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Abstract

From a knowledge of the eigenvalue spectrum of the Laplacian on a domain, one may
extract information on the geometry and boundary conditions by analysing the asymp-
totic expansion of a spectral function. Explicit calculations are performed for isosceles
right-angle triangles with Dirichlet or Neumann boundary conditions, yielding in particu-
lar the corner angle terms. In three dimensions, right prisms are dealt with, including the
solid vertex terms.

1. Introduction

Information about the geometry of a domain and about the nature of the
boundary conditions is yielded through the asymptotic expansion of the spectral
function

£ e x p ( - A n O , / - 0 (1.1)
n

where \n are the eigenvalues of the Laplacian

(V2 + A)* = O. (1.2)

The general theory of this subject has been developed by Pleijel [9], Kac [6],
McKean and Singer [7], Waechter [15], Sleeman [10] and others by regarding (1.2)
as arising from the heat (diffusion) equation and consideration of the appropriate
Green's functions.
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[2] Eigenvalues for rectilinear regions 271

The study of explicit examples such as those to be listed below is especially
important because of the light they may shed on the uniqueness problem, i.e.
whether equality of spectra implies geometrical congruence of the corresponding
domains. For dimensions four and higher, Urakawa [14] has shown that the
inverse problem does not have a unique solution; the problem is still open in two
or three dimensions. The higher-dimensional examples presented in [14] have
boundaries which are not smooth but are polygons, suggesting that rectilinear
regions in two and three dimensions warrant close investigation.

The present paper is concerned in particular with right-angled isosceles trian-
gles with Dirichlet or Neumann boundary conditions, and with triangular right
prisms, as well as with more general convex polygonal right prisms. Special
attention is paid to corner angle terms (two dimensions) and solid vertex terms
(three dimensions); an expression for the contribution of a general right solid
angle is derived.

Over the past few years, explicit demonstrations of the geometrical characteris-
tics obtained from (1.1) have been presented for a variety of specific regions, by
Stewartson and Waechter [13], Waechter [15], Zayed [16], [17], Sleeman and
Zayed [12], and the author [3], [4]. In the list which follows, D represents
Dirichlet and N represents Neumann boundary conditions.

ONE-DIMENSIONAL. Straight line: [16] D & N. (Zayed's work for the line,
and also for the rectangle and cuboid (see below), actually deals with a linear
combination of D and N at either end.)

TWO-DIMENSIONAL.
Rectangle: [16] D & N; [12] £», N; [4] D & N.
Circle: [13] D.
Circular annulus: Limit as outer radius -» oo: [13] D.

Thin: [3] £>; [4] N.
Thick: [12] D & N.

Annular sector: Thin: [4] D & N.
THREE-DIMENSIONAL.
Cuboid: [15] £>; [16] D & N; [12] D, N; [4] D & N.
Cylinder: (finite): [15] D; [12] D, N.
Annular cylinder (finite): Thin: [4] D & N.

Thick: [12] D, N.
Sphere: [15] D.
Spherical shell: Thin: [4] D, N.

Thick: [17] D & N.
References [13], [15], [16], [12], [17] performed their calculations via Green's

functions for the heat equation and Laplace transforms, etc. By contrast, our
method [3], [4] proceeds via the wave equation and direct use of the explicit
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272 H. P. W. Gottlieb [3]

eigenvalues of (1.2) and their analytical properties; the Poisson summation
formula is the main summation tool in (1.1).

It is important to extend this list of specific calculations. Investigations such as
those listed above and the present paper may be considered to serve a three-fold
purpose. They give concrete illustrations of the various features and results of
general theorems which they verify by way of explicit realizations; they provide a
wider class of examples which lend additional force to conjectures not yet proved
in their generality; and they assist in extending conjectures by suggesting the
forms which further terms in a general expansion theorem might take.

According to references [6], [7], [13] (Dirichlet boundary conditions) and [9],
[10], [4] (Neumann boundary conditions), the spectral function (1.1) in two
dimensions for convex polygonal domains has the asymptotic expansion

(O AW DN

where A is the area of the domain, LD{LN) is the length of the part of the
boundary with Dirichlet (Neumann) boundary condition, and the summation is
over angles at corners subtended by pairs of adjacent sides having the indicated
boundary conditions. The corner angle term a, for angle 6, is given by [7]

(Actually, if the boundary of the domain is too rough ("fractal domain"), even
the second term in (1.3) may have to be modified as to the definition of the
measure: see [2].)

In three dimensions, the work of Waechter [15] for Dirichlet boundary condi-
tion (first three terms) and of the author [4] for Neumann boundary condition
indicates that, for a convex region bounded by planes, the asymptotic expansion
of (1.1) reads

E3 - + •

+ ( £ - E ) x ( o ) + - - - , / - o ,
V NNN, DDN DDD, DNN '

where V is the volume of the region and SD(SN) is the total area of those surfaces
with Dirichlet (Neumann) boundary condition. L(0) is the length of those edges
formed by two adjoined faces which make an angle of 6 with each other and
which have the pairwise combination of boundary conditions indicated in the
summations.

The question of vertices was left open by Waechter [15]. The constant term in
(1.5), due to vertices, was conjectured in [4] to have the given summation form
where the three labels denote the boundary conditions on the three faces
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subtending the solid angle R at a vertex. It was shown in [4] that for a solid angle
of 4w/8, the vertex contribution is x ( " / 2 ) = 1/64. The general expression for
the vertex function x ( ^ ) is not known; we give a partial answer below.

In this paper, we use the direct method of [4] to perform first of all the
calculation of the asymptotic expansion of the spectral function (1.1) for the case
of a right-angled isosceles triangle with Dirichlet or Neumann boundary condi-
tions. This example is particularly interesting because it involves corner angles
which are not all right angles.

In three dimensions, we calculate the expansion for a prism with the above
triangular cross-section. Then we calculate for a general right prism on a convex
polygonal base, assuming the expansion for the latter is known in two dimen-
sions. For the case of any right solid angle, that is, a solid angle bounded by three
planes, two of which are perpendicular to the third, we show in Section 4 that the
general expression for the vertex function x is given in terms of the corner angle
term a (see (1.4) above) by

x(Q) = a(Q)/4. (1.6)

The explicit value xC77/^ = 5/128 is verified in Section 3.1.
A limiting procedure applied to the expressions (1.4) and (1.6) above is used in

Appendix A to recover the simple constant numerical terms in the expansions for
a circle and a right circular cylinder. Some summation formulae used throughout
this paper are presented in Appendix B.

2. Isosceles right-angle triangle

2.1. Dirichlet boundary condition
The complete set of independent eigenfunctions for vibrations of an isosceles

right-angle triangular membrane (with fixed sides 0 < x < a, 0 ^ y ^ a, y = a
— x) is given by [8] (p. 756) as

^{m,i(x,y) = sin[(w + n)irx/a] sin[niry/a]

- ( - l ) m s i n [ ( m + n)"ny/a\ sin[«7rx/a];

m,n = 1,2,3,.. . , (2.1)

with corresponding eigenvalues

A = * L = ( * / « ) 2 [ ( « + »)2 + « 2 ] - (2-2)
The spectral function (1.1) for this triangle with Dirichlet boundary condition

is

= E t exp{- ( 7 rVa 2 ) [ (» i + «)2 + «2]}- (2-3)
m = \ n — \
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The asymptotic expansion of the right hand side of (2.3) is found explicitly by
utilizing the Poisson summation formula result (as in [4])

£ ex P ( - z W
2 )~v /^ / (2v /F) + i z-*0. (2.4)

m = 0

The double sum in (2.3) is converted to a form in which (2.4) may be invoked by
using the summation formula (B.5) of Appendix B with /(/•«, n) =
exp{-(ir2t/a2)[m2 + n2]}. The second and third terms in (B.5) then correspond
to z = 2ir2t/a2 and z = ir2t/a2 respectively in (2.4), whilst the exponential in
the first term may be factorized to untangle the in and n dependence and gives
the product of two terms of the form (2.4). In this manner we obtain

with only exponentially small errors (see [7], p. 67). For our triangle, with area
A = a2/2 and total perimeter (with Dirichlet boundary condition)

L2 = 2a + fia, (2.6)

the expansion (2.5) precisely mimics, i.e. verifies, the general form (1.3), since by
(1.4)

and 1/16 + 2(5/32) = 3/8 giving the constant term as in (2.5).
This result is significant in that it verifies explicitly the corner angle term (1.4)

for the case of angle TT/4, (2.7b). This does not seem to have been elicited before
for an angle not equal to IT/2.

2.2. Neumann boundary condition
The eigenfunctions in this case are as in (2.1) but with cosine functions and a

relative plus sign. The eigenvalues are again given by (2.2), but with m,n =
0,1,2, The summation formula (B.4) is now used in the spectral function (1.1)
and we obtain (2.5) again but with a change of sign for the second term, to a plus.
Thus the general form (1.3) is verified for this configuration with Neumann
boundary condition along the perimeter.

3. Isosceles right-angle triangular right prism

In this section we consider the three-dimensional case of a triangular right
prism of height b, 0 < z < b, standing on the isosceles right-angle triangular base
of the previous section. We evaluate the spectral sum (1.1) to elicit volume,
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surface area, perimeter, etc., in the cases of Dirichlet or Neumann boundary
condition on the sides, with either Dirichlet or Neumann boundary condition on
the top and bottom faces.

3.1. Dirichlet condition on sides

3.1.1. Dirichlet condition on base and top

The relevant solution to the Helmholtz equation (1.2) is

*^(x,y,z) = sm[lvz/bWm
D}(x,y); 1=1,2,... (3.1)

with i//^ given by (2.1). Now

x- ( *7f t a ) / a + *i« (3-2)
with k2

mn given by (2.2).
The spectral function (1.1) is given by a triple sum which factorizes into the

form

t U ) } (3-3)
.i-i J

with £2
<D) given by (2.3). This may be evaluated explicitly in the asymptotic limit

as t -* 0 by using (2.4) and (2.5), from which we obtain

iD) Ab 2A + bL2 2L2 + 6b 3 , ,
3 8 ( 0 3 / 2 16w' 6 [ 2 ( ) 1 / 2 ] 16' * '

again with only exponentially small errors.
Our prism has volume V = Ab and surface area S = 2A + bL2 (see (2.6)).

Edges of total length 2L2 + b have adjacent sides making a constant angle of
w/2, with corner angle factor 1/16 (see (2.7a)), and two edges of length b each
have adjacent sides making a constant angle of w/4, with corner angle factor
5/32 (see (2.7b)), so in (1.5),

Y.L(0)a(0) = 2ZV16 + b[l/16 + 2(5/32)]. (3.5)

This sum (3.5) over all edges, as the coefficient of [2(iTt)1/2]~l in (1.5), is thus
yielded explicitly by the third term in (3.4).

The expansion (3.4) therefore precisely verifies the general three-dimensional
form (1.5) for Dirichlet boundary conditions for its first three terms. We now use
the fourth, constant, term in (3.4) to evaluate a vertex term in the corresponding
expression in (1.5). There are two solid angles of 4w/8 = ir/2 steradians within
our prism, each with a vertex factor known, from [4], to be

^ . (3.6)
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There are four solid angles of 4ir/l6 = m/b steradians. Hence we must have
2(1/64) + 4X(TT/4) = 3/16, whence we deduce that

f (3.7)
The term (3.7) now provides another value, along with (3.6), against which any

general differential geometric theory would have to check its constant term in the
asymptotic expansion of (1.1). In Section 4 we shall find an expression which
covers more general solid angles.

3.1.2. Neumann condition on base and top
Here,

%mn(x,y,z) = cos[^z/b]^m
DJ(x,y); / = 0,1,2, . . . . (3.8)

Using previous methods, calculation yields explicitly an expression containing the
individual terms as in (3.4) but with all the appropriate sign changes correspond-
ing to the fact that certain of the faces have Neumann boundary condition and
this also categorizes the edges and vertices accordingly. Thus the form of (1.5) in
this configuration is also precisely verified.

3.1.3. Dirichlet condition on base, Neumann condition to top
Here,

%mn(x,y,z) = sm[(l + l/2)irz/b]iZ)(x,y); / = 0,1,2, . . . (3.9)

and

\)2 + kln. (3.10)

As was done for (3.3), E3 may be factorized into one- and two-dimensional parts.
The asymptotic form for the first factor is obtained from equation (B.7) of
Appendix B of reference [4] which dealt with Poisson summation formulae;
equation (2.5) for E2 is used for the second factor. We calculate

Ab bL2 3b 1 , ,
3 ~ 8 ( 0 V 2 1 6 w ' + 8 2 ( ) 1 / 2 ' l '

This again verifies (1.5), taking into account all sign changes and any consequent
cancellations due to the combinations of Dirichlet and Neumann conditions.

3.2. Neumann condition on sides
For these cases, the formalism of Section 3.1 follows through, except that

\p(x, y) and E2 are as described in Section 2.2. Calculations for each of the cases:

3.2.1. Dirichlet condition on base and top;
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3.2.2. Neumann condition on base and top;

3.2.3. Dirichlet condition on base, Neumann condition on top;
do verify explicitly the form (1.5), with the sign changes and cancellations in the
various terms arising in a similar manner to those described in Section 3.1 above.

4. Convex polygonal right prisms

The previous examples suggest that, given a two-dimensional result, the corre-
sponding results for a three-dimensional right prism of that cross-section will
automatically follow. This may be proved as follows.

For a domain in the x — y plane with convex polygonal boundary, along each
straight line of which there may be either Dirichlet or Neumann boundary con-
dition, the two-dimensional spectral function is assumed to be of the form (1.3),
with corrections which are exponentially small or at most o(Jt). Then the
three-dimensional spectral function for the corresponding right prismatic case is
just the product of the two-dimensional spectral function mentioned above and
the one-dimensional spectral function corresponding to the straight line as in
Section 3 with appropriate end conditions.

This procedure is akin to that of Waechter ([15], Section 4), which dealt with
Dirichlet boundary condition only, and of [11], both of which assumed a
simply-connected domain, and is also described for a particular multiply-
connected case (annular cylinder) in [4], Section 4.2; these references all dealt
with smooth curved boundary of cross-section.

Using Poisson summation formulae such as (2.4), it is in fact easy to show first
of all that the one-dimensional spectral function for the straight line 0 s% z < b
has the asymptotic expansion

() D

the sum being over ends with the indicated boundary condition. Forms of
equation (4.1) and its extension to mixed boundary conditions have been ob-
tained by a lengthy procedure via Green's functions in [16]. (The errors in (4.1),
declared in [16] to be 0{tl/1), are actually determined by our above procedure to
be exponentially small.) Thus "one can hear the length of a uniform string" (c.f.
[6]) even if the end conditions are unknown, and one may distinguish between
those end conditions.

Now, using the product of (1.3) for the cross-sectional region and (4.1) as
explained above, we obtain, for the asymptotic expansion of the three-dimen-
sional spectral function for the corresponding right prism, an explicit form whose
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first three terms, after interpretation of the geometrical meanings of the various
symbols involved, precisely verifies the form of those in (1.5) for this geometrical
configuration. The fourth, constant, term obtained in the above manner is

E - ) (
DD,NN DN1 KNNN,DDN DDD,DNN

From this resulting expression we are able to identify and evaluate the general
expression for the vertex function x in (1.5) for any right solid angle, i.e. any
solid angle bounded by three planes, two of which are perpendicular to the third.
If the first two planes make an angle of 6 radians with each other, then the solid
angle subtended at the vertex by the three faces is fi = (4IT/4)/(V/$) = 6
steradians. For these configurations we obtain, from comparison of the fourth
term in (1.5) with (4.2), the formula

x(fisterad.) = ^a(firad.), (4.3)

where the function a has been defined in (1.4).
A form of expression (4.2), for the case of Dirichlet condition only or Neumann

condition only, was obtained via a Green's function approach by Baltes [1].
Equation (4.3) in (1.5) is a general expression for a right solid vertex. It was
verified for fi = 4TT/8 = IT/2 in [4] (by (2.7a) and (3.6) above), and has now been
verified in the present paper for fi = 4TT/16 = IT/A, by (2.7b) and (3.7) above.

5. Conclusion

The calculations in this paper have displayed explicitly various geometrical and
boundary-condition-dependent terms in the asymptotic expansions of the spectral
function (1.1) for further two- and three-dimensional rectilinear regions with
Dirichlet and Neumann boundary conditions. In particular, in two dimensions
the corner angle term (1.4) was elicited in (2.7b) for the angle 6 = w/4 by dealing
with an isosceles right-angle triangle, and in three dimensions the corresponding
vertex term in a right prism was evaluated in (3.7) for the solid angle S2 = w/4.

The expression (4.3) derived in Section 4 for the right vertex function x>
contributing where appropriate to the constant term in (1.5), represents a signifi-
cant general term in the expansion of the spectral function (1.1) in the three-di-
mensional case, and courts confirmation within some more general differential-
geometric point of view.

https://doi.org/10.1017/S0334270000005804 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005804


I io] Eigenvalues for rectilinear regions 279

Acknowledgements

The author would like to thank the applied mathematicians at the University of
Queensland, where most of this work was carried out during an Outside Studies
Programme, for interesting and stimulating discussions concerning this subject.

Appendix A: The circular limit

In this appendix we use the preceding results to consider briefly the circular
limit of a polygonal domain and the corresponding cylindrical region, with
emphasis on the effects of the corner and vertex term contributions.

We first of all deal with the total corner angle term contribution a, defined in
(1.4), to the expansion (1.3) (two-dimensional case) for a regular polygon in the
limit as the number of sides becomes infinite. If an internal angle in a regular
iV-gon is denoted by 6N = IT — 2-n/N, then 6N -» m and

Na(0N)->$ as JV-> oo. (A.I)

Thus for a circle this recovers the famous constant term 1/6 of Pleijel [9]. (A
similar result was obtained by Kac [6] in considering an integral representation of
the corner angle term.)

Now consider the total vertex term contribution, defined in (4.3), to the
expansion (1.5) (three-dimensional case) for a right regular polygonal prism
end-piece, in the limit as the number of sides N of the cross-section becomes
infinite. If each right solid vertex angle so formed is denoted by QN, then QN -» m
and, by (4.3) and (A.I), we obtain, for the case of Dirichlet boundary conditions

-LimfAtfa*)} = - \ Lim {Na(QN)}

The result (A.2) represents the contribution to the constant term in the
expansion of the spectral function (1.1) in the three-dimensional case for a right
circular cylindrical end-piece. This is confirmed by the particular calculations for
cylinders wtih cross-section bounded by a smooth convex curve (via their Green's
function approach) of Waechter [15] and Sleeman and Zayed [11], [12] which
include the constant term —1/12 in the spectral function expansions (there being
two end contributions from (A.2)). The sign change for the case of Neumann
boundary conditions indicated in (1.5) is achieved also in the calculations for that
case in [11], [12].
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Appendix B: Some summation formulae

Using the identity
oo m oo oo

E E = E E (B.i)
„ j 4.|_ f__ 1 „ / _ c r n t A\

anu me luniiuia ^.i. |yj, p. 1HJ

E £/ (« ,« + «) = £ £/(»,»»), (B.2)
m = 0 n = 0 m = 0 « = 0

we deduce that
00 00 00 00 00

E E [f(n,m + n)+f(m + n,n)]= E E /(»», «) + E /(»«, « ) •
m = 0 n = 0 m = 0 « = 0 m = 0

(B.3)

Thus if f(m, n) is symmetric in its arguments, we have

E E/(™ + «,«) = T[ E tf(m,n)+tf(m,m)\ (B.4)
L J

Then, again if /(m, «)=/(« , m), we find,

1n=1

= y E y
m = 0 n = 0 m = 0 m = 0

(B-5)

and

£ tf{m + n,n) = \ £ £/(«,n) - y £/(«,«). (B.6)
m = l M = 0 m=0n=0 m=0
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