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NEWTON-LIKE METHODS UNDER MILD DIFFERENTIABILITY
CONDITIONS WITH ERROR ANALYSIS

lOANNIS K. ARGYROS

We apply Newton-like methods to operator equations where the operator has Holder
continuous derivatives. Our results reduce to the ones obtained by Rockne when the
ordinary Newton method is applied to find solutions of nonlinear operator equations.

The results are applied to a second order differential equation.

INTRODUCTION

Consider an equation

(1) F(x) = 0

where F is a nonlinear operator between two Banach spaces E,E. A Newton-like
method can be denned as any iterative method of the form

(2) xn+1 = xn - L~1F(x), n = 0,1,2,. . . ; x0 pre-chosen

for generating approximate solutions to (1). The {Ln} denotes a sequence of invertible
linear operators. This is plainly too general and what is really implicit in the title is
that Ln should be a conscious approximation to F'(xn), since when Ln = F'(xn),
the method reduces to the Newton-Kantorovich method. The convergence of (2) to a
solution of (1) has been described already in [2], [3], [6] and the references there. The
basic assumption made is that F is twice Frechet-differentiable in some ball around
the initial iterate. We relax this requirement to operators that are only once Frechet-
differentiable. An error analysis is also provided.

Our results can be compared with the ones obtained in [2], [4] and [8] when Ln —

F'(xn), n = 0,1,2, . . . . But, even then they are proved to be stronger.
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132 I.K. Argyros [2]

1 PRELIMINARIES

From now on we assume that F is once Frechet-differentiable at a point x £ E

and note that F'(x) £ LIE,!?) , the space of bounded linear operators from E to E.

DEFINITION 1: We say that the Frechet-derivative F'(x) is Holder continuous over
a domain D if for some c > 0 , p G [0,1].

(3) \\F'(x) - F'(y)\\ < c||x - y\\", for all x , y e D.

We then say that F'(») 6 HD(c,p).

DEFINITION 2: Let <o and t' be non-negative real numbers and let g be a con-
tinuously differentiate real function on [to,to +t'\ and P be a continuously Frechet-
differentiable operator on

into E . Then the equation
t = g(t)

will be said to majorise the equation

x = P(x) on U(xo,t')

if

||P(sco)-a;o|| ^g(to)-to

and

\\P'(x)\\^g'(t){ox\\x-x0\\^t-to<t'.

We will need the following results, whose proofs can be found in [2] and [8] respec-
tively.

LEMMA 1. Let {xk} , k = 0 ,1 ,2 , . . . be a sequence in E and {tk} , k = 0 ,1 ,2 , . . .
a sequence of non-negative reai numbers such that

\\*k+i ~ Zfcll < tk+i - tk, k = 0 ,1 , 2 , . . .

and

<fc —> t* < oo as k —y oo.

Then there exists a point x* 6 E such that

Xk —> x* as k —> oo
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[3] Newton-like methods 133

and
| |«*-*fc | | < < * - < * , fc = 0 , l , 2 , . . . .

LEMMA 2. Let F : E —> E and D C E. Assume D is open and that F'(«) exists

for every x G D. Let Do be a convex set with Do C D such that F'(») G HDO(C,P).

Then

\\F(x) - F(y) - f ( x ) ( * - y)\\ < -^-\\x - y\\*+1 for all x , y e Do .
1 +p

2 MAIN CONVERGENCE RESULTS

We can now prove the following:

PROPOSITION 1. Let F'(*) G H]jo(c,p), where £>0 is the closure of an open convex

set and Do C D. Assume that for every n with {«*} C Do , k = 0,1,2,.. . , n, there

exists an invertible operator Ln G lE,Ej and a positive real number dn such that:

(4) II^IK^1-

For a and b > 0, both independent of n with

and

a > 1 ifp = 0,

assume:

(5) | | F ' ( « B ) - £ n | | < d B + 0^(211*,--*,-_,IN -b, n = 0,1,2,...

Set

(6) f{t) = -%-t'+1-bt + do\\LZ1F(xo)\\, <G[0,oo)
p+ 1

and

(7) <n+l=<n + 4 H ; <0=0-
dn

Then if {xn} C Do , (7) majorizes iteration (2).
PROOF: We will use induction on n and definitions 1 and 2. Note:
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134 I.K. Argyros [4]

and assume that:

and
\\XJ - Xj-iW ^ tj - tj-i for j - 1 , . . . ,n.

The iterate xn+i is well defined since F(xn) and L~* are. We will use the obvious

estimate

to compute

(8) \\xn+1-xn\\Z\\L?\\\\F{xn)\\

But,
/(tn) = /(<„-!) + /'(<„_,)(<„-<„_,)

since
/"'(<) = p(p - l)ca{in)

P~2 > 0 for some £„ € [<„_!,<„] C [0,oo)

and

tn > tn-1

by the induction hypothesis.
Therefore (8) becomes

and the induction is completed.
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[5] Newton-like methods 135

PROPOSITION 2. Let F'(») € Hpo(c,p) where Do is the closure of an open convex

set and Do C D. Assume:

(1) Inequality (5) holds for n — 0;

;
a0

(3) the function f(t) defined by

(9) /(<) = ^ * P + 1 + («* - ! ) * ' + do||Io ^(^o)!!, t e [0,oo)

iias a minimum positive zero r'o such that U(xo,r'o) C Do •

Then (1) has a unique solution x* 6 U(xo,r'o). If r'o is the unique fixed point of the

function

do

on some interval [r'o,rj], r{, ̂  r\, then x* is also unique in Do f~l U(xo,r[).

Moreover

(1) The iteration

converges to z* for ||a:o — xo\\ < r2 < T\ and U(xo,r2) C Do .
(2) Tie following estimate is true:

II-.' _* | i < \r> t> |

IFn — x II ** lr0 "" rnl
wiere {< ,̂} is generated by

PROOF: Define the nonlinear operator P on Do by

We will show that if t' G (^o)7"!)' then p(i) majorises P(x) on f/(a;oj^') H Do •

We have

Let x, < be such that a £ tf(a:o,*') n Do and ||x - xo|| < t < t'. Then

||P'(«)|| = | | / - L^P'\\ = \\Lo\{Lo - F'(xo))

< \\L?\W(x) - F\xo)\\ + ||F'(x0) - Lol
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136 I.K. Argyros [6]

By hypothesis r'o is the unique fixed point of g(t) in [0, t'] and g(t) ^ t' with equality
holding if and only if t' — r'o .

The results now follow from the well-known classical theorem on the existence and
uniqueness of solutions of equation (1) via majorizing sequences given in Kantorovich
([5, p. 697]), |

We remark that if {tn} converges to t*, then t* is the least upper bound for
n
53 \\xj —Bj-i|| i independent of n. Therefore, if we assume that U(xo,t*) C Do , using

Lemma 1 we obtain that {xn} exists and converges to a solution x* of (1).
Usually we do not wish to calculate the derivative of each Ln but instead use Ln in

place of £„+!, . . . , /„+, and then calculate Ln+q+j and use it for q calculations. That
is why, as in [5], we find it useful to define a nondecreasing sequence of non-negative
real numbers {e,,} such that

e0 = 0

and
en = en-i or en = n.

We then replace (2) by the iteration

(10) *„+, =xn-L;*F(x), n = 0 ,1,2, . . . .

We can now prove the basic result.

THEOREM 1. Assume:

(1) The hypotheses of Proposition 1 hold;
(2) the sequence {dn} is uniformly bounded above and
(3) hypothesis (Hi) of Proposition 2 is true.

Then (10) converges to a solution x* of (1) according to

(11) | | z n + 1 - s i < r0 - tn - d;*(f(tn)); t0 = 0,2,....

Moreover if
(4) the hypothesis on r\ in Proposition 2 holds then x* is the unique solution

of(l)in U(xo,r\)f\Do.

PROOF: Let us define Cn = Ltn and cn = den , n = 0,1, 2 , . . . . The proof will be
a consequence of the following steps.

Step 1. We will show that {xn} C U(xo,ro) C Do and that the rest of the hypotheses
of Proposition 1 hold.

We easily note:

(1) (4) holds for Cn and cn, n = 0,1,2,. . . ;
(2) (5) holds by the choice of a and dn < n.
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[7] Newton-like methods 137

We now estimate

p

\\*j-xi-i\\ I -b+c\\xen -xn\\
p

p

-b.

Let / be denned by Proposition 1, r0 be the smallest positive zero of / . By
Proposition 1

||scn+i - xn|| ^ gn{tn) - tn,

where the function gn(t) is defined on [0,oo) by

f(t)
cn

Assume that

Then via the mean value theorem we can find zn £ (tn,ro) such that

- tn)

Using (5) we easily get

0 < c^K + cazp
n - b](r0 - tn) <r0- tn+i < c?\cn + car* - b](r0 - tn) < r0 - tn.

Therefore {tn} is bounded and convergent to some t* ̂  r0. The estimate,

0 = Urn (*„+, - <„) = lim ^ ^ ^ lim ^ ^
n—»oo n—»oo cn n—>oo e

where e denotes the uniform upper bound on {dn} , implies that

/(<*) = 0,

that is
t* = To

and (11) holds.
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138 I.K. Argyros [8]

S t e p 2 . We show that x* = lim,,-..,*, xn is a solution of F. We have

\\F'(xo)\\ + c||>0 - ^n||p + cn - b + oprj

Therefore the inequality

^ IICH | |xn + 1-xB | |
< 5||xn-(-i — xn|| —» 0 as n —> oo

implies that F(x*) = 0.
The uniqueness result will now hold if (ii) of Proposition 2 is satisfied and hypoth-

esis (iii) and (iv) of the theorem hold.

For n — 0 in (5) we obtain

0 <b<zd*-\F'{xo)-U\

that is

o < A < i - * \
d0

so (ii) of Proposition 2 is satisfied. It can easily be checked that r'o ̂  ro < r\ and the
proof of the theorem is now complete. |

We now state a theorem which seems to reduce to a minimum the assumptions
necessary to apply the majorant technique.

THEOREM 2. Let F'(«) G Ho0(c,p), where Do is the closure of an open convex
set and Do C D. Assume:

(1) If x0 G D, let Lo £ L(E,EJ be an invertible operator with

and

(2) there exist real numbers 6 and 7 such that if {xn} C Do , k
0 , 1 , 2 , . . . ,n then
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[9] Newton-like methods 139

6n ^6O = 6, n = 0,1,2,"...,

(3) the following estimate holds:

3/36 < 1,

(4) there exists an interval [O,ro] such that for r £ [O,ro]

2/35 + /3(7 + c)c)r p

and U(xo,r) C Do ;
(5) there exists a nonempty interval [r3)r4] = [0, fo] (~l [ro,rj] where ro is the

small positive solution of (6).

Then the following are true:

(1) for a, b such that

{27 + c 2
a J? max I , —;

and

p

where

and dn ^ oo .
(2) the sequence {a;n} given by (10) exists in U(xo,r), r$ < r ^ r4 and

converges to a unique solution x* of (1) in U(xQ,r3). Moreover, the
solution x* is unique in U{xo,Ti);

(3) the following estimate holds if t\ = a

||*n+l - **|| < r0 - tn - d

where f is given by (6) with

a—a, b = 6 and dn = dn, n = 0,1,2,...
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140 I.K. Argyros [10]

PROOF: AS in (5) , assume {a;*} C U(xo,ro), k = 0 ,1 ,2 , ...,n and ^ \\XJ —

Xj-i\\ < r with r3 < r ^ r4 .
We have

\\Ln - Loll < \\Ln - F'(xn)| | + HF

Therefore,

The Banach Lemma [2] can now be used to show that L~x exists and is bounded

in norm by the ( J n ) , n — 0 ,1 ,2 , . . . Moreover {<?„} is uniformly bounded by <?o •

It is now easy to check that (12) is satisfied by the choice of <?n, a and 5.

The rest of the theorem now follows from Theorem 1. |

3 E R R O R ANALYSIS AND APPLICATIONS

When we solve equation (1) numerically using iteration (10) we generate instead
of the sequence {a;n} the perturbed sequence {zn} given by

*»+i =Zn + [Len+LZn]-1[F(zn) + aZn]-qXn, n = 0 ,1 ,2 , . . . ,

assuming z0 = XQ and [Len + LZn]~1 exists for n — 0,1,2,... .
The problem of estimating the bound on Ha;,, — zn|| when Ltn — F'(xn) and under

certain assumptions, basically on the norm of the linear operator LZn and on the norm
of the elements of LXn , aZn and qZn , has been solved in [8].

Here we can easily prove the analogue of Lemma 2 and Theorem 3 in [8] for the
more general iteration (10). However, we leave that to the motivated reader and we
show that the order of convergence of (2) when Ln = F'(xn) to a solution x* of (1) is
1 + p .

We then show that iteration (10) under appropriate choice of the Ltn 's converges
to x* with order 1 + 2p.
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[11] Newton-like methods 141

This improves the results in [8] where the order of convergence is not given. If the

second Frechet derivative of F is bounded and p = 1, our results coincide with those

in [2].

We then compare the numerical efficiency of (10) with the iteration

(N) xn+1 = xn-F'{xny
1F(xn)

using the example of Rockne given in [8].

PROPOSITION 3. Let Len = F'(xn) in (10).

Then under the hypotheses of Theorem 2, the solution x* of (1) obtained via
iteration (10) is such that

l-\o\ | | T r*ll < JMIT T*II1+P n — fi 1 9
(lo) \\Xn+l — * || *5 ' e | | * n — * || > « — U, 1 , Z, . . .

where

k = —=-.

PROOF: We have

xn+1 -x* =xn-x*- F'{xn)F(xn)

~1\F'(T Vrr T*\ (F(r \ J?(-r*XW
l-r \Xn){Xn — X ) — \r \Xn) — f[X ))\.

By taking the norms in the above identity we obtain

"(xn)-F(xn + t(x*-xn)))dt

P + 1 Jo
fi>di
o

PROPOSITION 4. Consider the iteration (10) for the solution (1) given in the form

yn = xn-F'(zn)-
1F(xn), n = 0 ,1 ,2 , . . .

(14)
*n+i =yn-F'(xn)~

1F(yn), n = 0 ,1 ,2 , . . .

with xo pre-chosen.

Then under the hypotheses of Theorem 2 the solution x* of (1) obtained via.

iteration (14) is such that

(15) ||*»+i-*l<*i||*»-*
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142 I.K. Argyros [12]

where

* , =

PROOF: We have

xB+1 - x* = yn - x* -

)-1[Fl(= F*(xn)-
1[Fl(xn)(yn - **) - (F(yn) - F(x*)))

By taking the norms of the above identity we obtain

(F'(xn) - F'(x* + t(yn - x*)))dt

(16)

\\y»-x*\

~ x*) + t(yn - x*W\\yn - x*\

p +
- l l x —T*\\P\UI — x*\\ ( s ince Hi; — r*\\ < \\r — r*\\))\xn x || ||i/n x || ^since \\yn x \\ ŝ  ||a;n a: ||^.

Similarly,

Therefore,

(17)

= F'(xn)-
1[F'{*n)(xn - x*) - (F(xn) - F(x*))].

(F\xn)-F'(x* + t(xn-x*)))dt

Wx -

cd0

xn-x~
(p+1)

Finally, by (16) and (17), we obtain

llrr T
| | Z n — X

* I I 1 + 2 P

||

EXAMPLE 1: Consider the function G denned on [0,6] by

G(t) = At1+P + Bt
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[13] Newton-like methods 143

where, A, B € R , p G [0,1] and b > 0.

Let || • || denote the max norm on R. Then

which implies that Newton's method cannot be used to find a solution of the equation

(18) G(t) = 0.

However, it can easily be seen that G'(t) is Holder continuous on [0,6] with

c = .4.(1 + p) and p = p.

Therefore, under the assumptions of Theorem 2, iteration (14) can be used to find a
solution t* of (18).

DEFINITION 3: Define the efficiency E of an iteration {xn} for solving (1) in the
sense of [5] by

where k is the order of convergence of {xn} and T denotes the "time per step",
that is, the number of function evaluations required to compute each iterate xn for
n = 0 , l , 2 , . . . .

Let E\, E2 denote the efficiencies of iterations (N) and (14) respectively. Take

p = i . Then

In (f) In 2
E1 = —j- < E2 = — .

A more interesting nontrivial application of Theorem 2 is given by the following
example.

EXAMPLE 2: Consider the differential equation

«- + « 1 + ' = o , P e [ o , i ]
«(0) = x(l) = 0.

We divide the interval [0,1] into n subintervals and we set h = £ . Let {v/t} be the
points of the subdivisions with

0 = v0 < vi < • •• < vn = 1.

A standard approximation for the second derivative is given by

a s " =
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144 I.K. Argyros [14]

Take x0 - xn = 0 and define the operator F : R""1 - • R""1 by

(21) • F(x)=H(x) + h2ip(x)

2 - 1 .. . 0

o- - 1 •• •• :

: "•• '•• - 1

0 . . . - 1 2

<p(x) =

x ,

and

x =

.X

X!

X2

1+p

"•n-l-1

Then

L o

Newton's method cannot be applied to the equation

(22) F (x) = 0.

We may not be able to evaluate the second Frechet-derivative since it would involve
the evaluation of quantities of the form xj~p and they may not exist.

Let x G R""1, H G R""1 x R""1 and define the norms of x and H by

||x|| = max |a;,-1

n - l

k=l

For all x, z G R""1 for which |x;| > 0, |z;| > 0, i = 1,2,... ,n - 1 we obtain

max= (1+

= (l+p)h2\\x-z\\P.

p)/i2[max |x> - Z i•IIP
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[15] Newton-like methods 145

For zo 6 R" * iteration (14) can be written as a system of linear equations

F'(zn){zn - zn) = F(zn)

F'{zn){zn-zn+1) = F(zn)

By (15), since P = f iteration (14) will converge under the assumptions of Theorem 2
to a solution x* of equation (22) with the order of convergence being 2.

The order of convergence of (N), which was used in [8] to solve the same problem,
is f.

Let Ei, E-i denote the efficiencies of iterations (N) and (14) respectively, then it
easily follows from the discussion made after the definition that

£j\ < CJ2.

To show further the advantages of (14) when compared to (N), set, as in [8], n = 10
and choose the initial approximation to be 130sin7rx . We then get

4.015245 + 01
7.637855 + 01
1.051355 + 02
1.236115 + 02

zo= 1.299995 + 02
1.236755 + 02
1.052575 + 02
7.654625 + 01
4.034955 + 01

After 2 iterations we obtain

3.357415 + 01
6.520275 + 01
9.156655 + 01
1.091685 + 02

z2 = 1.153645 + 02
1.091675 + 02
9.156655 + 01
6.520275 + 01

.3.357425 + 01.

We choose z2 as our x0 for Theorem 2. Since Len = F'(xn), with en = n - 1,
conditions (ii) and (iii) in Theorem 2 are satisfied for

= 6o =-y = 6 = 0, n = 0 , 1 , 2 , . . . .
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We also have,

a = \\L^F(xo)\\ = | |F '(ao)-V(a!o)| | = 9.15312E - 05

0 = | | £ - J | | = Hi^Cxo)"1!! = 2.55883£ + 01

c = (p+ l)h2 = -h2 = 0.015

Condition (iv) will be satisfied if we choose r > 0 such that

+ c)r* < 1

0 <r < 6.7879398 = f0.

Moreover, equation (6) for

/27 + c 2 \
a = max , - ; r = 2.666666

V V P (P+1) /
d0 = 5 = * ~ 3 ^^ = i = 3.90803E + 02

becomes

(2.666666^ - 02)<§ - (3.90808E - 02)< + 3.577066E - 06 = 0

with solution

r0 =9.2lE - 0 5 = r3.

Hence, by Theorem 2, the iteration (14) remains inU(xo,ro) and converges quadrati-

cally to a solution x* of equation (22).

Finally, note that Xo was found using two iterations in (14) instead of four that were
required using (N). Moreover, the ball S used in Rockne [8] is such that U{xo,r3) c S.
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