exposure Indicator Number,

were Epi-linked, and/or shared a common address.

Based on the above definition, cases associated with

an outbreak were given a unique outbreak number.

In total, there were 69 outbreaks involving 185

cases. The largest outbreak recorded in the database

included 10 cases. However, 53% of all outbreak

cases were in outbreaks involving two individuals.

Two variables in this study were based on the

results of previous analyses of these data using

SaTScan version 3.1.2 [22]. We created variables to

identify a region in the province with an increased

proportion of outbreak cases relative to sporadic

cases based on a Bernoulli model (outbreak cluster),

and a period of time variable when the rate of cases

was increased based on a Poisson model (seasonal

cluster) [17, 22]. Cases that were classified as being

part of the outbreak cluster were located in a region

with an approximate latitude and longitude of

50x N and 112x W, and a radius of 78 km. Cases that

were classified as being part of a seasonal cluster fell

between 1 May and 31 October in 2000–2002.

Statistical analyses

All of the multivariable statistical models created

for this study involved a dichotomous outcome (i.e.

outbreak/sporadic). The assumed distribution of the

response variable was binary, and a logit link was

used between the response variable and its linear

predictor. All tests performed were two-tailed tests

with a statistical significance level of 5%. In addition

to descriptive statistics, univariable statistics were

also performed for each variable with a t test, adjusted

for unequal variances, being performed for age and

x2 tests being performed for categorical variables.

Prior to beginning the model-building procedure,

we determined whether there was a strong correlation

among any of the predictor variables. If the corre-

lation between two variables was o0.8, based on a

Pearson’s or Spearman’s rank correlation coefficient,

only one of the variables would be used in subsequent

analyses. In addition, we tested the assumption of

linearity for age using three techniques: including a

square term in the model ; categorizing the continuous

predictor to determine if the coefficients increased in a

relatively uniform fashion; and plotting the log odds

of the outcome against the mean of 10 categories of age

divided into 10 percentiles. If any of these methods

revealed that the assumption of linearity was violated,

the appropriate transformation was performed or if

significant, a square term was added to the model.

The initial model-building procedure began with an

ordinary logistic regression model (i.e. a logistic re-

gression model that did not account for clustering in

the data). Interaction terms and square terms were

added individually to the full model (i.e. a model with

all the main effects) and were removed if they were not

statistically significant. Main effects were removed

one at a time and kept in the final model if they were

statistically significant based on a likelihood ratio test

or acted as a confounding variable. A confounding

variable was defined as a variable that caused at least

a 20% change to the coefficient of a statistically sig-

nificant variable on a log odds scale when it was re-

moved from the model. All main effects that had been

removed were re-introduced to the final model one at

a time to re-assess their significance and potential

confounding effect. When re-introducing interaction

effects to a tentative final model, all necessary base

terms were also included. The Hosmer–Lemeshow

goodness-of-fit test was performed to determine

that the binary model was appropriate for the data.

A likelihood ratio test was used to assess the signifi-

cance of removed variables where the estimates were

calculated using maximum-likelihood procedures.

Where a quasi-likelihood method was used, signifi-

cance was assessed using Wald tests.

While our initial modelling procedures involved an

ordinary logistic regression model, we looked at a

number of procedures to correct for the impact of

clustering [19, 21]. We employed the following

two techniques that adjusted the variance estimates

but not the coefficient estimates themselves : robust

variance estimates based on Huber–White/sandwich

variance estimates that are less sensitive to the

assumption of independence; and robust variance es-

timates with a ‘cluster ’ option that specifies that ob-

servations are independent across groups (i.e. cluster)

but not necessarily within groups [21]. The following

models adjusted both the coefficient estimates and the

variances: a weighted logistic regression model where

a weight was applied to each observation that was the

inverse of the number of cases within an outbreak or
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one if the case was sporadic; GEE with an exchange-

able correlation structure; and random intercept

models using various algorithms [21]. Random inter-

cept models were performed/attempted using: various

combinations of predictive quasi-likelihood (PQL)

or marginal quasi-likelihood (MQL), and first- or

second-order derivatives of the Taylor series expan-

sion for linearization prior to the use of re-weighted

iterative generalized least squares (RIGLS); the

Monte Carlo Markov Chain (MCMC) method;

and generalized linear latent and mixed models

(GLLAMM) [20, 23]. In addition, we controlled

for clustering prior to building a logistic model by

randomly selecting one case from each outbreak. This

procedure was performed five times to determine

whether the coefficients calculated for each variable

were relatively stable among iterations.

Residual analyses were performed for the ordinary

logistic regression model and the random effects

model produced using RIGLS, PQL, and first-order

derivatives of the Taylor series expansion. Residuals

were inspected for extreme standardized residuals,

high leverage, and high influence. All statistical

analyses were performed using Intercooled Stata

8.0 for Windows (Stata Corp., College Station, TX,

USA) except for the random effects models involving

quasi-likelihood or MCMC methods which were

performed using MLwiN 2.02 (Institute of Education,

London, UK). The weights for the weighted logistic

regression were applied using an ‘ iweight ’ option. The

weights were applied to the likelihood function in a

manner similar to those used to adjust for different

probabilities of being sampled [24].

RESULTS

Based on univariable statistics the following variables

had a statistically significant association with the de-

pendent variable (i.e. outbreak/sporadic) : age, out-

break cluster, case year, mode and site of transmission

(Table 1). The correlations among all the independent

variables used in our study never exceeded 0.8. Age

was log transformed (natural log) since it did not have

a linear relationship with the outcome based on a log

odds plot.

Within the ordinary logistic regression model the

following variables were not statistically significant

based on a likelihood ratio test (x2=11.81, D.F.=11,

P=0.38) and were removed from the full model : sex,

hospitalization, case year, temporal cluster, and site of

transmission. These terms did not have a confounding

effect on the remaining significant variables. A square

term for the log of age in years (x2=3.13, D.F.=1,

P=0.077), and interaction terms among age and sex

(x2=0.02; D.F.=1; P=0.90), age and mode of trans-

mission (x2=3.54, D.F.=4, P=0.47), sex and mode of

transmission (x2=3.23, D.F.=4, P=0.52), age and

site of transmission (x2=4.13, D.F.=5, P=0.53), and

sex and site of transmission (x2=6.47, D.F.=5,

P=0.26) were also statistically non-significant when

added to the full ordinary logistic regression model.

The model-building process for the various logistic

models designed to control for clustering resulted in

models with the same fixed effects.

The final main effects models included the fol-

lowing variables : log of age in years, outbreak

cluster, and mode of transmission (Table 2). The

Hosmer–Lemeshow goodness-of-fit test for the or-

dinary logistic regression model was non-significant

(Hosmer–Lemeshow x2=5.20, D.F.=10, P=0.74)

indicating that the binary model was appropriate. The

direction of odds ratios for all the variables was the

same among all the models (Table 2). The confidence

intervals were generally larger for all models using

methods designed to account for clustering (Table 2).

However, applying the robust option to relax the as-

sumption of independence among observations often

resulted in narrower confidence intervals (Table 2)

than those produced by our ordinary logistic re-

gression model. Among methods designed to adjust

the odds ratios and variance estimates, the random

effects model employing PQL and the weighted re-

gression model had almost identical odds ratios and

95% confidence intervals (Table 2). The odds ratios

estimated using MQL were closer to the null among

the statistically significant coefficients. The direction

of odds ratios for significant variables was similar

among the five models (Random 1–5) where a single

case was randomly selected from each outbreak,

although there was some variation in the point esti-

mates and confidence intervals (Table 2). The model

using GEE with an exchangeable correlation struc-

ture failed to converge. Estimates obtained using

GLLAMM and MCMC methods when converted to

an odds scale were several orders of magnitude greater

or smaller, depending on the direction of the associ-

ation, from those obtained using the other methods.

Increasing age appeared to have a statistically

significant sparing effect, while cases found within

the Bernoulli cluster were at increased risk of being

outbreak cases (Table 2). Using food and water as

the referent category, individuals believed to have
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obtained their infection from another person were

at increased risk of being in an outbreak (Table 2).

We also found significant differences in animal (x2=
27.10, D.F.=1, P<0.001), other (x2=9.24, D.F.=1,

P=0.002), and unknown (x2=43.23, D.F.=1, P<
0.001) modes of transmission relative to person-

to-person spread based on Wald tests applied to the

ordinary logistic regression model. However, there

was no significant difference between person-to-person

transmission and the ‘other ’ category for trans-

mission when the following models/methods were

employed to adjust for clustering: weighted regression

(x2=2.53, D.F.=1, P=0.11) ; random effects model

with PQL (x2=2.22, D.F.=1, P=0.14) ; random

effects model with MQL (x2=0.68, D.F.=1, P=0.41) ;

randomly selecting a case from each outbreak (x2=
0.52–2.46, D.F.=1, P=0.12–0.47). There was no

statistically significant relationship among the other

modes of transmission. The residual analyses based

on the ordinary and random effects logistic regression

models did not identify any observations that were

highly unusual or that had a large impact on the

model when removed.

DISCUSSION

Age, mode of transmission, and a variable marking

the spatial location of a cluster of outbreak cases (i.e.

Table 1. Univariable statistics comparing reported outbreak and sporadic

cases from Alberta, Canada in 2000–2002

Variable Sporadic Outbreak Test statistic P value

Age (years) 28.68 (23.58) 14.39 (17.64) 9.05 <0.001

Sex

Male 291 (42.54) 79 (42.70)
Female 393 (57.46) 106 (57.30) 0.0015 0.97

Hospitalized
Yes 204 (29.82) 44 (23.78)

No 435 (63.60) 130 (70.27)
Unknown 45 (6.58) 11 (5.95) 2.95 0.23

Outbreak cluster
Yes 66 (9.65) 50 (27.03)

No 618 (90.35) 135 (72.97) 38.02 <0.001

Case year
2000 258 (37.72) 66 (35.68)
2001 236 (34.50) 49 (26.49)

2002 190 (27.78) 70 (37.84) 7.94 0.019

Seasonal cluster
Yes 531 (77.63) 155 (83.78)
No 153 (22.37) 30 (16.22) 3.32 0.069

Mode of transmission

Food and water 370 (54.09) 62 (33.51)
Animal contact 52 (7.60) 10 (5.41)
Person-to-person 31 (4.53) 61 (32.97)
Other 12 (1.75) 6 (3.24)

Unknown 219 (32.02) 46 (24.86) 128.65 <0.001

Site of transmission
Home 286 (41.81) 103 (55.68)
Food services 84 (12.28) 9 (4.86)

High contact 17 (2.49) 20 (10.81)
Other 51 (7.46) 11 (5.95)
Travel 50 (7.31) 9 (4.86)

Unknown 196 (28.65) 33 (17.84) 42.78 <0.001

For categorical variables, the number of cases and their relative proportions (in
parentheses) are indicated. In the case of continuous variables (i.e. age), the mean
and standard deviation (in parentheses) are indicated. t tests and x2 statistics were
used for continuous and categorical variables, respectively.
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outbreak cluster) were the only significant variables

in our final models. The proportion of female and

summer cases appeared to be higher than male and

non-summer cases respectively during the 2000–2002

period (Table 1), but there appears to be no strong

association between these variables and whether a

case is sporadic or part of an outbreak. This suggests

that the mechanisms behind determining whether

a case is independent or part of an outbreak are

not simply a reflection of risk factors associated with

disease.

On a log scale, increasing age appeared to have a

sparing effect on the risk of a case being linked to

another case in the CDRS. This could be explained by

the increased tendency of young children to sample

their environment orally and practice poorer personal

hygiene. There are many examples of outbreaks of

E. coli O157 among young children associated with

secondary transmission among children or exposure

to shedding animals in farms or petting zoos [6, 7, 25].

A potential alternative hypothesis could be that the

severity of disease in young children increases the

effort or ability of health workers to make epidemio-

logical links among cases [26]. However, cases that

were hospitalized were not more likely to be linked to

an outbreak, and there was no evidence to suggest

that the risk of being linked to an outbreak increased

again with advanced age when the impact of infection

with E. coli O157 can be more severe [27].

Within the mode of transmission, only person-to-

person transmission was significantly different from

other categories. Depending on the model, a case was

almost five times more likely to be within an identified

outbreak if the public health worker believed that

the mode of transmission was person-to-person com-

pared to cases where the mode of transmission was

related to food or water. Based on our definition of an

outbreak (i.e. two or more cases linked epidemio-

logically), this finding was not surprising. In fact, it

may be more important to note that nearly a third of

cases where the mode of transmission was believed to

be person-to-person remained unlinked to another

case in the CDRS (Table 1). This may suggest that

many outbreaks or cases associated with an outbreak

remain unlinked or undetected. However, it is im-

portant to recognize that the sensitivity and specificity

of questions concerning the mode and site of trans-

mission of disease are likely to be different between

truly sporadic and outbreak cases (i.e. differential

misclassification bias). By virtue of being indepen-

dent, the investigation of sporadic cases cannot beT
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supported with statistical measures used to investigate

outbreaks [2, 6, 28]. As a result, we may be less certain

about these classifications for sporadic cases.

Clustering or the lack of independence among

observations is an important issue for obtaining

appropriate measures of association and variance. In

our study, clustering was an issue in terms of space

and the grouping of cases into outbreaks. The

inclusion of a variable to control for cases located

within a spatial cluster of outbreak cases, identified in

an earlier study [17], removed the possibility that our

results were simply being driven by the clustering

of 27% of our outbreak cases into a relatively

small geographical area. A variety of more complex

techniques are available to adjust for spatial auto-

correlation [29], but we were able to create a simpler

model using a fixed effect that was well delineated

from our previous study [17]. On the other hand,

modelling our outbreaks as fixed effects would have

resulted in the introduction of a large number of

variables into our model and the parameter estimates

would have become unstable with relatively few

observations per group [21]. In addition, we were

faced with the unusual circumstance where sporadic

cases, unlike outbreak cases, did not have a true

hierarchical structure. Consequently, we wanted to

compare a number of options for handling clustered

data.

To create the most extreme scenarios, we created an

ordinary logistic regression model that did not control

for clustering, and five models where each time

we only selected one case per outbreak (Table 2).

Both types of models gave us reasonable expectations

concerning the direction and relative size of the

measures of association. Consequently, we were able

to reject models generated by MCMC methods and

GLLAMM that had strikingly different measures of

association. However, these two models had measures

of association that were effectively reaching positive

and negative infinity and would not have been ac-

cepted as biologically plausible. In addition, the GEE

model and the random effects model using the

second-order derivative of the Taylor series expan-

sion failed to converge. The poor performance of

some of the models was expected by virtue of the

structure of the data. Random effects and GEE

models are often used to adjust for a correlation

structure among grouped observations. Typically, all

the data have a hierarchical structure although the

number of observations within a higher level of the

hierarchy may vary. However, more than half of our

data (i.e. sporadic cases) had no true hierarchical

structure, although they were each assigned a group-

ing variable to perform these procedures. In addition,

the correlation structure among observations within

an outbreak was defined by our dependent variable

(i.e. all cases in an outbreak are classified as outbreak

cases).

Among the models that produced reasonable

estimates, the confidence intervals associated with the

model using robust variance estimates tended to be

equal to or somewhat smaller than those produced by

an ordinary logistic model that ignored clustering.

Once the clustering effect was accounted for in the

variance estimates, the more conservative confi-

dence intervals, that were expected, were achieved

(Table 2). The random effects models based on

pseudo-likelihood methods worked reasonably well,

although, as expected, the model using MQL for

linearization tended to have odds ratios closer to

the null [30]. Surprisingly, the random effects model

using PQL and the weighted logistic regression had

unusually similar estimates for the odds ratios and

confidence intervals of the significant variables in

the final model (Table 2). These values also fell within

the ranges predicted using a technique that only

included one case per outbreak. Our attempt to

weight cases by the inverse of the number of cases

associated with an outbreak appears to be a valid

approach based on these results. Unlike random

effects models, this technique does not provide

variance estimates for the different levels in the

hierarchy of the data, however, understanding this

structure does not have biological meaning in the

context of this study.

The results of our study have both epidemiological

and methodological implications. The increased risk

for young children to be in outbreaks suggests that

more attention needs to be paid to issues that place

children at greater risk of exposure to point sources of

infection that cause outbreaks. Unfortunately, our

inability to find interaction effects between age and

mode or site of transmission does not provide a

specific activity or area to target. Even with 3 years of

data, it is obvious that our power to detect interaction

effects may be limited when comparing age to a

variable with a large number of categories. In terms of

methodology, we have found that using weights to

account for the size of an outbreak is a useful and

robust approach for dealing with clustering when

comparing outbreak (i.e. clustered) to sporadic (i.e.

independent) cases.
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