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Abstract

We give sufficient conditions for order-bounded convex operators to be generically
differentiable (Gateaux or Fréchet). When the range space is a countably order-complete
Banach lattice, these conditions are also necessary. In particular, every order-bounded
convex operator from an Asplund space into such a lattice is generically Fréchet
differentiable, if and only if the lattice has weakly-compact order intervals, if and only if
the lattice has strongly-exposed order intervals. Applications are given which indicate how
such results relate to optimization theory.

1. Introduction

Convex analysis plays a central role in the study of optimality conditions and in
non-linear analysis. Vector-valued convex operators occur naturally in a variety of
settings. This was illustrated in [1], [2] and we give further examples in Section 4
below. There has also been considerable interest in the differentiability properties
of non-linear operators, both for theoretical and applied reasons. If derivatives
are known to exist sufficiently often (almost everywhere or on a dense G subset)
then one can often reduce the problem being studied to a more tractable
differentiable problem. Moreover, convex operators are the most accessible class
of non-linear operators, and as such demand study even if one is more directly
interested in other, say Lipschitz, operators.

In our previous papers [1], (2] we studied the existence of subgradients for
continuous convex operators, and gave various results on the generic differentia-
bility of continuous convex operators. Kirov [4], [S] has continued this study,

! Dalhousie University, Canada
© Copyright Australian Mathematical Society 1986, Serial-fee code 0334-2700/86

22

https://doi.org/10.1017/50334270000005166 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000005166

[2] Generic differentiability of convex operators 23

primarily by the use of generalized monotone operators. In [5] he observes that
much more can be said if the operators are required to be order-bounded rather
than merely convex. In this paper, we adapt the techniques of [1] and [3] to
establish differentiability results for order-bounded convex operators between
ordered Banach spaces. We also show that when the range space is an order-com-
plete Banach lattice, our conditions are both necessary and sufficient. These
results considerably extend various theorems given in [5].

We commence by recalling necessary facts and notations. The reader is directed
to [1] and [7] for further details. For simplicity we restrict ourselves to Banach
space. Let X be a Banach space and let Y be a (partially) ordered Banach space
with closed normal positive cone S. We denote the induced order by < or <.
(Recall that S is normal if and only if there is an equivalent renorming with
0 <,y <, x implying || || < ||x|].) As elsewhere we adjoin an abstract “c0” to Y
and S and consider mappings f between X and Y U {0}, written Y. Then
f: X > Y is (S-) convex if for0 < t < 1and x,, x, indom fi= {x € X: f(x) €
Y} one has

[y +(1 = 1)x,) < tf (x1) +(1 = 1) f(x,). (1.1)

We will say that f is order-bounded at X in dom f if one can find a
neighbourhood N of zero and some y € Y such that

x+Nc{xeX: f(x)<,y}. (1.2)

Obviously such an X lies in int(dom f). Moreover, when f is convex and
order-bounded at some X, it is actually order-bounded throughout int(dom f).
We will call such a mapping (locally) order-bounded. Since the cone is normal,
order-bounded convex maps are continuous; but the converse obtains only when
int(S) is non-empty. In general, even such nice convex mappings as the absolute
value on a Banach lattice are not order-bounded.

Let us also recall that the cone S is Daniell if every positive decreasing net
converges. When Y is a Banach lattice this is equivalent to the norm being
order-continuous, [7, Theorem 5.11]. We make one new definition. We will say
that an order interval [0, x]:= {y € Y: 0 <,y <, x} is strongly exposed (by ¢
in [0,x]":= {ge Y* g(y)=>0 for y €[0,x]}) if, for all ¢ > 0 there exists
8 > 0 such that

0<,y<,xand ¢(y) < § implies || y|| < e. (1.3)
If we may only assert that
0<,y<,xand ¢(y) = Oimplies y =0 (1.4)

we say that the interval is exposed (by ¢).

Finally, a Banach space X is an Asplund space, respectively a weak Asplund
space, if every extended real-valued convex function on X is generically Fréchet,
respectively Gateaux, differentiable throughout the interior of its domain. (A set
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is generic if it contains a dense G;.) Asplund spaces include reflexive spaces and
separable dual spaces; weak Asplund spaces include all weakly compact gener-
ated spaces and so all separable spaces. (See [1] and references therein.)

2. Sufficient conditions for generic differentiablity
Our central result is:

THEOREM 2.1. Let X be a Banach space, let Y be an ordered Banach space whose
cone S is closed and normal, and let f: X — Y be order-bounded and S-convex.
Suppose S is Daniell.

a) If X is an Asplund space and order intervals in Y are strongly exposed, then f is
generically Fréchet differentiable throughout the interior of its domain.

b] If X is a weak Asplund space and order intervals in Y are exposed, then f is
generically Gateaux differentiable throughout the interior of its domain.

PROOF. Let x in int(dom f) be given. Select y in Y and a ball N around zero
such that (1.2) holds.
Let x € X + N. Then, as f is convex,
y = (%) 2 f(x+x) = f(X) > f(Z) - (X = x) > f(%) -,

and f(X + N) lies in an order interval, [a, b]. Again by convexity, for x in

X + iNand A in 1N we have
F5)  1(x~ ) < FEE DV =) _ St o) =/ x)

for 0 <t<s<]l. Since f(x)—f(x—h)=a—b, and as S is Daniell, the
directional minorant

vf(x;h):

exists for x in X + 3N and h in X. Moreover, Vf(x; -) is convex and finite and,
again since S is Daniell,
vf(x; h)= Pﬁ;
a] Now, let ¢ strongly expose [0, b — a]. Since f is S-convex with f(x + N) C
[a, b] while ¢ € [0, b — a], ¢f is convex on X + N. Since X is Asplund, there is
a dense G; subset, G, in X + N such that ¢f is Fréchet differentiable at points of
G. We show (much as in [1]) that f is actually Fréchet differentiable on G. Let x
lie in G. First observe that, for0 < ¢ < 1

0 < Lt ) =1

o St )~ 7 ()
>0 t

f(x + tht) _f(x) ) (2.1)

- vf(x;h) < 2(b - a), (2.2)
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for x € X+ §N and h € IN. Also Vof(x; h) = ¢Vf(x; h) and, as Vof(x; -) is
linear, we have

0< vf(x;h)+vf(x;-h)<2(b—a) (2.3)
and

o(vf(x;h) + vf(x;-h)) = 0. (2.4)

Since ¢ exposes [0, b — a], (2.3) and (2.4) show that Vf(x; -) is linear, being both
sublinear and homogeneous. This, in conjunction with (2.1), shows that f is
linearly Gateaux differentiable at x. To complete the argument let ¢ > 0 be given
and choose § > 0 to satisfy (1.3) with x:= 2(b — a). Then, as ¢f is Fréchet at x,
we may find y > 0 so that when 4 lies in N

¢f (x + th) — ¢f(x)

t

for 0 < ¢t < v. Since (2.2) holds, we have

‘f(x =) =10 _op(i ) <o

if0 <t <yand h € IN. Asvf(x; -) is linear and continuous we are done.
b] This follows as in the first part of the previous proof.

- Vvéf(x;h) <8

Conditions for a cone to be Daniell were discussed in detail in [1]. Conditions
for exposed intervals are as follows:

PROPOSITION 2.1. Let Y be a Banach space partially ordered by a normal closed
cone S.

a) Order intervals in Y are exposed if

(i) S has separable order intervals; or (i) S has a base; or (iii) Y has an
equivalent strictly convex renorm which is S-monotone (0 < y < x implies ||y|| <
11D

b] Order intervals in Y are strongly exposed if

(1) S has norm compact intervals; or (ii) S has a bounded base; or

(ii1) Y has equivalent locally uniformly convex renorm which is S-monotone.

PROOF. Let x in S be fixed with x # 0.

a] (i) The cone generated by the order interval [0, x] is separable and so has a
base, B, [1] and as the space is locally convex we may separate 0 and B to
produce an exposing functional. This also establishes (ii). In case (iii) we argue
that the unique tangent, ¢, to the renormed strictly convex ball N:= {y € Y-
[I¥Il < |Ix||} exposes x in N and, by monotonicity, exposes x in [0, x]. But then ¢
exposes [0, x] as well.

b] (i) Since [0, x] is exposed by a] (i) and compact (every sequence has a
convergent subsequence) it is strongly exposed; indeed, otherwise we have ¢ > 0
and ¢(x,,) tending to 0 for ||x,|| > € and 0 < x, < x. Since (x,) has a convergent
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subsequence in norm, this is impossible. (ii) was established in [1]. (iii) Now ¢
strongly exposes the renormed locally uniformly convex ball at x and so strongly
exposed 0 in [0, x].

If the domain is not Asplund or weakly Asplund, or if the operator is not
order-bounded, the examples given in [1] show that Theorem 2.1 will generally
fail.

We continue by studying the case in which Y is a lattice.

3. Lattice characterizations

We suppose now that Y is a Banach lattice (a complete normed vector lattice
whose norm satisfies || y|| < ||x|| whenever |y| < |x|). The key result is:

PROPOSITION 3.1. Let Y be a Banach lattice. Then the following are equivalent:
1] Y has a lattice equivalent locally uniformly convex Banach lattice renorming.
il] Order intervals in Y are strongly exposed.

iii] Order intervals in Y are weakly compact.

iv] The lattice cone in Y is Daniell.

PROOF. i] = ii]. Since strong exposure is preserved by lattice isomorphisms, this
follows from b] (iii) of Proposition 2.1. ii] = iii]. If Y possesses a non-weakly
compact order interval then one can construct a lattice orthogonal norm one
sequence (x,) in Y with 0 < x, < x, for all n, [7, p. 94]. Now

n n
s,= Y x,= V x,<x, since X Ax,=0fork +j.
k=1 k=1

Hence, for any positive ¢ in Y*, (¢(s,)) is isotone and majorized. Thus ¢(x,)
tends to zero. Since Y is a Banach lattice (x,) is weakly convergent to 0. This
certainly means that [0, x,] is not strongly exposed, as each x, is norm one.
iii] = iv]. This implication holds for any partial order [1]. iv] = i]. Since Y is a
Daniell Banach lattice, Y is order continuous and we apply the Davis-Ghous-
soub-Lindenstrauss renorming theorem [3] to complete the hard step. (The
theorem guarantees a locally uniformly convex lattice equivalent renorm for an
order continuous Banach lattice.)

As observed in [6, p. 28], it is also equivalent to assume that Y has a
lattice-equivalent Kadec norm. Note also that every o-finite L _(u, E) has a
lattice-equivalent strictly-convex lattice renorming. Simply let E:= U%_, E, where
#(E,) < 1,andlet || - || be given by [|f[|:= I fllc + Z5-127"Ilf| E,ll,-
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Also, in L,(p), 1 < p < oo, (with the standard ordering), it is easy to exhibit
the strongly exposing functional for [0, X]. We have ¢:= X?~! € L(p)(g+p=
pg)and 0 < y < X implies ¢(y) = [ X7~ 'ydp > || yl|”.

THEOREM 3.1. Let Y be a countably order-complete Banach lattice. Then the
following are equivalent.

i) Order intervals in Y are strongly exposed.

ii] Order intervals in Y are weakly compact.

iii] Suppose that f: X — Y is convex and order-bounded while X is an Asplund
space. Then f is generically Fréchet differentiable.

iv] Suppose that f: X — Y is convex and order-bounded while X is a weak
Asplund space. Then f is generically Gateaux differentiable.

v] Suppose that f: R = Y is convex and order-bounded. Then f is generically
Gateaux differentiable.

vi] Y contains no Banach sub-lattice isomorphic to | (N).

PRrOOF. i} « 1ii] follows from Proposition 3.1. ii] < iii]. Since the cone is normal
and Daniell, Theorem 2.1 a] now applies. ii] < iv] follows similarly from part b]
of the theorem. Clearly iii] implies v] and iv] implies v]. To complete the circle we
establish that v] implies vi] and vi] implies ii]. v] = vi]. Suppose that Y contains a
lattice copy of 1_(N). There is no loss in assuming Y = /_(N). Then let {r,:
n € N} be chosen dense in {-1,1]. Let f: R = [_(N) be defined (as in [4]) by

f(r)== sup|r—r,l.
neN
Clearly, f is convex and order-bounded. Moreover, if |r| < 1, f is not Gateaux
differentiable at r. Indeed, since {r,: n € N} is dense in [-1, 1] we may calculate
that

[t +f(r=e=2() _,

lim sup .

e—0"

and so f is nowhere Gateaux differentiable on (-1, 1). (Note that, nonetheless, f
has a unique linear subgradient whenever r € {r,: n € N}.)

vi] = ii). Since Y is countably order-complete this follows from [7, Theorem
5.14).

The equivalences fail if Y is not countably order-complete. Indeed, f(x):= |x|
on X:= Y:= C[0,1] is nowhere Gateaux differentiable on N:= {x € X: ||x —
x|} < 4} where X(1):= 1 — 2t for 0 < ¢ < 1, [1]. This is not entirely obvious, but
follows after some routine but tedious calculations.
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Kirov’s Corollaries in [5] regarding Fréchet differentiability or order-bounded
convex operators (established by entirely different methods) are all special cases
of Theorem 3.1, sometimes with redundant hypotheses. He requires X to be a
reflexive Banach space and Y to be a Banach lattice such that either a) intervals
are norm compact, or b) intervals in Y and Y* are weakly compact, or c) intervals
in Y are weakly compact and f has only compact subgradients.

4. Applications

a] We consider the following vector convex program (VCP):
h(u):= inf; f(x) subject to g(x) <, u. (4.1)

We assume that f: X — Y is S-convex and that g: X — U is K-convex. We
suppose that int K is non-empty and that Slater’s condition holds: there exists X
in dom f with g(%) € —int K. We also suppose that (Y, S) is a Banach lattice
with weakly compact order intervals, and so is order-complete.

Then, as in [1}, [2], # defines another S-convex mapping; which is actually
locally order-bounded as a consequence of Slater’s condition. (More general
constraint qualifications ensure continuity but not order-boundedness.) Thus, if
we assume that A(0) is finite, 4 is order-bounded and convex on a neighbourhood
of zero. In particular, Theorems 2.1 and 3.1 apply to 4 and give conditions for A
to be generically differentiable. As explained in [1), if 4 is differentiable at u with
Gateaux derivative 7, then -T is the unique Lagrange multiplier for (VCP). In
fact, if & is Fréchet differentiable at ¥ we may conclude that the subgradient of 4
is norm-to-norm upper semi-continuous at u, [1].

b] Suppose now that f:= 4 and g:= B are continuous linear mappings. Then
(VCP) becomes a form of the abstract Farkas lemma. Such inequality systems are
central to the study of positive operators [7].

As outlined in a] the differentiability points of A(u):= inf{Ax|Bx <, u}
correspond to unique Lagrange multipliers. In this case T = VhA(u) if and only if
T is the unique linear operator solution to

Tv<,h(v), VYveU 4.2)
and
Tu = h(u). (4.3)
This in turn means that T is the unique solutionin L(U,Y) to

TB = A, T(K) C ~S, Tu = h(u). (4.4)
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c] Let f: X X T € R be convex in x € X and measurable in ¢ € T. Suppose
that X is an Asplund space and that one can find k € L,(T) (1 < p < ) such
that

f(x,t) < k(t) (4.5)
if |lx — x,l| <e, for some € >0, x, € X. We define a convex operator F:
X = L,(T) by F(x)(t):= f(x, ). Then (4.5) guarantees that F is locally order-
bounded. Theorem 3.1 applies and we may conclude that generically F is Fréchet
differentiable.
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