
J. Austral. Math. Soc. Set. B 29 (1987), 1-20

CHAOS IN OPTICS:
FIELD FLUCTUATIONS FOR A NONLINEAR OPTICAL

FIBRE LOOP CLOSED BY A COUPLER
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Abstract

Mathematical theories describing chaotic behaviour in physical systems are introduced by
developing and reviewing applications to optical fibres. A theory is presented for laser
light propagating in a loop formed by an optical fibre and an optical coupler. As the light
traverses the fibre it suffers an attenuation and is subjected to a phase shift which will
have a component proportional to the light intensity via the nonlinear optics Kerr effect.
At each pass through the coupler, an extra fraction of laser light is coupled into the loop.
The mathematical formulation leads to a two-dimensional map having a clear physical
and geometrical interpretation. The complete solution is given in the linear regime and the
onset of nonlinear behaviour is investigated as the laser power is increased. A variety of
transitions is obtained including period doubling and iteration onto a strange attractor.

1. Introduction

Much of applied mathematics traditionally has dealt with deterministic systems
modelled by differential and difference equations and their analytical solutions.
The advent of computers and the combined numerical-analytical approach has
enabled a wider range of models and solutions to be explored and has revealed
new and often unexpected patterns of irregular or chaotic behaviour. Berry [5]
provides an extensive and basic introduction to this subject.
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2 A. Ankiewicz and C. Pask [21

In this paper, we are concerned with some examples in fibre optics which may
be used to introduce the reader to the theory of non-integrable systems, chaos and
its physical ramifications. Both the continuous, or differential equation, and the
discrete, or difference equation, cases can be covered.

Light propagation along an optical fibre can be described using geometric
optics when the fibre parameters are such that we are in the multimode regime. In
that case the problem of finding ray paths is mathematically exactly equivalent to
solving for the motion of a particle moving in a plane as described by classical
mechanics [1,6]. When the fibre cross-section is distorted so that the contours of
constant refractive index are no longer circular, a non-integrable problem may be
generated and particular classes of rays may have extreme types of behaviour. We
shall not pursue this example further here; it is set out in detail in [1], and a
general discussion of optical-mechanical analogies is provided in [6].

At the other extreme—the single mode fibre—wave theory is used and the
phase of a wave guided along the fibre becomes important. When such a fibre is
used along with an optical coupler, a loop structure can be formed and the
description of light propagation in such a system leads to a beautiful example of a
discrete map or difference equation. It is our purpose to explore this example in
detail, giving the complete solution in the situation where a linear problem results,
and demonstrating how the onset of non-linear behaviour occurs and the effects
produced. Some of the mathematics used here is already scattered throughout the
literature, e.g. see papers in [7], but in this paper we provide a general develop-
ment and review-by-example which may be followed by the uninitiated.

2. The optical loop system

The advent of low loss couplers has allowed construction of various new optical
fibre devices and systems. A coupler has two input and two output ports. Light
entering one port is split between the two outputs, with the splitting ratio
depending on the length and optical parameters of the coupler. By joining an
input and output port with a length of fibre a loop can be formed, and optical
resonators, delay lines and other systems may be devised, e.g. [8,11,15]. The basic
configuration is shown in Figure 1. In this paper we will show how the calculation
of optical fields in the fibre loop leads to a mapping problem which has a clear
physical interpretation, and which predicts some interesting results as the laser
input power is increased.

Optical delay lines and pulse generators can be produced if a single pulse, the
"signal", can be made to circulate around a loop many times. Signal attenuation
due to coupler splitting and fibre loss can be compensated for by allowing the
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signal to draw energy from a counter-propagating pump beam by making use of
stimulated Raman scattering. This principle has been used successfully by De-
survire et al [8]. The signal must be at a slightly longer wavelength than the pump.

In this paper we show that the signal power will follow variations in the pump
power, and then study the pump power in the loop as a mapping problem. We
assume that the laser is coherent enough to ensure phase integrity after hght has
travelled the length of the fibre loop. In this case, amplitudes of fields are added,
whereas, in an incoherent case [16], intensities would be summed. (We return to
this point in the conclusion.)

We show that, even if there are no fluctuations in the input pump power, the
observed signal output from the system can change substantially from pulse to
pulse. This can occur because of an initial transient as well as period doubling
and chaotic behaviour due to the non-linear phase shift which high power light
suffers when travelling along an optical fibre.

3. Formulation

Let us begin with the fields generated by the pump laser as shown in Figure 1.
For our analysis, we take the input field E^ to be constant, E['^ = £pump. We
shall always assume a linearly polarized field, so that in all cases E means the
complex number describing the amplitude of the field, and a single pump
frequency <o is involved so that a factor exp(fuf) is always cancelled out of the

pump laser input

loop of length L

Figure 1. Experimental arrangement of fibre loop and coupler. The coupler is characterized by Cz
where C is the coupling coefficient and z is the effective length. The (low intensity) signal pulse enters
the system at "end 2".
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problem. Initially EP is zero and the output field E{0) is just the effect of the
laser field passing through the coupler. Call this field E$.

Now consider the output fields E$, £ $ , . . . , E[0)
n,... taken at time intervals

t, which are just sufficient for the field to propagate around the loop and through
the coupler. Thus Ef® is the effect of E[l), i.e. the laser field £pump, and the input
E^ll-i combining through the coupler, where £2

('«-i is just E^l_1 after propagat-
ing around the loop. The objective here is ike calculation of Ef^n.

The signal consists of a pulse injected at "end 2" in Figure 1. This is split by
the coupler giving one pulse which exits at the laser input end, where it
encounters a beam splitter and is detected [8], and a second pulse which enters the
loop. This second pulse propagates in the opposite direction to the pump field,
from which it draws power by the Raman process, and then encounters the
coupler, where it suffers a splitting giving rise to a second output pulse and a new
pulse entering the loop. The process repeats itself as long as sufficient power may
be drawn from the pump field and thus a string of output pulses is generated at
the laser input port. The technical experimental details are given in [8] and some
further theory in [2], but for the purposes of this paper it suffices to note that the
signal pulses can be thought of as measuring E^ and so we concentrate solely on
that field. Fluctuations in the desired stream of output pulses are thus related to
the fluctuations in

3.1 Optical loop theory
The effect of the coupler can be represented conveniently by a 2 X 2 matrix

operating on the incident (complex) electric fields. For a lossless coupler,

K 1 = e.Wcos(Cz) '•*"«
\EP] \/sin(Cz) cos(Cz)

where /? is the propagation constant of one fibre in isolation, z is the effective
coupler length, and C is the coupling coefficient [2]. If there is a loss involved
when light traverses the coupler, j8 will have an imaginary part iac. The laser
pump field Epump is substituted for E{'\

We can now write down the (n + l)th output as defined above:

^ + 1 = e*[Emco8(Cz) + /sin(Cz)^;>}. (2)

The constant laser field Epump will be taken as real (this merely sets a reference
zero for the phase of our fields) and so we define the real number

A = £pumpcos(Cz). (3)

The input field ££'> is related to Ej® as discussed above—mathematically we
have

aL + tf + i+NL), (4)
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where a, £ and 4>NL characterize the effect of transmission around the fibre loop.
The fibre itself determines the attenuation coefficient a, while the linear phase
shift £ will be fiL for a field with propagation constant /? and loop length L. We
may express /3 as 2trnt[l/\ where «eff is a refractive index derived from the basic
fibre index weighted according to waveguide theory [14]. When the fields are very
intense, the optical Kerr effect is important and the refractive index is modified
[12]. This introduces a nonlinear term in the phase shift which we define as

<t>NL = q\E^\\ (5)

where q is a constant which depends on fibre properties and the nonlinear
susceptibility of glass—see [12] and Appendix A.

Equation (2) may now be converted into a recurrence relation for E$® by
substituting (3), (4) and (5):

iEft sin(Cz)exp[-aL + * + iq\E$ f \ ) . (6)

3.2 The nonlinear map
In order to make the form of (6) clearer we replace complex numbers by

two-dimensional vectors; specifically we set

(7)

y = | Y"r)\ = ( r e a l p a r t o f *i?- m

"" \ yn
('> ] \ imag. part of £<°> exp(-^z) ) ' U

We also define

B = e-aLsin(Cz) (9)
and introduce the angle 8n,

0n = v/2 + Pz + Z + q\ E[% f = U + q\X, t (10)
where we note that the h'ght intensity is proportional to

Then (6) reduces to the form

L^-d+BRieJz,, (12)

where R is the rotation matrix

COS0 -s i
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6 A. Ankiewicz and C. Pask [ 61

3.3 Features of the map
Equation (12) is the main subject of our study; we have a map involving

two-dimensional vectors, the lengths of which refer to the amplitudes of electro-
magnetic fields, while their directions indicate the phase. Note that from its
definition (9), \B\ < 1 so that a dissipative element is involved. Since both
rotations and translations are area-preserving, it is clear that the area contraction
is totally controlled by the value of B. Evaluation of the Jacobian for the
transformation confirms this, of course. We are interested mainly in the specific
results generated from (12) when the physical conditions discussed earlier apply;
these involve zero field in the loop when the laser is switched on; mathematically
this means

25> = O, Y,=A. (14)

There are no general complete solutions of (12) except in the linear case, which
we discuss in the next section. One useful general result (proved in Appendix B)
concerns the invariant disc: let

Then in the Y plane there is a disc D of radius p, centered on Y = A, such that if
any X, is m t n e disc, when Y^ e D for all m > n, i.e., once inside D the iterates
remain there.

Equation (12) has the nice feature that it is simply interpreted geometrically
and physically as shown in Figure 2. A vector X, (representing an electric field) is
rotated through 6n and scaled down to a fraction B of its length (representing the
phase rotation and attenuation occurring during propagation along the optical
fibre and through the optical coupler), and finally a constant vector A (represent-
ing a constant laser field combined with the initial field in the coupler) is added to
give Xi+r Figure 2(a) shows the general case and then it is clear how a fixed point
Xfp can occur, as in Fig. 2(b). When the nonlinear terms in 0n are important we
shall find a variety of behaviour including the period doubling case illustrated in
Fig. 2(c).

When a fixed point solution Yfp occurs, (12) with X, = X.+i = Y/P giyes

Y,n = B2-2Bcose, 'fp
* j (15)B sin 8,'fp

where, from (10),

2. (16)
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(a)
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Figure 2. Geometric representation of the map given in (12).
(a) Given X,, we rotate this vector by 6n, scale it by a factor B and then add the constant vector A.

This produces vector X,+i-
(b) Here the triangle indicates a fixed point because X + I ' s the s a l n e ^ Z, •
(c) This illustrates period 2 behaviour, i.e. X,+2~ X,* Xi + \-

Since

(17)

we may solve for \Yjp\. We return to the question of fixed points below.

4. The linear case

If we ignore nonlinear effects by setting q = 0 in (10), we find that 0n takes on
the constant value £L, and then our basic equation, (12), is linear. Since \B\ < 1,
the contraction-mapping principle tells us that a single fixed point exists and so
Z* is given by Yfp in (15) with 0/p = ZL.
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In the linear case, (12) can be converted into a second order difference equation
for Yfr\ the first component of the vector Y^:

Y&\ =A(1- Bcos£L) + (25cos£jrn<'> - B2Y£\, (18)

and this can be solved by standard methods [3] to give

Yn" = 2r{C,cos(ii*J + C2sin(ii |J} + yW. (19)

The second term is the fixed point solution and so from (15) and (16) (with

Y£} = A{1- BcosSL)/{l + B2- 2£cos | £ } . (20)

The first term is the transient, and C1 and C2 depend on the initial conditions
assumed. For our physical conditions (14),

Ci = -Y£\ (21a)
C2 = yw. (21b)

The complete solution for X, is thus known when we note that (12) also gives for
its second component,

Y<» ={A + ScosUJyM - Yn^\}/BsmUL). (22)

If we write

Z, = Lo + ye* (23)
and note that, since 1 ,̂ is the fixed point,

Ya=A+BRUL)YOB, (24)

then substituting into (12) gives

H. (25)

Thus geometrically we find that the iterates spiral in towards the fixed point with
constant contraction \B\ and rotation £L if B > 0, and £L + m if B < 0.

4.1 Physical interpretation
Recalling the definitions of Y and £L, equations (8) and (10), allows us to

translate these results back in terms of the fibre parameters and fields. We leave a
detailed study to [2], but as an example we note that the steady-state power in the
loop is maximised when

£L = 0,2ir,4«,... ifsinCz>0,
iL = w, 377,577,... i f s i n C z < 0 , *• '

and in each case the power is
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{9] Chaos in optics 9

The loop may be tuned to the condition (26), for example by using a polarization
modulator, and if the coupler is also tuned so that

|sin(Cz)| = e-aL, (28)

then the power reaches its resonant peak value

• .2 = _ E p u m p _ , *
l-ioo Imax , -2aL \"'/

This peak power relative to the pump depends only on the total fibre attenuation
aL.

5. The nonlinear case

An important aspect of the basic map (12) is the number of fixed point
solutions which may occur and their nature. In this section we consider those
points and in the next section exhibit some detailed results which are relevant to
the physical system which we are modelling. The full global solution for (12) is, of
course, extremely complicated.

5.1 Fixed points
The fixed points are given by (15) once 6fp is known. Combining (16) and (17)

we obtain

qA2 1 + B2-2Bcos0
(30)

'fp

which determines 0f in terms of the parameters £L,qA2 and B. We are particu-
larly interested in the roles played by A (which relates to the input pump laser
field Epump as in (3)), and the loop linear phase shift £L (see (10)), which may be
tuned. The two terms in (30) are shown in Figure 3 for fixed B: their intersections
determine 6,. We observe that the number of fixed points can be varied by
changing A and £L.

In general there is an odd number of fixed point solutions, Yjp, of equation (12)
although in special cases two points may coalesce (see Figure 3(a)). For low values
of the pump field Epump there is only one solution. As A (i.e. Epump) is increased,
the number of solutions increases to 3,5,7,... and so on, although not neces-
sarily in a monotonic fashion. However, not all of these are stable. At a given
Epump there may be only one or two stable fixed points, or indeed, none at all.
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10 A. Ankiewicz and C. Pask [10]

Figure 3. Graphical solution of (30) to find 6fp (schematic). With q and B fixed, the left and right
sides of the equation are plotted; intersections then lead to the fixed points.

(a) iL is set to zero; the straight lines are for various values of A such that Al + l > At; the dashed
curve is the special case.

(b) Here A is fixed and increasing values of £t label the straight lines, i.e. (£/.), + ! > UL)I-

5.2 Stability
Suppose Xi ~~* Z» = ¥fP f°r ^ge n, i.e., that a fixed point exists. We can now

linearize the map in the vicinity of this fixed point. We define

^ = Z, - Xo (31)

and consider the case when |w ,̂| is very small. Linearizing (12) we obtain

(32)Hi,+ 1 =

where 0 is given by (10) and

M =
l - p

(33)
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[ 11 ] Chaos in optics 11

with

\ OO /

Hence

wn+l=[Jj Jj\wn=Jwn, (35)

where the matrix entries are

J2 = -B[(1 +p)sm6x + 2<7(Yt<")2cos0oo],

J3 = B[(1 -p)smOx

+P)cos6a -

A fixed point is stable if both eigenvalues of J are less than one in absolute
value [4]. The eigenvalues are

\ = Jp±{j2-B2)l/\ (37)

where

JP = \(Jx + / , )• (38)
If Jp < B2 then the eigenvalues are complex, and |X|2 = B2; this is less than

one, so the fixed point is stable.
If J2 > B2 the eigenvalues are real, and w approaches zero along the eigenvec-

tor corresponding to the eigenvalue of larger absolute value. When one eigenvalue
reaches 1 or -1 the fixed point becomes unstable and we get period 2 behaviour.
The constraint that the eigenvalues are less than one in absolute value leads to the
condition

2 | ^ | < 1 + B2 (39a)

or

| f ^ (1 + B2)/\B\. (39b)

5.3 Types of behaviour
The above results show how the number of fixed points and their stabiUty may

be calculated as the system parameters q, A, B and £L vary. For small values of
A we find one fixed point, but in general there may be more. A fixed point may
become unstable or it may disappear as parameters are changed; Figure 3(a)
shows that increasing A from A3 to A4 causes two fixed points to coalesce, and
then increasing A beyond AA removes this point.
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12 A. Ankiewicz and C. Pask [12 ]

We are particularly interested in results generated by 1̂ , = 0 and the fixed
points reached therefrom. We then have the possibility that the fixed point
reached may vary as the system parameters are changed and so a jump in
behaviour type can occur.

The above changes are usually followed by results which are specific to
nonlinear map iterations. These include the appearance of period two type
behaviour and strange attractors, as we shall illustrate in the next section.

6. Results

Results are generated numerically using the initial conditions (14) in the map
(12). As a first example, we show in Figure 4 values of the intensity [U2 for fixed
loop and coupler parameters for three values of the pump field. Figure 4(a) shows
the type of behaviour expected in the linear regime or low pump power case;
there is a transient and then the constant or fixed point solution. If the pump
power is increased, the transient is now followed by period 2 behaviour as shown
in Figure 4(b). For even larger values of Epump, a chaotic output is obtained, as
illustrated in Figure 4(c).

0-5-

0-3-

02

01:
8 16 2U n 32

Figure 4. Light intensity L£, \2 as a function of n. The fibre transmission e aL = 0.7, the coupler is
specified by Cz = 2, and the linear phase shift is set at ? t = 2.

(a) Eplimp = 1.8 -equilibrium is reached;
(b) Epump = 2.2 -the system settles to a period two pattern;
(c) Epump = 4.1 -successive pulses reveal chaos.

https://doi.org/10.1017/S0334270000005592 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005592


[13] Chaos in optics 13

0-8-

0
10 20 30 n A0

16-

8

0
20 60 n 80

Figure 4 (continued).
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14 A. Ankiewicz and C. Pask [141

Figure 5. (a) Maximum value of Eplimp for which equilibrium is reached (after a transient), as a
function of the linear phase change (0 < £L < 2-n). We have set Cz = 2 and e'aL = 0.7 as before.

(b) Values of equilibrium output pulse intensity L£J2 at the maximum value of £pun,p (given in
(a)). This again is a function of £L. The function is discontinuous because the reason for the loss of
equilibrium differs in each of regions 1,2 and 3, as explained in the text. The curves for region 3
cannot be predicted easily using the stability theory, whereas this is possible in regions 1 and 2. The
region 3 results depend on the starting point (in the case the origin) and do not involve loss of stability
of a fixed point.

In order to characterise the onset of nonlinear behaviour, we calculate the input
pump value at which the output changes from linear or fixed point behaviour for
a range of fibre loop values: mathematically, we fix B and q and then increase

until, at (E p)max, a change in output occurs. The results are shown in
pump "* pump /max

Figure 5(a) for all possible values of the loop phase parameters £L, 0 < £L < 2IT.
In Figure 5(b) we show the values of H^p obtained with A just less than Amax.
There are three regions of £L values, indicated on the figures, which lead to
different results.
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[is 1 Chaos in optics 15

Region 1. The stability eigenvalues X, (37), are real and one of them has
magnitude unity at (Epamp)max. Below (£pump)max the iterates converge to a stable
fixed point (|X| < 1), while above it the fixed point is unstable (|X| > 1) and
period 2 behaviour occurs.

Region 2. The stability eigenvalues X are complex below (£pump)max but on
reaching it two fixed points coalesce and then disappear, as discussed in the
previous section and in Figure 3(a). Above (£pump)max, the iterates of our map
fall on a strange attractor.

Region 3. The stability eigenvalues are complex so that below (£pump)max the
iterates converge to a stable point. Above (£punlp)max our particular initial
conditions, (14), do not fall within the basin of attraction of this stable fixed point
and again the iterates of (12) fall on a strange attractor.

1

Y(i) -

0

-1

o %

^ 8

» • 0 8»<

- 2 -1 Y(r) 0

Figure 6. (a) Example of strange attractor (in the Y plane). We use coupler parameters of Figure 5,
set £ t = 2.8, £pump = 2.64, and omit the transient. Starting at the origin (0,0) or at any of the points
marked with a cross leads to successive iterates moving about forever on the attractor. By considering
distances from the origin, it is evident that |X,|2 has a minimum of about 0.03 and a maximum of
around 4.5. Initial conditions marked with a small arrow lead to the fixed point Yjp = (-.6758,0.1025),
marked with a triangle, and would produce equilibrium.

(b) Pulse intensities for the parameters given in (a). We have a chaotic sequence with intensities
between the limits mentioned above.

(continues)
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16 A. Ankiewicz and C. Pask [16]

32

1-6

0
20 60 80

Figure 6 (continued).

The Region 3 behaviour is further illustrated in Figure 6 which shows the
strange attractor developed using the initial conditions (14). The location of a
stable fixed point is also indicated and some of the initial conditions giving
iterates which converge to that point are also shown. Figure 6(b) shows the
corresponding sequence of pulse intensities obtained from initial condition (0,0).
Although the map (12) may be inverted (see Appendix B) it is not simple to
define the basin of attraction for a given fixed point—we refer the reader to [9]
which is concerned with more technical aspects of a map of the type considered
here.

Finally, in Figure 7 we show an example of results which go beyond the onset
of nonlinear behaviour. If A is continually increased, while other parameters are
held fixed, a series of bifurcations is observed leading to period doubling
behaviour. By choosing different loop and coupler parameters a great variety of
diagrams of this type may be obtained involving bifurcations and discontinuous
jumps onto new solutions.
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[17] Chaos in optics 17

0
20 2-5 :pump

30

Figure 7. Illustration of bifurcations occurring as the pump field, Epmnp is increased. Here we have
chosen Cz = 2, e""L = 0.7 and £L = 6.0.

7. Conclusion

The map which we have studied here refers to the fibre loop system as shown in
Figure 1 with an infinite coherence length assumed for the laser field Epump. This
represents one limiting situation and complements the incoherent case presented
in [16]. In practice, it will be necessary to examine particular lasers and loop
lengths to decide which limit, if either, is appropriate.

We have been particularly concerned with the onset of nonlinear behaviour and
the results in Sections 5 and 6 demonstrate the control exerted by the system
parameters. The output from the system being considered may be quite regular or
may exhibit period doubling and become chaotic, with the loop phase parameter
£L playing a crucial part in deciding what changes occur with increasing pump
power, as illustrated in Figure 5.

The classic two-dimensional mapping paper of Henon [10] uses a quadratic
term to introduce the nonlinearity. If we assume his parameter b to be positive
and make the scale transformation y -> J'by, the map becomes

l-axfXi+l I =

•Vi+l

+ y/b
0 / VI 0 y-,
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In this case the new vector is obtained from the old one by reflection through the
y = x line, scaling by \/b and then adding the vector (1 — ax}, 0). This contrasts
with our case, (12), which involves a rotation rather than a reflection, and which
has the nonlinearity controlling the rotation rather than the final shift.

The map (12) could be used to define iteration procedures according to how the
nonlinearity is introduced through the dependence of A, B and 0n on Yn. In that
sense, we have begun with one of the simplest cases, but one which has a clear
physical interpretation.

The optical strange attractors which have arisen, beyond equilibrium, in the
analysis of this paper, are examples of order arising where it is not expected—an
order which has details not predictable in advance.

Appendix A

A light pulse of high intensity / in a fibre causes the refractive index to increase
by Aw = yl, where y ~ 3 X 1Q-I6cm2/W for glasses [13] and / is in W/cm2. For
constant intensity light of wavelength A, the phase change thus induced in a
length L is

A* = ^Lyl. (Al)

In the fibre loop, / is not constant, and so we find, through integration, that

2-7T

where Imax is the maximum power P divided by the effective area, Af, and Lf is
the effective length. This means

A<f> 2tr L
f

2

For the parameters of [8] this gives q = 1.5625W"1, the value we use whenever
the numerical value is needed in computations. If the maximum power in the loop
is one watt, then the phase change is about w radians, indicating that typical
powers can lead to significant non-linear effects. We can now represent this phase
change in terms of the field at the output of fibre 1:

(A2)

This is the non-linear part of the phase change (see (5) and (10)).
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Appendix B

We prove two general results. The map (12) can be written as

A- (Bl)

Thus

\Yn+l-A\*\B\\Yll-A\+\BA\. (B2)

This means that

I Z , + I - 4 | < I Z , - 4 | (B3)
whenever

\B\-\Z,-A\+\BA\*\Yn-A\, (B4)

i.e., when

\Yn-A\>\BA\/{\-\B\) = p. (B5)

Therefore, whenever []£, — A\ obeys (B5), we know from (B3) that Yn+1 is not
further from A than is X,. Then, when

\L-d\^p, (B6)

(B2) implies that also

IZ.+1-4I < P- (B7)
These results prove the invariant disc result stated in Section 3.3.

The basic map (12) can also be written as

Yn = B-1g(-8n)(Yn+l-A) (B8)

and since

ix,+ i-4i2=52ix,r, (B9)
we may write

<t>n+i^-On = -U-qB-2\Yn+l-A\2. (BIO)

Thus we obtain the inverted map

(Bll)
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