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ON LINEAR ALMOST PERIODIC SYSTEMS
WITH BOUNDED SOLUTIONS

V.I. TKACHENKO

It is proved that in every neighbourhood of a system of linear differential equations
with almost periodic skew-adjoint matrix with frequency module T there exists a
system with frequency module contained in the rational hull of T possessing all
almost periodic solutions.

1. INTRODUCTION

Let us consider the system of linear differential equations

dx
(1) -£ = A(t)x,

where x e Cn , A(t) is an ra-dimensional skew-adjoint matrix, A(t) + A*(t) = 0, t £ R,
and we also suppose that A(t) is a continuous function and it is Bohr almost periodic
with frequency module T. Let -Xji(t) be the fundamental matrix for system (1),
-^A(O) = / , where / is the identity matrix.

The function XA{1) need not be almost periodic in t. The aim of this paper is to
prove that in any neighbourhood of the matrix-function A(t) (in the uniform topology
on the real axis) there exists a skew-adjoint matrix-function C{t) such that C(t) and
Xc{t) are almost periodic with frequencies belonging to the rational hull of T.

We note that in [3, 4] this statement was proved for systems with almost periodic
matrix A{i) which has a frequency basis of dimension two or three. If the matrix A(t)
is periodic in t the statement is trivial, taking into account Floquet's theorem.

2. MAIN RESULT

Let us denote by U(n) the set of all unitary matrices of dimension n and by
SU(n) the set of unitary matrices of dimension n with determinant equal to 1. For

/ n _ . 1 / 2 _

x = (asx,... ,xn) € Cn we define the norm ||z|| = I $3 xjxj) > where x is the

complex conjugate of x. The corresponding norm ||J4|| for the n-dimensional matrix
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178 V.I. Tkachenko [2]

A is denned as follows: \\A\\ = sup{||Ac|| : x G C , ||z|| = 1}. Thus \\Ax\\ = 1 for
AeU{n).

The frequency module T of the almost periodic function A(t) is defined to be the
Z-module of the real numbers, generated by the A such that

(2) Urn I [Te2*iiXA(t)dtjt0.
T-»oo 1 JQto

J-Tat is the rational hull of J-, that is, TTat — {X/m : A G 3~, m G Z } .

THEOREM 1 . In every neighbourhood of the system of linear differential equa-

tions (1) with almost periodic skew-adjoint matrix with frequency module T there

exists a system with frequency module contained in the rational hull of T possessing

all almost periodic solutions with frequencies belonging to Tra% •

The proof of theorem is preceded by two lemmas.

LEMMA 1 . For e > 0 and for positive integers n and d there exists a number

N(e,n,d) such that for every compact metric space X of dimension at most d and

for every homotopic trivial u : X —* U[n) there exists a sequence u = uo,u\,... ,

ujv(e,n,d) = I of continuous maps from X to U(n) with

sup \\uk(<fi) - uk+i{ip)\\ ^ e for all k.
x

PROOF: Let us consider a continuous homotopic trivial a((p) : X —» U(n). The

function a(y>) can be rewritten in the form a(<fi) = (det a(y>)) 'na\(ip), where a i (y) :

X —> SU(n) is a homotopic trivial map. D(tp) = (det a(y>)) ' n is a homotopic trivial

map from X to U(l) = {a; G C : \x\ - 1}. Hence there is 60 G [0,2TT) such that the

point e*e° does not have an inverse image under the map D((p) and the function D(ip)

has the representation D(<p) — ela^, where a(tp) : X —> R is a continuous function

and 0O < <*(<p) < 00 + 2TT.

The function h{ip,t) = exp(ita((p)) : X x [0,1] -* U(l) is a homotopy from D(tp)

to the identity. Let us consider a sequence of functions

vk(<p) = exp (i-^-

with natural Ni. We get the estimate

-vk\ =

2TT) 4TT
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We choose JVi so that 4 ^ / ^ < e/2.

By Lemma 3.1 [5] for e > 0 and for positive integers n ^ 2 and d there exists

JV2(e,7i,d) such that for every compact metric space X of dimension at most d and ev-

ery homotopic trivial u : X —> SUn, there exists a sequence u = UQ,U\,. .. ,«jv2(e,n,d) =

I of continuous maps from X to SUn with

sup \\uk(<p) -uk+i(ip)\\ ^ e/2 for all A:.
vex

By taking JV(e,n,<i) = max.{Ni,N2(£,n,d)} we complete the proof. U

REMARK 1. Analysis of [5, proof of Lemma 3.1] and [1, Lemmas 1.3 and 4.3] shows
that Lemma 1 remains valid with U(n) replaced by a compact Riemannian manifold
Y with finite fundamental group -xi(Y). Therefore Lemma 1 is valid for homotopic
trivial maps from a compact metric space X of dimension at most d to the group
SO(n) of n-dimensional orthogonal matrices with determinant 1 for n ^ 3 (because
iri (SO(n)) = Z2 if n ^ 3 [2]).

LEMMA 2 . Suppose that the continuous function A((p) : Tm —> U(m) satisfies

(3) sup |L4(V) - J|| ^ e < i

Then there exists a continuous logarithm of the function A((p) defined on the torus Tm

such that

(4) sup ^
v6Tm 1 - 2e

PROOF: We use the formula

(5) In A{V) = ±J {XI-Afc))-1 ]n\d\,
en

where the simply connected domain Q in the complex plane contains the closure of the

set of eigenvalues of A((p)> f £ Tm and it does not contain zero [6].

By assumption (3) the eigenvalues of the matrix A{<p)i <P £ Tm are contained
inside the circle of radius e with centre at the point (1,0) of the complex plane. The
function hi A(<p) is continuous on the torus Tm.

Let dfl in (5) be the circle of radius 2e with centre at the point (1,0) of the
complex plane,

a n = {A : X = 1 + 2eelV, tp <E [0,2TT]}.
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Hence for A G dd we get

(6) I K A / - ^ ) ) - 1 ! ! ^

Let us estimate |ln A| for A (E dSl. These A have the form

\ = l+2eeiv=peie,

where

p = \A + 4e cos ip + 4e2, 6 = arctan .
1 + 2e cos <p

Hence we have
In A -\np-\-id

Let k — 0, then

Further, hi p satisfies the inequalities

— hi I 1 + — 1 = -In (l — 4e + 4e2) ^ lnp ^ - In (l + 4e + 4e2) = ln(l + 2e),

hence

Similarly we get the estimate

arctan
2e

l - 2 e

2e

l - 2 e

Therefore we conclude that

(7)

Using (6) and (7) we get the estimate for the right-hand side of (5):

which completes the proof of the lemma.
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REMARK 2. If A(tp) 6 SO(n) then it can be shown that the matrix hi A(tp) in (5) is
real and satisfies the estimates (4).

PROOF OF THEOREM: Let e > 0 be arbitrary. For the almost periodic function
A(t) with frequency module T there exists a quasiperiodic function Ai(t) with fre-
quencies belonging to !F such that sup||.A(<) — J4.I(<)|| < e. Hence we can consider

teffi
system (1) with quasiperiodic matrix A(t).

We can rewrite A(t) in the form A(t) = B(uit,... , w m + 1 t ) , where the continuous
skew-adjoint matrix B(<pi,... ,<pm+i) is periodic with period 1 in each coordinate
<Pi, i = l , . . . , TO + 1 , and m is some positive integer. The real constants u>i,... ,wm-)-i
are rationally independent. Without loss of generality we may assume that wOT-|-i = 1.
The (TO + l)-dimensional torus Tm+i = R m + 1 / Z m + 1 is the hull of the quasiperiodic
function A(t).

Consider now the collection of systems

(8) ^ = B(v.t)x,

where <p-t = wt-\-<p is the irrational twist flow on the torus T"m+i, <p = {<fi,... , (pm+i) S
Tm+1. Then A{t) = B(tp0 t), where <p0 = (0 , . . . ,0). Let $((?,<) be the fundamental
matrix for the system (8), $(y>,0) = 7. It forms a cocycle

(9) *{<P,ti +h) = $(f *i,t2)*(v,*i).

We consider the torus Tm+i as a product Tm + 1 = Tm x T\ of the m-dimensional torus

Tm and of the circle Tx. Then <p = (fat), j> € Tm, ( e 2\ and *{<p,t) = * ( ^ , 6 0 -

For fixed t the function $(ij),O,t) forms a mapping Tm —> U(n) which is homotopic

to the identity in the space U(n).

We consider the fundamental matrix $(•0,0, N), where the number

is the same as in Lemma 1. By Lemma 1 there exists a sequence of maps M(i/i,k) :

Tm -» U{n) such that M{i{>,0) = I, M(i>,N) = $'(V>,O,iV) and

sup \\M(l>,k)-M(rl>,k + l)\\^-L for k = 0, . . . , N - 1.
I D

Obviously,

(10) s u p | |M(V>, A: + l ) M * { i > , k) - I\\ ^ e / 1 6 , k = 0,...,N-l.
1T
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By Lemma 2 for e G (O,£o] with sufficiently small e0 > 0, there exists a logarithm
In (M(tf>,k + l)M*(ip,k)) continuous on Tm with

(11) sup ||ln (M(V>,k + 1)M*(^,fc))|| < §.

Let a(t) : [0,1] —> [0,1] be a differentiable monotone increasing function satisfying the

conditions a(0) = a'(0) = a ' ( l ) = 0, a( l ) = 1, a'(t) < 2. We construct the function

N(if>,t) = exp[a(t - k)\n{M(tl>,k

for t G [Jb, A; + 1), Jb = 0, . . . , N - 1.

x hi (M(V>, k + 1)M*(V>, k))a'{t - k)M(if>, k),

yt)N*(rJ,,t) = a'(t -

for t G [k,k + 1]. By construction, the function N(tp,t) is continuously differentiable

with respect to t, for t G [0,N]. Using (11) we obtain for t G [0,N]

sup

Let us consider the function ^(•0,^) = ^(ip,O,t)N(ij},t). It satisfies the conditions
>, 0) = *(V>, iV) = / , i/> €Tm. We extend the function W(V>, t) to the intervals t < 0

and t > N by the formula

(12) 9(i>,t + kN) = mfkN,t), k£Z,

where ip = (ipi,... ,i>m), tp • t — (uit + fi,... ,wmt +V>m)- The function ^(ip,t) is
uniformly continuous on the set Tm x [0, N]. Therefore for e > 0 there exists 8 > 0
such that if p(i>i, fa) < 5 then ||*(V>i,<)- #(V>2,*)II < £- H e r e P(->0 stands for the
metric on the torus Tm.

For the irrational twist flow T/> • t on the torus Tm there exists a relatively dense
set of integers qs such that p(ip,%j> • Nqs) < 6 for all if) €E Tm. Then

Nqs)\\ = | |* (^ ,0 - *(V> • Nqs,t)\\

for t G [0,iV], V" G Tm. Therefore for the function *(V>)*) there exists a relatively
dense set of e-almost periods, the function ^(^),t) is almost periodic in t, and for fixed
ij) it satisfies the system

(13)
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where

p^**(tf ,0.

The function Bi(rf),t) is periodic in t with a period iV and

(14) Bl{1>,i) = Bl{i>,t + N)11>€Tm,t€R.

In order to verify equality (14) let us consider

• * ) • # , *

at
Thus we obtain (14) if if>i • (N + t) =i/>. Hence the matrix Bi(ip,t) is periodic in each
coordinate and Bi(tj) • t,i) is quasiperiodic.

For t — Nq + ti, 0 ̂  ti < N, <p — (ipfO) we get the following estimate:

||B,(*. 1,1) -B{v 1)11

,dN(j,-
dt

•Nq,ii)

dt

The numbers wi, . . . , u m , l form a basis of T and the quasiperiodic function

B\(TJ) • t,t) has the following expansion in the Fourier series:

Bi{if>t,t) ^

Therefore the frequencies of the function Bi(ij> • t,t) belong to !Frat- A direct compu-
tation by (2) shows that the frequencies of the almost periodic function ty(ij),t) belong

to Trat-
Thus we have constructed in the e-neighbourhood of the almost periodic skew-

adjoint function A{t) an almost periodic skew-adjoint function Ax{t) = Bi(tpo • t), -00 =
(0, . . . , 0) € Tm with frequencies belonging to TT*t and such that the fundamental
matrix XA^ {t) is almost periodic. The proof of the theorem is now complete. D
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REMARK 3. Theorem 1 remains valid for systems (1) considered in a real space x £ R n .
In this case the matrix A(t) is skew-symmetric and the fundamental matrix XA{t) is
orthogonal for all t £ R. The proof is practically identical to that for the complex case
with regard to Remarks 1 and 2. We note that the case n = 1 is trivial and the result
for the case n — 1 was proved in [4].

In [7] it is proved that those systems with fc-dimensional frequency basis of the
almost periodic function A(t) whose solutions are not almost periodic form a subset of
the second category (an intersection of a countable set of everywhere dense subsets) in
the space of all systems (1) with fc-dimensional frequency basis of A(t). Therefore by
Theorem 1 we obtain the following

COROLLARY 1 . Systems with k-dimensional frequency basis of A{i) and with an
almost periodic fundamental matrix form an everywhere dense set of the first category
in the space of all systems (1) with k-dimensional frequency basis of the skew-adjoint
matrix A(t).
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