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AN OSCILLATION CRITERION FOR FIRST ORDER LINEAR
DELAY DIFFERENTIAL EQUATIONS

CH. G. PHILOS AND Y. G. SFICAS

ABSTRACT. A new oscillation criterion is given for the delay differential equation
x0(t) + p(t)x (t � ú(t)) = 0, where p, ú 2 C ([0Ò1)Ò [0Ò1)) and the function T defined
by T(t) = t � ú(t), t ½ 0 is increasing and such that limt!1 T(t) = 1. This criterion
concerns the case where lim inf t!1

R t
T(t) p(s) ds � 1

e .

1. Introduction and Statement of the Main Result. The oscillatory behaviour of
the solutions of first order linear delay differential equations has been extensively studied
in recent years. See, for example, the book by Ladde, Lakshmikantham and Zhang [9]
and the recent book by Györi and Ladas [4]. For first order linear non-autonomous delay
differential equations, it is an interesting problem to obtain sufficient conditions for the
oscillation of all solutions. Among numerous papers dealing with this problem we refer
in particular to Elbert and Stavroulakis [1, 2], Erbe and Zhang [3], Koplatadze and
Chanturija [5], Kwong [6], Ladas [7], and Ladas, Lakshmikantham and Papadakis [8]. In
this paper, a new oscillation criterion is established for first order linear non-autonomous
delay differential equations.

Consider the first order linear non-autonomous delay differential equation

(E) x0(t) + p(t)x
�
t � ú(t)

�
= 0Ò

where p and ú are nonnegative continuous real-valued functions on the interval [0Ò1).
It will be supposed that the function T defined by

T(t) = t � ú(t)Ò t ½ 0

is increasing and such that
lim
t!1

T(t) = 1

Let t0 ½ 0. By a solution on [t0Ò1) of the differential equation (E) we mean a con-
tinuous real-valued function x defined on the interval [t�1Ò1), where t�1 = mint½t0 T(t),
which is continuously differentiable on [t0Ò1) and satisfies (E) for all t ½ t0.

As usual, a solution of (E) is said to be oscillatory if it has arbitrarily large zeros, and
otherwise the solution is said to be nonoscillatory. Equation (E) will be called oscillatory
if all its solutions are oscillatory.
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Throughout the paper, we will use the notations

L = lim inf
t!1

Z t

T(t)
p(s) ds and M = lim sup

t!1

Z t

T(t)
p(s) ds

(Clearly, 0 � L � M � 1.)
Ladas [7] and Koplatadze and Chanturija [5] established that the differential equa-

tion (E) is oscillatory if L Ù 1Ûe. (Note that the hypothesis that the function T is
increasing is not needed for this criterion to hold.) In the autonomous case, i.e., in the
case where p and ú are positive real numbers, the condition L Ù 1Ûe becomes púe Ù 1
and the last condition is also necessary for the oscillation of (E) (see [7]). Moreover,
Ladas, Lakshmikantham and Papadakis [8] proved that the condition M Ù 1 suffices for
the oscillation of the differential equation (E).

An interesting problem is to find conditions on L and/or M which guarantee the
oscillation of the differential equation (E), in the case where L � 1Ûe. Some such
conditions have recently obtained by Erbe and Zhang [3], Kwong [6], and Elbert and
Stavroulakis [1, 2]. In this paper, we assume that L � 1Ûe and we present a new sufficient
condition (depending on L and M) for the oscillation of the differential equation (E). Our
condition is not complicated.

Our main result is the following theorem.

THEOREM 1.1. Assume that L � 1Ûe. Equation (E) is oscillatory if

(C) M +
L2

2(1 � L)
+

L2

2
ï0 Ù 1Ò

where ï0 Ù 0 is the smaller real root of the transcendental equation

(Ê) ï = eLï


If L = 0, then it is obvious that ï0 = 1 is the unique root of (Ê). Also, when L = 1Ûe,
we can immediately see that (Ê) has the the unique real root ï0 = e. Moreover, if
0 Ú L Ú 1Ûe, then it is not difficult to verify that (Ê) has two real roots ï0 and ï1 with
0 Ú ï0 Ú e Ú ï1.

Now, an immediate consequence of our theorem is the following result:
Equation (E) is oscillatory in each of the following cases: (i) L = 0 and M Ù 1,

(ii) L = 1Ûe and M Ù 1 � 1
2(e�1) , and (iii) 0 Ú L Ú 1Ûe and M ½ 1.

Kwong [6] established that, if 0 Ú L � 1Ûe, then for any nonoscillatory solution x of
the differential equation (E) it holds

lim inf
t!1

x
�
T(t)

�
x(t)

½ ï0

(Note that the assumption that T is increasing is not needed in this result.) This asymptotic
result will be used in the proof of our theorem.
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Before closing this section, we note that our theorem can be formulated in a more
general form as follows:

Assume that L � 1Ûe. If (C) holds, where ï0 Ù 0 is the smaller real root of (Ê), then
the differential inequality

x0(t) + p(t)x
�
t � ú(t)

�
� 0

has no eventually positive solutions, and the differential inequality

x0(t) + p(t)x
�
t � ú(t)

�
½ 0

has no eventually negative solutions.

2. Proof of the Theorem. Assume, for the sake of contradiction, that the differential
equation (E) has a nonoscillatory solution x on an interval [t0Ò1), t0 ½ 0. Without loss
of generality, we can suppose that x(t) 6= 0 for all t ½ t�1, where t�1 = mint½t0 T(t).
Furthermore, as the negative of a solution of (E) is also a solution of the same equation,
we may (and do) assume that x is positive on the interval [t�1Ò1). Then from (E) it
follows that x0(t) � 0 for every t ½ t0 and so x is decreasing on [t0Ò1). In what follows,
the fact that x is decreasing on [t0Ò1) as well as the increasing character of T (on the
interval [0Ò1)) will be used without mention.

In the sequel, for convenience, we will assume that inequalities about values of
functions are satisfied eventually for all large t. Similarly, it will be supposed that
inequalities about terms of sequences are satisfied eventually for all large n.

First of all, let us consider the extreme case where L = 0. Then condition (C) becomes
M Ù 1. On the other hand, from (E) it follows that

x
�
T(t)

�
= x(t) +

Z t

T(t)
p(s)x

�
T(s)

�
ds Ù x

�
T(t)

� Z t

T(t)
p(s) ds

and so Z t

T(t)
p(s) ds Ú 1Ò

which leads to the contradiction M � 1. Hence, in the rest of the proof, it will be assumed
that L Ù 0.

Consider three arbitrary real numbers é, í and ç with

0 Ú é Ú LÒ 0 Ú í Ú M and 0 Ú ç Ú ï0

Clearly, it holds Z t

T(t)
p(s) ds ½ é(1)

Moreover, if we choose a sequence (tn) of real numbers with limn!1 tn = 1 and such
that

lim
n!1

Z tn

T(tn)
p(s) ds = M

(such a sequence always exists), then we obviously have

Z tn

T(tn)
p(s) ds ½ í(2)
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Furthermore, by Lemma 1 in [6], lim inf t!1

h
x
�
T(t)

�
Ûx(t)

i
½ ï0 and consequently

x
�
T(t)

�
x(t)

½ çÒ i.e. x
�
T(t)

�
½ çx(t)(3)

Let now t be an arbitrary point which is sufficiently large. Consider an arbitrary integer
k with k ½ 2. By taking into account (1), we can choose points ò0Ò ò1Ò    Ò òk with

T(t) = ò0 Ú ò1 Ú Ð Ð Ð Ú òk�1 Ú òk = t

and such that

Z ò1

ò0

p(s) ds = Ð Ð Ð =
Z òk�1

òk�2

p(s) ds =
é

k
and

Z òk

òk�1

p(s) ds Ú
é

k
(4)

Then from (E) it follows that

x
�
T(t)

�
� x(t) =

Z t

T(t)
p(s)x

�
T(s)

�
ds =

kX
ó=1

Z òó
òó�1

p(s)x
�
T(s)

�
ds

and so we have

x
�
T(t)

�
� x(t) ½

kX
ó=1

x
�
T(òó)

� Z òó
òó�1

p(s) ds(5)

Furthermore, for any ó 2 f1Ò 2Ò    Ò k � 1g, from (E) we obtain

x
�
T(òó)

�
� x

�
T(t)

�
=
Z T(t)

T(òó)
p(s)x

�
T(s)

�
ds

Therefore

x
�
T(òó)

�
½ x

�
T(t)

�
+ x

�
T
h
T(t)

i� Z T(t)

T(òó)
p(s) ds (ó = 1Ò 2Ò    Ò k � 1)(6)

But, by using (1) and (4), we derive for every ó = 1Ò 2Ò Ð Ð Ð Ò k � 1

Z T(t)

T(òó)
p(s) ds =

Z òó
T(òó)

p(s) ds �
Z òó

T(t)
p(s) ds

=
Z òó

T(òó)
p(s) ds �

"Z ò1

ò0

p(s) ds + Ð Ð Ð +
Z òó
òó�1

p(s) ds
#

½ é � ó
é

k
= (k � ó)

é

k


Thus, (6) gives

x
�
T(òó)

�
½ x

�
T(t)

�
+ (k � ó)

é

k
x
�
T
h
T(t)

i�
(ó = 1Ò 2Ò    Ò k � 1)(7)
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Hence, by taking into account (4) and (7), from (5) we obtain

x
�
T(t)

�
� x(t) ½ x

�
T(t)

� Z t

òk�1

p(s) ds +
k�1X
ó=1

x
�
T(òó)

� Z òó
òó�1

p(s) ds

= x
�
T(t)

� "Z t

T(t)
p(s) ds �

Z ò1

ò0

p(s) ds � Ð Ð Ð �
Z òk�1

òk�2

p(s) ds
#

+
k�1X
ó=1

x
�
T(òó)

� Z òó
òó�1

p(s) ds

= x
�
T(t)

� "Z t

T(t)
p(s) ds � (k � 1)

é

k

#
+
é

k

k�1X
ó=1

x
�
T(òó)

�

=
�Z t

T(t)
p(s) ds

½
x
�
T(t)

�
� (k � 1)

é

k
x
�
T(t)

�

+
é

k

k�1X
ó=1

x
�
T(òó)

�

½

�Z t

T(t)
p(s) ds

½
x
�
T(t)

�
� (k � 1)

é

k
x
�
T(t)

�

+
é

k

k�1X
ó=1

"
x
�
T(t)

�
+ (k � ó)

é

k
x
�
T
h
T(t)

i�#

=
�Z t

T(t)
p(s) ds

½
x
�
T(t)

�
� (k � 1)

é

k
x
�
T(t)

�

+ (k � 1)
é

k
x
�
T(t)

�
+
hk�1X
ó=1

(k � ó)
i é2

k2
x
�
T
h
T(t)

i�

and consequently

x
�
T(t)

�
� x(t) ½

�Z t

T(t)
p(s) ds

½
x
�
T(t)

�
+
 

1 �
1
k

!
é2

2
x
�
T
h
T(t)

i�


But k is an arbitrary integer with k ½ 2. So, as k !1, we get

x
�
T(t)

�
� x(t) ½

�Z t

T(t)
p(s) ds

½
x
�
T(t)

�
+
é2

2
x
�
T
h
T(t)

i�
(8)

This inequality holds for all sufficiently large t.
Next, in view of (1) and (2), from (8) it follows that

x
�
T(t)

�
� x(t) ½ éx

�
T(t)

�
+
é2

2
x
�
T
h
T(t)

i�
(9)

and

x
�
T(tn)

�
� x(tn) ½ íx

�
T(tn)

�
+
é2

2
x
�
T
h
T(tn)

i�
(10)

Because of (3), it holds
x
�
T
h
T(tn)

i�
½ çx

�
T(tn)

�
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and so (10) gives

x
�
T(tn)

�
½ íx

�
T(tn)

�
+ x(tn) +

é2

2
çx
�
T(tn)

�
(11)

But, from (9) we obtain

x
�
T(t)

�
½ éx

�
T(t)

�
+
é2

2
x
�
T
h
T(t)

i�
Ò

i.e.,

x
�
T(t)

�
½

é2

2(1 � é)
x
�
T
h
T(t)

i�


This yields

x(t) ½
é2

2(1 � é)
x
�
T(t)

�
(12)

(Note that 1 � é Ù 0.) By using (12), from (11) we derive

x
�
T(tn)

�
½ íx

�
T(tn)

�
+

é2

2(1 � é)
x
�
T(tn)

�
+
é2

2
çx
�
T(tn)

�

=

2
4í +

é2

2(1 � é)
+
é2

2
ç

3
5 x
�
T(tn)

�

and consequently we must have

í +
é2

2(1 � é)
+
é2

2
ç � 1(13)

We have thus proved that (13) is satisfied for all real numbers é, í and çwith é 2 (0ÒL),
í 2 (0ÒM) and ç 2 (0Ò ï0). As é ! L � 0, í ! M � 0 and ç ! ï0 � 0, (13) gives

M +
L2

2(1 � L)
+

L2

2
ï0 � 1Ò

which contradicts condition (C). (Note that L Ú 1.)
The proof of the theorem is complete.
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