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Abstract

Let G be a reductive group over an algebraically closed field k of separably good char-
acteristic p > 0 for G. Under these assumptions, a Springer isomorphism φ : Nred(g) →
Vred(G) from the nilpotent scheme of g to the unipotent scheme of G always exists
and allows one to integrate any p-nilpotent element of g into a unipotent element of
G. One should wonder whether such a punctual integration can lead to an integra-
tion of restricted p-nil p-subalgebras of g = Lie(G). We provide a counter-example of
the existence of such an integration in general, as well as criteria to integrate some
restricted p-nil p-subalgebras of g (that are maximal in a certain sense). This requires
the generalisation of the notion of infinitesimal saturation first introduced by Deligne
and the extension of one of his theorems on infinitesimally saturated subgroups of G to
the previously mentioned framework.

1. Introduction

Let k be an algebraically closed field and let G be a k-group. We use the notation:

− g for its Lie algebra;
− G0 for the connected component of identity;
− Gred for the reduced part of G.

Assume that G is a reductive group. When k is of characteristic zero, the classical
theory comes with the well-defined exponential map which allows one to integrate any nilpo-
tent element x ∈ g into a unipotent element exp(x) ∈ G. This enables one to define the
Baker–Campbell–Hausdorff law which is useful to endow any nilpotent Lie subalgebra of g with
a group law. By this process, the aforementioned Lie subalgebra becomes a unipotent group
isomorphic to a unipotent subgroup of G. To summarise, when k is of characteristic zero:

(i) any nilpotent subalgebra of g can be integrated into a unipotent smooth connected subgroup
U ⊆ G (meaning that Lie(U) ∼= u as Lie algebras);

(ii) the exponential map induces an equivalence of categories between the category of finite-
dimensional nilpotent k-Lie algebras and the category of unipotent algebraic k-groups (see,
for example, [DG70, IV, § 2, n◦4, Corollaire 4.5]).
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Integration questions in separably good characteristics

If now the field k is of characteristic p > 0, one should try to determine whether it is possible
to define analogues of the previously mentioned tools in order to integrate p-nil subalgebras of g.
As we explain in § 2.2, these p-nil subalgebras are the adequate objects to consider in characteris-
tic p > 0 for integration questions. The first step would be to get a punctual integration, that is,
to find a way to integrate p-nilpotent elements of g into unipotent elements of G. This is ensured
as soon as there exists a G-equivariant isomorphism of reduced schemes between the reduced
nilpotent scheme of g (denoted by Nred(g)) and the reduced unipotent scheme of G (denoted by
Vred(G)). Such a map φ : Nred(g) → Vred(G) is called a Springer isomorphism. There is a tech-
nical subtlety here, which is detailed in § 3.1.1. For the purpose of this introduction, it is only
required to have in mind that in separably good characteristics (which is the framework of this
article), the nilpotent scheme is reduced, whereas in non-separably good characteristics neither
the nilpotent nor the unipotent schemes are reduced. Moreover, a definition of separably good
integers is provided in § 2.1.

Using [McN05, MT09], one can show that such an isomorphism always exists in separably
good characteristics for G. This has been observed by Sobaje in [Sob15]. Furthermore, the non-
separably good characteristics case is addressed in [Sob18, § 7]. The author explains there why
Springer isomorphisms fail to exist without this assumption. Moreover, and even if this is actually
not a requirement here, one might wonder whether Springer isomorphisms are compatible with
the p-power of the restricted Lie subalgebra one considers. We come back to this point later
in the article (see the preamble of § 3.1.2 and Remark 3.10(ii)) but let us briefly explain the
situation: such a compatibility is not always satisfied by Springer isomorphisms. Nevertheless,
under mild conditions on p and G, there is always a Springer isomorphism compatible with the
p-structure (see [McN03, Appendix 7]).

Unfortunately, the existence of a punctual integration is not sufficient to ensure a priori that
any restricted p-nil p-subalgebra can be integrated into a unipotent smooth connected subgroup
of G. If one tries to mimic the characteristic-zero framework, this would actually require the
Springer isomorphism φ to come with a well-defined analogue of the Baker–Campbell–Hausdorff
law. This analogue would allow one to make any p-nil subalgebra into a unipotent algebraic group.
In order to exist, such a law requires even stronger conditions on p: let us denote by h(G) the Cox-
eter number of G. In [Ser96], Serre showed that when p � h(G), the Baker–Campbell–Hausdorff
law is well-defined. Note that under this assumption on p, the series that defines the classi-
cal exponential map stops at the p-power for any nilpotent element. This is a consequence of
McNinch’s article [McN02] in which the author shows that when p > h(G), any p-nilpotent ele-
ment has p-nilpotency order 1. Let us briefly remind the reader of the proof: one actually shows
that any nilpotent element satisfies adh(G)(x) = 0. As the regular nilpotent elements (those with
centraliser of minimal dimension) are dense in Nred(g), it is enough to show this equality when
the nilpotent element x is regular. In this case the result can be obtained by looking at the
weights of an associated cocharacter for which the corresponding weight spaces gm are non-
trivial. There are at most h(G) such weights m and ad(x)(gm) ⊆ gm+2, hence the result. This
implies, in particular, that when p > h(G), the p-power (thus, the restricted p-algebra structure)
is compatible with the exponential map. Otherwise stated, if x ∈ g is a p-nilpotent element, one
indeed has exp(x[p]) = (exp(x))[p] (as x[p] = 0).

Making use of this, Balaji et al. detail in [BDP17, § 6] the proof of the existence of an
isomorphism of algebraic groups induced by the exponential map between the Lie algebra of
the unipotent radical of a Borel subgroup and this unipotent radical (there, the Lie algebra is
endowed with an algebraic group structure induced by the Baker–Campbell–Hausdorff law). The
existence of this isomorphism implies the existence of the desired integration when p > h(G).
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The authors attribute this result to Serre (see [Ser96]). Note that Serre’s result has been refined
by Seitz in [Sei00, Proposition 5.3], when G is semisimple. There, the author establishes the
existence of an isomorphism of algebraic groups induced by the exponential map between the
Lie algebra of the unipotent radical of a parabolic subgroup and the corresponding unipotent
radical U when p is greater than the nilpotent class of U (which is smaller than h(G)).

Once the result of Balaji et al. has been established, one could have expected that the
existence of this integration would induce, as in the characteristic-zero framework, an equivalence
of categories (this time between the category of p-nil Lie algebras and the category of unipotent
algebraic groups). This unfortunately breaks down and justifies the introduction of the notion
of infinitesimal saturation as defined by Deligne in [Del14] and attributed to Serre. Actually, if
p > h(G) the exponential map induces a bijective correspondence between the restricted p-nil
p-Lie subalgebras of g and the infinitesimally saturated unipotent algebraic subgroups of G. All
this content is explained in more detail in § 3.1.2.

In this article, we focus on integration of p-nil subalgebras of g when the characteristic
p is separably good for G, which is a weaker assumption than the characteristic p > h(G)
condition. As we show in §§ 3 and 4, the fppf-formalism introduced by Deligne in [SGA3I, VIB,
Proposition 7.1 and Remark 7.6.1] provides a way of associating a smooth connected unipotent
subgroup Ju ⊂ G to any restricted p-nil p-subalgebra u ⊆ g. Unfortunately, even if this subgroup
is a natural candidate to integrate u, it is, in general, too big. One can indeed only expect
the inclusion u ⊆ ju := Lie(Ju) to hold true. We provide in § 3.3 a counter-example to the exis-
tence of a general integration of restricted p-Lie algebras under the separably good characteristic
assumption.

Notwithstanding this observation, and as we show in § 5, this technique still allows one to
integrate some restricted p-nil p-Lie algebras, for example the p-radicals of Lie algebras whose
normalisers are φ-infinitesimally saturated (for φ a Springer isomorphism for G). The notion of
φ-infinitesimal saturation here extends the notion of infinitesimal saturation when the punctual
integration comes from a Springer isomorphism that is not necessarily the truncated exponential
map (as it happens, for instance, for small separably good characteristics for G).

In § 4 we introduce this extended notion and show how, together with the aforementioned
fppf-formalism, this allows us to obtain a variation, in separably good characteristics, of a
theorem of Deligne on the reduced part of infinitesimally saturated subgroups. More precisely,
we show the following statement.

Theorem 1.1. Let G be a reductive group over an algebraically closed field k of characteristic
p > 0 which is assumed to be separably good for G. Let φ : Nred(g) → Vred(G) be a Springer
isomorphism for G and let N ⊆ G be a φ-infinitesimally saturated subgroup. Then:

(i) the subgroups N0
red and RadU (N0

red) are normal in N ; moreover, the quotient N/N0
red is a

k-group of multiplicative type;
(ii) in addition, suppose that the connected reduced subgroup N0

red is reductive, then there
exists in N0 a central subscheme M of multiplicative type such that (M0 ×N0

red)/μ ∼= N0,
where μ is the kernel of M0 ×N0

red → N0.

Section 6, finally, is a miscellany of technical results used in the proofs of several statements
of this paper.

Let us, moreover, stress that even if after reading this introduction an integration seems to be
possible only under very specific and restrictive conditions on the restricted p-nil p-subalgebras,
the results presented in this article still allow one to extend theorems classically known in char-
acteristic zero to the characteristic-p framework. For instance, analogues of the Morozov theorem

892

https://doi.org/10.1112/S0010437X23007108 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007108


Integration questions in separably good characteristics

can be obtained with these techniques (see [Jea20]; this will also be developed in more detail
in a future article). The latter states the following: let G be a reductive group over a field k of
characteristic zero, if u ⊂ g is a nilpotent algebra which is the nilradical of its normaliser Ng(u),
this normaliser is the Lie algebra of a parabolic subgroup of G. Obtaining analogues of this
statement was the first motivation to study the questions raised in this paper. A subsidiary part
of the content of this article comes from the author’s PhD thesis [Jea20].

2. Context

2.1 Hypotheses on the characteristic
Let k be a field of characteristic p > 0 and G be a reductive k-group. This section is dedicated
to discuss usual assumptions made on the characteristic of k. We refer the reader to [Ste75] and
[Spr69, § 0.3] for a definition and an exhaustive list of torsion characteristics for G. Good and
very good characteristics are discussed, for instance, in the preamble of [LMT09] or in [Her13,
§ 2]. We only recall here some useful facts.

In what follows, k is assumed to be algebraically closed. When G is a semisimple k-group
the following statement is a consequence of [LMT09, Theorem 2.2 and Remark (a)].

Corollary 2.1 (Corollary of [LMT09, Theorem 2.2]). Let G be a semisimple group over an
algebraically closed field k of characteristic p > 0 which is not of torsion for G. Let u ⊆ g be a
restricted p-nil p-subalgebra (see § 2.2). Then there exists a Borel subgroup B ⊂ G such that u

is a subalgebra of b := Lie(B).

Remarks 2.2. The following remarks are of main importance in the integration process described
in this article.

(i) The subalgebra u is actually contained in the Lie algebra of the unipotent radical of a Borel
subgroup B ⊆ G. Indeed b is nothing but the semidirect sum of the Lie algebra of the unipotent
radical of B, denoted by radu(B), and the Lie algebra of a maximal torus of G, denoted by t.
This last factor contains no p-nilpotent element (see the preamble of § 2.2), whence the inclusion
u ⊂ radu(B).

(ii) The first point of this remark actually allows one to generalise the corollary to any reductive
k-group G, when k is an algebraically closed field of characteristic p > 0 that is not a torsion
integer for G. Let Z(G) be the centre of G. Also let also π : G→ G′ := G/Z0

red(G) be the quotient
map and set u′ := Lie(π)(u). As Lie(Z0

red(G)) is the Lie algebra of a torus it has no p-nilpotent
element (this is detailed at the end of the proof of Lemma 2.6; note that the assumption made
in the statement of this lemma is not necessary to prove this specific fact). Therefore, one has
u ∼= u′. By what precedes, there exists a Borel subgroup B′ ⊂ G′ such that u′ ⊆ radu(B′) ⊂ b′.
Let B = π−1(B′) be the preimage of B′. As radu(B′) ∼= radu(B) one can always assume that u

is the subalgebra of the Lie algebra of the unipotent radical of a Borel subgroup of b ⊆ g.

Separably good characteristics are defined by Pevtsova and Stark in [PS18, Definition 2.2].

(i) When G is semisimple, let Gsc be the simply connected cover of G. The characteristic p is
separably good for G if p is good for G and if the isogeny Gsc → G is separable.

(ii) When G is reductive, the characteristic p is separably good for G if it is separably good for
its derived group [G,G].

As underlined by Pevtsova and Stark, if p is very good for G, it is also separably good.
Nevertheless, this last condition is only restrictive for type A, which is the only type for which
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very good and separably good characteristics do not coincide. As an example, p is separably
good but not very good for SLp or GLp. However, it is not separably good nor very good for
PGLp.

Moreover, let G be a reductive algebraic group over an algebraically closed field k = k̄ and
consider a maximal torus T � G. The tuple R(G) = (X(T ),Φ, Y (T ),Φ∨) whose components are
respectively the associated group of characters, the root system, the group of cocharacters and
the coroot system, is a root datum for G. This root datum is unique up to isomorphism (see
[SGA3III, XXII, 2.6]). A prime number is pretty good for G if, given any subset Φ′ ⊆ Φ both
the groups X(T )/ZΦ′ and Y (T )/ZΦ′∨ have no p-torsion. Note that these definitions still make
sense when k is no longer algebraically closed but this goes beyond the framework of this article.
Once again, this condition answers type A-phenomenon. It is studied by Herpel in [Her13]. In
particular, pretty good and very good primes are the same when G is semisimple (see [Her13,
Lemma 2.12]). For instance, p is not pretty good for SLp. However, if G is an arbitrary group,
being a very good prime is a more restrictive condition, indeed p is pretty good but not very
good for GLp (see [Her13, Example 2.13]). Finally, as explained in [Ste75, 2.4], if p does not
divide the order of X(T )/ZΦ, then p is separably good for G. Hence, any pretty good prime is
separably good for G. In particular, as p is not separably good for PGLp it is not pretty good
either. To summarise, one has the following chain of implications:

Very good =⇒ pretty good =⇒ separably good =⇒ good =⇒ non-torsion.

2.2 From characteristic zero to positive characteristics, defining the good analogues:
sorites on restricted p-Lie algebras
Before going any further, one needs to introduce the good analogues in characteristic p > 0 for
the objects involved in the characteristic-zero setting. This is done in this section. The results
presented in the following are stated in the most general way. In particular, we do not assume
a priori (and unless explicitly stated) in this subsection that the field k is algebraically closed.

Let g be a finite-dimensional restricted p-nil p-Lie algebra over k. In what follows, we denote
by [p] the p-structure for g. Let us stress that, in particular, the Lie algebra of any k-group scheme
G is endowed with such a p-structure (see [DG70, II, § 7, n◦3.4]). Moreover, for any algebraic
subgroup H ⊂ G, the p-structure on Lie(H) := h inherited from the group is compatible with
that on g. In other words, h is a restricted p-subalgebra of g. We refer the reader to [SF88,
§ 2, Définition] for general theory of restricted p-Lie algebras.

Let k be a field and let g be a k-Lie algebra. As a reminder:

(i) the solvable radical (or radical) of g, denoted by rad(g), is the largest solvable ideal of g

(see [SF88, § 1.7, Definition]);
(ii) the nilradical of g, denoted by Nil(g), is the largest nilpotent ideal of g; in particular, all

its elements are ad-nilpotent, by a corollary of Engel Theorem (see, for example, [Bou71,
§ 4, n◦2 Corollaire 1]); when k is of characteristic zero, the nilradical is nothing but the
set of ad-nilpotent elements of the radical of g (see [SF88, § 1, Corollary 3.10] and [Bou71,
§ 5, Corollaire 7]); let us stress that the equality Nil(g/Nil(g)) = 0 is not always satisfied
when k is of characteristic p > 0 (see [SF88, p. 20] for a counter-example);

(iii) a subalgebra h ⊆ g is nil if any element of h is ad-nilpotent for the bracket on g; any nil and
finite-dimensional k-Lie algebra is nilpotent.

One may wonder whether these classical objects inherit a p-structure compatible with that
of g.
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Lemma 2.3. Let h be a restricted p-Lie algebra over k. Then rad(h) is a restricted p-subalgebra
of h.

Proof. Let us consider the morphism of Lie algebras h � h/ rad(h). According to [SF88,
1, § 7, Theorem 7.2] one has rad(h/ rad(h)) = 0, thus the centre zrad(h/ rad(h)) is trivial (because
zg ⊆ rad(g), see, for instance, the first lines of the proof of Lemma 2.6). By [SF88, 2.3, Exercise 7],
the radical of h is a p-Lie subalgebra. �

Assume the Lie algebra g derives from an affine algebraic k-group. Let ρ : G→ GL(V ) be
a faithful representation of finite dimension. An element x ∈ g is nilpotent, or g-nilpotent, if
Lie(ρ)(x) is a nilpotent element of gl(V ) (let us stress that Lie(ρ) is still injective because the Lie
functor is left exact (see [DG70, II, § 4, 1.5])). In the same way, an element x ∈ g is semisimple if
Lie(ρ)(x) is a semisimple element of gl(V ). These notions are independent from the choice of the
faithful representation ρ (see [Bor91, I.4.4, Theorem]). Let us emphasise that when k is perfect
any x ∈ g has a Jordan decomposition in g (see, for example, [Bor91, I.4.4, Theorem]).

More generally, if one does no longer consider that g is the Lie algebra of an algebraic group,
then:

− if g is a semisimple Lie algebra over a field of characteristic zero (whatever the characteristic,
semisimple Lie algebras are those with trivial solvable radical), any element x ∈ g has a unique
Jordan decomposition (see, for example, [Bou71, § 6, n◦3, Théorème 3]);

− similarly, if k is a perfect field of characteristic p > 0 and g is finitely generated restricted
p-Lie algebra, a decomposition x = xs + xn (with xs semisimple and xn nilpotent) always
exists, with the additional condition for the nilpotent part to be p-nilpotent (see [SF88, 2.3,
Theorem 3.5]).

An element x ∈ g is p-nilpotent if there exists an integer m ∈ N such that x[pm] = 0. When it
exists, the smallest m ∈ N such that x[pm] = 0 is called the order of p-nilpotency of x. In this
framework, an element x ∈ g is p-semisimple if x belongs to the restricted p-Lie algebra generated
by x[p]. Finally, an element x ∈ g is toral if x[p] = x. According to [SF88, § 2, Proposition 3.3]
and the remark that follows this proposition, both definitions of semisimplicity are equivalent.
In what follows, an element is thus said to be p-semisimple (respectively, p-nilpotent) if it is
semisimple (respectively, g-nilpotent). This equivalence of definitions is a consequence of the
Iwasawa theorem (see [Iwa48]) which ensures that any Lie subalgebra of finite dimension over a
field of characteristic p > 0 has a faithful representation. This result has afterwards been extended
by Jacobson to the framework of finite-dimensional restricted p-Lie algebras with the additional
constraint that the involved representation is compatible with the p-structure (see [Jac52] and
[Sel67, I, § 4, Theorem I.4.2]).

Let k be a field of characteristic p > 0. Let h be a restricted p-algebra (as mentioned previously
this is the case, in particular, if h derives from a subgroup H ⊂ G). The restricted p-subalgebra
h is p-nilpotent if there exists an integer n ∈ N such that h[pn] = 0. When g is of finite dimension
any restricted p-subalgebra which is p-nilpotent is also p-nil (that is, any of its elements are
p-nilpotent).

It is worth noting that the study of ideals of g that consist only of semisimple elements
can also be very instructive. Let us recall the following result as an illustration (see [BT72,
Proposition 2.13]): let g be the Lie algebra of a reductive k-group G. We consider the action of G
on g by conjugation. Let j ⊆ g be an ideal which in G-stable. Then j consists only of semisimple
elements if and only if j ⊆ zg.

Let us finally underline that, although in positive characteristic the nilradical of a restricted
p-algebra is well-defined, it no longer satisfies the properties it had in characteristic zero.
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Hence, we need to introduce the following object which appears to be, under some additional
hypotheses, the good analogue to consider in characteristic p > 0.

Definition 2.4. Let h be a restricted p-algebra. The p-radical of h, denoted by radp(h), is
the maximal p-nilpotent p-ideal of h (such an object exists; see, for instance, [SF88, 2.1,
Corollary 1.6]).

Let us also stress that the Lie algebra of the unipotent radical of a connected algebraic group
H, denoted by radu(H), is an ideal of Nil(h) (as U is a unipotent normal subgroup of Rad(H)).
We aim to compare these different objects.

Lemma 2.5. Let h be a restricted p-algebra. Then:

(i) the inclusions radp(h) ⊆ Nil(h) ⊆ rad(h) are satisfied;
(ii) the p-radical of h is a subset of the set of all p-nilpotent elements of rad(h);
(iii) let us denote by zh the centre of h; the equality radp(h) = Nil(h) holds true if and only if

the inclusion zh ⊆ radp(h) is satisfied.

Proof. We show each point of the lemma separately.

(i) The inclusion radp(h) ⊆ Nil(h) is clear as radp(h) is a nil ideal of h (because it is p-nil). Hence,
it is a nilpotent ideal of h because the Lie algebras involved here are of finite dimension.

The second inclusion is also direct as any nilpotent ideal is in particular solvable (see, for
example, [SF88, §1.5 Remark]). Hence, the first point of the lemma is shown.

(ii) This last inclusion being satisfied and radp(h) being p-nil, the restricted p-ideal is necessarily
contained in the set of all p-nilpotent elements of rad(h). This ends the proof of part (ii).

(iii) The centre of h is an abelian ideal of h. It is, therefore, contained in the nilradical of h. Thus,
if one has the equality Nil(h) = radp(h), one also has the inclusion zh ⊆ radp(h).

Reciprocally, assume the inclusion zh ⊆ radp(h) to be satisfied and let us show that any x ∈
Nil(h) is p-nilpotent. First, it is ad-nilpotent according to Corollary [Bou71, § 4, n◦2, Corollaire 1]
because the ideal Nil(h) is nilpotent. Moreover, as the Lie algebra h is endowed with a p-structure,
there exists an integer n such that ad(x)pn

= 0 = ad(x[pn]). In other words x[pn] belongs to the
centre of h. As we assumed the inclusion zh ⊆ radp(h) to hold true, the element x[pn] is actually
p-nilpotent (the p-radical being p-nil). Hence, there exists an integer m such that (x[pn])[p

m] =
(x[pn+m]) = 0, whence the p-nilpotency of any element of Nil(h). This implies that Nil(h) is a
restricted p-ideal p-nil of h, because the nilradical of h is a restricted p-ideal according to Lemma
[SF88, 2.3, Exercise 5d]. This leads to the desired equality. Thus, we have shown part (iii). �

When g derives from a smooth connected algebraic k-group G, these objects should be
compared with the Lie algebra of the radical (respectively of the unipotent radical) of G.

Lemma 2.6. Let k be a field of characteristic p � 3 and G be a reductive k-group. Then the
equalities zg = rad(g) = Nil(g) hold true.

Remark 2.7. The assumption on the characteristic allows a uniform proof of the above lemma.
Notwithstanding this point, it is worth noting that the characteristic-two case can be handled by
a case-by-case analysis (by making use of [Hog82, Table 1]). Moreover, Lemma 2.10 provides the
equality zg = Nil(g) (which is a weaker result) in any characteristic p > 0. This last statement
appears as a Corollary of [Vas05, Lemma 2.1].

The following lemma is useful in the proof of Lemma 2.6.
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Lemma 2.8. Let G̃ and G be two reductive k-groups and let us consider the following central
exact sequence of algebraic groups:

.

Also let T̃ ⊆ G̃ be a maximal k-torus and set T := T̃ /S. Then Lie(π)(g̃) is an ideal of g and
the quotient g/Lie(π)(g̃) is isomorphic to t/Lie(π)(̃t) as a k-Lie algebra. In particular, if k is of
characteristic p > 0, the restricted p-Lie algebra g/Lie(π)(g̃) is toral.

Proof. The centre of a reductive group is a diagonalisable subgroup (see, for instance, [SGA3III,
XXII, Corollaire 4.1.6]). The exact sequence of the lemma being central, the k-group S is
diagonalisable. Indeed any subgroup of a diagonalisable group defined over a field is diago-
nalisable (see [SGA3II, IX, Proposition 8.1]). Let E be a k-torus such that S0 ⊆ E. Let us stress
that such an object always exists because the maximal connected subgroups of multiplicative
type of a reductive group over a field are the maximal tori (see Corollary 4.10). Consider the
following commutative diagram of algebraic k-groups:

where G′ is defined for the lower left square to be commutative. It induces by derivation the
following commutative diagram of Lie algebras.

Note that the right-exactness of the second line comes from the smoothness of Ker(π′) (see
[DG70, II, §5, n◦5, Proposition 5.3]).

We show that Lie(π)(g̃) is an ideal of g: let y ∈ Lie(π)(g̃) ⊆ g and pick g ∈ g. Also let x ∈ g̃

be such that Lie(π)(x) = y. As Lie(π′) is surjective there exists g′ ∈ g′ such that Lie(π)(g′) = g.
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This provides the equality:

[y, g] = [Lie(π)(x),Lie(π′)(g′)] = [Lie(π′) ◦ Lie(i)(x),Lie(π′)(g′)] = Lie(π′)([Lie(i)(x), g′]),

The Lie algebra g̃ is isomorphic to the kernel of Lie(q) : g′ → kr which is an ideal of g′. The com-
mutativity of the diagram thus allows us to conclude that [y, g] ∈ Lie(π)(g̃). Therefore, Lie(π)(g̃)
is an ideal of g.

It remains to prove that the inclusion Lie(π)(̃t) ⊆ Lie(π)(g̃) ∩ t is actually an equality. This
being established, one will only need to apply [BT72, Corollaire 2.17] to end the proof (as this
corollary states that t � g/Lie(π)(g̃) is surjective). Let us thus show the equality Lie(π)(̃t) =
Lie(π)(g̃) ∩ t. It comes from the study of the right lower square of the above commutative diagram
of groups: the morphism π′ being surjective with toric kernel E, the group T is the image of a
torus T ′ ⊆ G′ (by [SGA3II, IX, Proposition 8.2(ii)]). Hence, the equalities T = T ′/E = T̃ /S hold
true. The following square is commutative.

The image i(T̃ ) is thus contained in T ′. Hence, the exact sequence

induces an exact sequence of tori:

.

Note that the subgroup T ′′ is indeed a torus as it is:

− diagonalisable according to [SGA3II, IX, Proposition 8.1];
− smooth by [BDP17, II, § 5, n◦5, Proposition 5.3(ii)]).

The exactness is here preserved by derivation as T̃ is smooth.
Let us now consider the right lower square of the above commutative diagram of Lie algebras:

The kernel E being smooth, the derived morphism Lie(π′) is still surjective. Hence, one still has
t = t′/kr. According to what precedes any y ∈ Lie(π)(g̃) ∩ t is the image of a certain x ∈ g̃ such
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that Lie(i)(x) ∈ t′. This, combined with the exactness of the following derived exact sequence,

,

allows us to conclude. The exactness indeed ensures that x ∈ t̃. Moreover, because one has
that y = Lie(π)(x) = Lie(π′)(i(x)) ∈ Lie(π)(̃t), the expected inclusion, thus the equality, are
obtained. �

Proof of Lemma 2.6. The centre zg is a nilpotent ideal of g, it is therefore solvable. The inclu-
sions zg ⊆ Nil(g) ⊆ rad(g) follow. One thus only needs to show that rad(g) ⊆ zg. The involved
objects being all compatible with base change we can without loss of generality assume k to be
algebraically closed.

A dévissage argument allows us to reduce ourselves to prove the statement for G connected
and semisimple: the reductive case can be deduced from the semisimple case, whereas the latter
is ruled by the semisimple and simply connected case.

(i) Assume the k-group G to be semisimple and simply connected. It thus decomposes into a
product of almost simple groups (see [Tit66, 3.1.1, p. 55]) and one can assume without loss of
generality that G is almost simple. There are two options:

(a) either G is not of type G2 when p = 3, then according to [His84, Haupsatz], the quotient
g/zg is a simple G-module; hence, the radical rad(g/zg) is trivial;

(b) or G is a k-group of type G2 and k is of characteristic three; according to [Hog82, Table 1]
there are then only two possibilities for rad(g), it is either trivial or the Lie algebra of a
PGL3 factor; this last option cannot occur because the Lie algebra pgl3 is not solvable, so
one can conclude that rad(g) = 0.

(ii) Assume now that G is semisimple. It then admits a universal covering, denoted by Gsc (see,
for example, [Tit66, 1.1.2, Theorem 1, p. 43]), and one can consider the following associated
central extension.

Let T sc be a maximal k-torus of Gsc and set T = T sc/μ (the corresponding Lie algebras will be
denoted by tsc, respectively t). The above lemma ensures that Lie(π)(Lie(Gsc)) is an ideal of g

and one has the following exact sequence of restricted p-Lie algebras.

The extension being central, the preimage of rad(g) is a solvable ideal of Lie(Gsc) (this is a
consequence of [SF88, 1.5, Theorem 5.1(2)]). Hence, it is contained in rad(Lie(Gsc)) = zLie(Gsc).
Composing with Lie(π), one can then deduce that the inclusion

rad(g) ∩ Lie(π)(Lie(Gsc)) ⊆ zg

is satisfied, whence the desired equality

rad(g) ∩ Lie(π)(Lie(Gsc)) = zg ∩ Lie(π)(Lie(Gsc)).
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The above exact sequence thus induces the following one:

where h is a restricted p-subalgebra of t/Lie(π)(tsc), which is toral so has no p-nilpotent
elements. In other words, the p-nilpotent elements of rad(g) are trivial. Hence, rad(g) only
has semisimple elements. According to [BT72, Proposition 2.13], it only remains to show the
equality NG(rad(g)) = G to get the desired inclusion rad(g) ⊆ zg. Note also that all the other
assumptions of the proposition are trivially satisfied as rad(g) is a proper ideal of g (because G
is a reductive k-group).

Let us thus show the equality NG(rad(g)) = G. According to [DG70, II, § 5, n◦3.2,
Proposition] this can be shown on k̄-points (as the group G is smooth and of finite presen-
tation and the Lie algebra rad(g) is reduced and closed in g). This is clear as rad(g)(k̄) is stable
under conjugation: the image of rad(g)(k̄) by G(k̄)-conjugation is a solvable ideal of g(k̄), its
maximality can be deduced by applying the inverse morphism.

(iii) If G is any reductive k-group, the following exact sequence allows to reduce ourselves to the
preceding cases (see for example [SGA3III, XXII Définition 4.3.6]):

Indeed, as the subgroup Rad(G) is smooth, this exact sequence induces after derivation an exact
sequence of Lie algebras (see [DG70, § 5, n◦5, Proposition 5.3])

The morphism Lie(π) is surjective, its image Lie(π)(rad(g)) is therefore a solvable ideal of
Lie(Gss). By what precedes it is then contained in the centre of Lie(Gss). Let x ∈ rad(g). As
k may be assumed to be algebraically closed, the element x admits a Jordan decomposition, say
x = xs + xn, with xs semisimple and xn a p-nilpotent element of rad(g) (for the existence of such
see for example [SF88, 2.3, Theorem 3.5]). As π(x) ∈ zg one necessarily has π(xn) = 0, meaning
that xn ∈ Lie((Z0

G)red) which is toral. Hence xn = 0. So rad(g) only has semisimple elements.
According to [BT72, Proposition 2.13] we just have shown that rad(g) ⊆ zg because rad(g) is a
proper G-sub-module of g. �
Remarks 2.9. It is worth mentioning the following points.

(i) Lemma 2.6 in particular allows one to measure the potential lack of smoothness of the centre
of G. More precisely, one has:

Lie(ZG)/Lie((ZG)red) ∼= zg/Lie (ZG)red ∼= rad(g)/Lie(Rad(G)),

where the first isomorphism comes from Remark 6.2(ii). According to the proof of Lemma 2.6
this quotient is a restricted toral p-algebra.

(ii) A careful study of the proof shows that the only difficulty one would have when trying to
extend the above result to the characteristic-two framework relies on the fact that the G-module
g/zg might not be simple. According to [His84, Haupsatz] for an algebraically closed field k of
characteristic two this is not an issue if the root system of G only has irreducible components of
An-type. This is always satisfied in this article.

As mentioned in Remark 2.7 the following result allows one to slightly refine the hypotheses
on p in the study of the nilradical of the Lie algebra of a reductive group.
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Lemma 2.10 (Corollary of [Vas05, Lemma 2.1]). Let G be a reductive k-group. If k is of char-
acteristic two, assume that GAd

ks has no direct factor G1 isomorphic to SO2n+1 for an integer
n > 0. Under these assumptions, Nil(g) is the centre of g.

Proof. One inclusion is clear and does not require any additional assumption on the characteristic
of k: the centre of g is a nilpotent ideal of g so it is contained in the nilradical of g.

To show the reverse inclusion, one only needs to prove that Nil(g)/zg = 0. The inclusion
g/zg ⊆ Lie(GAd) is provided by the exact sequence of Lie algebras of Remark 6.2(ii):

Assume that Nil(g)/zg 
= 0. We show that this implies [Vas05, Lemma 2.1] to hold true, leading
to a contradiction (as it would imply p = 2 and G to be such as excluded in the assumptions).

We therefore have to check that:

(i) the quotient Nil(g)/zg is a GAd-sub-module of Lie(GAd);
(ii) for any maximal torus TAd ⊆ GAd the intersection Nil(g)/zg ∩ Lie(TAd) is trivial.

To check that condition (i) is satisfied, we first show that Nil(g/zg) = Nil(g)/zg. The preimage
of Nil(g/zg) is a nilpotent ideal of g, as the following considered extension of Lie algebras is
central.

It is thus contained in Nil(g/zg) because the quotient Nil(g)/zg is a nilpotent ideal of g/zg.
Hence, we have shown the desired equality. Thus, we are reduced to showing that Nil(g/zg) is a
GAd-sub-module of Lie(GAd), or in other words that NGAd(Nil(g/zg)) = GAd. Once again as:

− the group GAd is smooth of finite presentation; and
− g/zg is reduced and closed in Lie(GAd);

one only needs to check this equality on k̄-points (see [DG70, II, § 5, n◦3.2, Proposition]). Recall
that the quotient Nil(g/zg(k̄)) is stable for the adjoint action as the image of Nil(g/zg)(k̄) under
the GAd(k̄)-conjugation is a nilpotent ideal of g/zg(k̄). Its maximality follows by considering the
reverse morphism. Thus, we have shown the equality.

To check that condition (ii) is indeed satisfied, first note that any maximal torus TAd ⊂ GAd

comes from a maximal torus T ⊂ G. At the Lie algebras level one can summarise the situation
with the following commutative diagram.

Assume that the intersection Nil(g)/zg ∩ Lie(TAd) is not trivial. This implies, in particular, that
neither is the intersection Nil(g)/zg ∩ Lie(T )/zg as any element of the first intersection occurs as
an element of the image of g → g/zg. Remember that we have already shown that zg is contained
in Nil(g). According to Remark 6.2(ii), it is nothing but the Lie algebra of ZG, whence the
inclusion zg ⊆ Lie(T ).

The non-triviality of the intersection Nil(g)/zg ∩ Lie(T )/zg is therefore equivalent to suppose
that the inclusion zg � Lie(T ) ∩ Nil(g) is strict. This leads to a contradiction. Indeed, any element
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of the nilradical is ad-nilpotent (according to the second point of the preamble of this section)
and any ad-nilpotent element of the Lie algebra of a torus is central. This can be shown as
follows: let n be the order of ad-nilpotency of x ∈ Lie(T ) and y ∈ g. Passing to the algebraic
closure of k if necessary, the Lie algebra g has a weight space decomposition for the action of
the maximal torus T (which is locally splittable). Let R be an associated root system. One
has g = t ⊕⊕

α∈R gα. Thus, y can be written as y = y0 +
∑

α∈R y
α for y0 ∈ t and yα ∈ gα, with

α ∈ R. This leads to

0 = adn(x)(y) = adn(x)
(
y0 +

∑
α∈R

yα

)
=

∑
α∈R

αn(x)yα,

where we have made use of the vanishing condition ad(x)(y0) = 0 as x ∈ t. This equality being
satisfied if and only if ad(x)(yα) = 0 for any α ∈ R, this implies that x ∈ zg. �

Remark 2.11. In this article, we always require that p is not of torsion for G. This implies, in
particular, that p is strictly greater than two if G has any factor of Bn type. The above lemma
then tells us that the equality Nil(g) = zg is always satisfied here.

Lemma 2.12. Let U be a unipotent algebraic k-group, then its Lie algebra u is p-nil. In partic-
ular, the Lie algebra of the unipotent radical of a smooth connected k-group G is a restricted
p-nil p-ideal of g.

Proof. As k is a field, it follows from [DG70, IV, § 2, n◦2, Proposition 2.5(vi)] that the unipotent
k-group U is embeddable into the subgroup Un,k of upper triangular matrices of GLn for a certain
n ∈ N. This leads to the following inclusion of restricted p-Lie algebras (all of them coming from
algebraic k-groups) u ⊆ un,k. Note that the p-structure on un,k is given by taking the p-power of
matrices. This makes un,k into a restricted p-nil p-subalgebra, so is u.

If now U is the unipotent radical of a smooth connected k-group G, its Lie algebra is an
ideal of g because it is the Lie algebra of a normal subgroup of G. As it derives from an algebraic
k-subgroup of G, it is endowed with a p-structure compatible with the p-structure of G. Hence,
it is a restricted p-ideal of g. It is p-nil by what precedes. �

Lemma 2.13. Let k be a perfect field and let H be a smooth connected algebraic k-group.
Then:

(i) if the reductive k-group H := H/RadU (H) satisfies the conditions of Lemma 2.10, the Lie
algebra of the unipotent radical of H is the p-radical of h; in other words, the equality
radu(H) = radp(h) holds true;

(ii) if k is of characteristic p � 3, the p-radical of h is the set of p-nilpotent elements of rad(h).

Remark 2.14. In particular, let k be a perfect field. Consider a reductive k-group G and a
parabolic subgroup P ⊆ G. If P is such that the reductive quotient P/RadU (P ) it defines satisfies
the assumptions of Lemma 2.10, then:

− the Lie algebra of its unipotent radical is the p-radical of p := Lie(P );
− it is the set of all p-nilpotent elements of rad(p).

As a reminder (see [SGA3III, XXVI, Proposition 1.21(ii)]), if L ⊆ P is a Levi subgroup, the
solvable radical Rad(P ) is the semidirect product of the unipotent radical of P with the radical
of L. This implies, in particular, that Lie(Z0

L) ⊆ rad(p) for Z0
L being the centre of L.

902

https://doi.org/10.1112/S0010437X23007108 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007108


Integration questions in separably good characteristics

Proof. We show each point separately.

(i) We start by showing part (i). An implication is clear: according to Lemma 2.12, the Lie
algebra radu(H) is a restricted p-nil p-ideal. In particular, the inclusion radu(H) ⊆ radp(h) holds
true.

Let us show the reverse inclusion. The radical of H being a smooth subgroup, the following
exact sequence of algebraic k-groups,

induces an exact sequence of k-Lie algebras (see [DG70, II, § 5, n◦5, Proposition 5.3]):

This is an exact sequence of restricted p-Lie algebras (see [DG70, II, § 7, n◦2.1 and n◦3.4] for the
compatibility with the p-structure). The derived morphism Lie(π) being surjective, the image of
Nil(h) under Lie(π) is still an ideal. It is nilpotent as Lie(π) is a morphism of restricted p-Lie
algebras, whence the inclusion Lie(π)(Nil(h)) ⊆ Nil(h). As h derives from a reductive k-group
which does not fit into the pathological case raised by Vasiu in [Vas05, Lemma 2.1], Lemma 2.10
applies. This leads to the equality Nil(h) = zh, thus one has Lie(π)(Nil(h)) = zh.

According to Lemma 2.5(i) one has radp(h) ⊆ Nil(h), hence any x ∈ radp(h) is mapped to
the centre of zh. The restricted p-ideal radp(h) being p-nil, the element x is p-nilpotent, so is
Lie(π)(x) (as Lie(π) is compatible with the p-structures on h and h). In other words, Lie(π)(x)
is a p-nilpotent element of zh, which is, according to Remark 6.2(ii), the Lie algebra of the centre
of the reductive k-group H. This centre is thus a toral restricted p-subalgebra (see, for example,
[SGA3III, XXII, Corollaire 4.1.7]), hence the equality Lie(π)(x) = 0. In other words, we just
have shown that x ∈ radu(H), whence the equality radp(h) = radu(H). This concludes the proof
of part (i).

(ii) Let us then prove the second point of the statement. Once again an inclusion is clear: the
p-radical radp(h) is a restricted p-nil p-ideal of h and is therefore contained in the set of all
p-nilpotent elements of h. Let us show the converse inclusion: let x ∈ rad(h). The morphism
Lie(π) being surjective, the image Lie(π(x)) belongs to rad(h), which is the centre of h according
to Lemma 2.6 (which holds true as p � 3). It necessarily vanishes because the centre of h is toral
and Lie(π)(x) is also a p-nilpotent element. In other words, we have shown that x ∈ radu(h)
which is the p-radical of h according to the first point of the lemma. Hence, any p-nilpotent of
rad(h) belongs to radp(h), whence the desired equality. �

3. Springer isomorphisms and fppf-formalism

3.1 Integrating p-nilpotent elements: a starting point
In what follows, the field k is algebraically closed of characteristic p > 0 and G is a reductive
k-group. The notation used here is that same as used in [SGA3I, II, Définition 4.6.1]: let S be an
affine scheme with ring of coordinates OS . For any OS-module F , denote by W (F ) the following
contravariant functor over the category of S-schemes:

W (F )(S′) := Γ(S′, F ⊗OS
OS′),

where Γ identifies with the set of F ⊗OS
OS′-sections over S′. Moreover, let H be a k-algebraic

group, and denote by h its Lie algebra. By [SGA3I, II, Lemme 4.11.7] the equality h = W (h) is
satisfied. In particular, h is smooth and connected.
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3.1.1 Reduced part of the nilpotent and unipotent schemes. The reductive group G acts on g

via the adjoint action. Let us denote by Og the coordinate ring of g, and by OG
g the fixed points

under the induced action. When k is a field the affine quotient [g/G] := Spec(OG
g ) is universal and

the nilpotent scheme N (g) is the fibre π−1π(0), where π : g → [g/G] is the quotient morphism
and 0 ∈ g(k) is the zero section. This is explained in detail in a more general framework in
[Hes76, (2.4), (2.5) and (2.6)]. The reduced part of the nilpotent scheme, denoted by Nred(g),
coincides with the reduced subscheme of g whose k-points are the p-nilpotent elements of g (see,
for instance, [BR85, 9.2.1]).

Similarly, G acts on itself via the adjoint action. When k is a field the affine quotient
[G/Ad(G)] is universal and the unipotent scheme V(G) is the fibre π−1π(e), where π : G→
[G/Ad(G)] is the quotient morphism and e ∈ G(k) is the neutral element. The reduced part of
the unipotent scheme, denoted by Vred(G), coincides with the reduced subscheme of G whose
k-points are the unipotent elements of G (see, for instance, [BR85, 9.1]).

The literature on Springer isomorphisms mainly considers the so-called nilpotent and unipo-
tent varieties (under the convention that varieties are reduced). When the terminology of schemes
is adopted, as in the article of Balaji et al. [BDP17], the authors insist on the necessity of con-
sidering the reduced part of both nilpotent and unipotent schemes (as the proof of existence
of Springer isomorphisms is constructive and based on a reasoning on points). One might then
wonder whether under the framework of this article these schemes are reduced or not. For the
nilpotent scheme this is given by 3.1 which is a corollary of Riche’s work [Ric17, Lemma 3.3.3].
The following notions will be necessary in what follows.

− An element x ∈ g is regular if its centraliser CG(x) is of minimal dimension. This lower bound
exists, equals the rank of the reductive group G and is attained. This is detailed, for instance,
in § 2.3 of Riche’s paper. We denote by greg the subset of g consisting of all regular nilpotent
elements.

− The intersection N (g) ∩ greg ∈W (g) is denoted N (greg) and is the scheme whose points are
regular nilpotent elements of g.

Proposition 3.1 (Corollary of [Ric17, Lemma 3.3.3]). Let G be a connected reductive group
defined over a field k of characteristic p > 0 which is assumed to be pretty good for G. Then the
nilpotent scheme N (g) is reduced.

Remark 3.2. Pretty good characteristics are those that satisfy Riche’s (C3) condition in [Ric17,
2.2, p. 227]. Integration and related questions often come with the assumption that the reductive
group G is standard (see, for instance, [Jan04, 2.9]). Namely, this means that:

(i) the derived group G is simply connected;
(ii) the characteristic is good for G;
(iii) there exists a G-equivariant non-degenerate bilinear form on g.

As underlined in [Ric17, 2.2], this is a stronger condition than the pretty good characteristic
assumption. Thus, in particular, Proposition 3.1 ensures that the nilpotent scheme of a reductive
group that satisfies the standard hypotheses is reduced.

Proof. Let us first remind the reader that the nilpotent scheme is irreducible, as already shown,
for instance, in [Jan04, Lemma 6.2]. Note that in the article the proof is made for the reduced
part of the nilpotent scheme (by the definition of the nilpotent variety); this is not an issue here,
as being irreducible is a property of the underlying topological space.
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The subset of regular elements of g is open (this is shown, for instance, in [Hum95, 1.4
Corollary]) and non-empty [Ric17, Lemma 3.3.1], therefore N (greg) is also open (and non-empty)
in N (g). The situation is that of the following diagram:

which is cartesian and where the morphism χreg is smooth according to [Ric17, Lemma 3.3.3]
(as we have assumed the characteristic to be pretty good for G). Thus, the morphism N (greg) →
Spec(k) is smooth (see, for instance, [DG70, I, § 4, n◦4.1]). As any smooth scheme over a field
is geometrically reduced (see [Sta22, Tag 056T]), what precedes tells us that N (greg) is indeed
reduced. As this is an open subset of N (g) it is dense in N (g) (the latter being irreducible)
and its scheme theoretic closure is the nilpotent scheme itself. Hence, N (greg) is a reduced open
subset which is scheme theoretically dense in N (g) so the nilpotent scheme itself is reduced (see
[Sta22, Tag 056E]). �
Remark 3.3. To conclude that the nilpotent scheme is reduced in separably good characteristics,
it remains to investigate what happens for SLmp in characteristic p > 0, with m ∈ N∗. This case
is actually governed by the case of GLmp. Indeed, a matrix M ∈ glmp is nilpotent if and only if
its characteristic polynomial is of the form tmp, thus if and only if Tr(

∧iM) = 0 for 0 � i � mp
where

∧iM is the ith exterior power of M . In particular, they have trace zero, whence the
isomorphism of coordinate rings

ON (glmp) = Oglmp

/〈
Tr

( i∧
M

)〉
i=1,...,mp

∼= Oslmp

/〈
Tr

( i∧
M

)〉
i=1,...mp

= ON (slmp).

As N (glmp) is reduced in characteristic p (according to 3.1 as p is pretty good for GLmp) so is its
coordinate ring ON (glmp), hence the reducedness of N (slmp). Therefore, N (g) is reduced when
the characteristic is separably good for the reductive group G.

Remark 3.4. In non-separably good characteristics both unipotent and nilpotent schemes might
be non-reduced as underlined, for instance, in [Slo80, 3.9, Remark] in which the author studies
the unipotent scheme of PGL2 in characteristic two. From this, one can derive the same counter-
example for the nilpotent scheme of pgl2:

N (pgl2) =

⎧⎨
⎩

⎛
⎝x1 0 0
x2 0 x3

0 0 x1

⎞
⎠

⎫⎬
⎭ ∈ gl3,

and a matrix M of this Lie algebra (as described previously) is nilpotent if and only if
its characteristic polynomial is t3. Hence, the nilpotent scheme of pgl2 has coordinate ring
k[x1, x2, x3]/〈(x2

1), (2x1)〉, which is not reduced in characteristic two.

3.1.2 Springer isomorphisms. As explained in the introduction, the existence of a
G-equivariant isomorphism φ : Nred(g) → Vred(G) is necessary to obtain a punctual integration.
When G is a simply connected k-group and p is good for G, Springer establishes in [Spr69,
Theorem 3.1] the existence of homeomorphisms between these schemes. As pointed out by the
author himself, these homeomorphisms would be isomorphisms of varieties (with the convention
of the article, hence of reduced schemes) if the reduced part of the nilpotent scheme were known
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to be normal (which had not been shown at the time of the paper). This result has been studied
and refined by many mathematicians, among those Bardsley and Richardson in [BR85, 9.3.2]
who established the normality of N (g) in pretty good characteristic (under this assumption the
nilpotent scheme is reduced according to Proposition 3.1) and extended the existence of such
isomorphisms to any reductive k-group which satisfies the standard hypotheses (as defined by
Jantzen, see Remark 3.2). Let us also mention here the work of Herpel who showed in [Her13]
the existence of Springer isomorphisms for any reductive k-groups in pretty good characteristic.
This mainly uses previous results from McNinch and Testerman (see [MT09, Theorem 3.3]).

From now on, and unless otherwise stated, the characteristic of k is separably good for G.
In particular, nilpotent and unipotent schemes are reduced, hence the subscripts are removed
everywhere Springer isomorphisms are considered.

Let us insist on the following point: there exist several Springer isomorphisms but they all
induce the same bijection between the G-orbits of Nred(g) and those of Vred(G), as shown by
Serre in [McN05, 10, Appendix]. To fix better the reader’s idea on such variety of Springer
isomorphisms one might have a look at the preamble of the aforementioned appendix. There
Serre considers the example G = SLn and picks a nilpotent element e ∈ sln of order n. He then
explains that in this case a Springer isomorphism φ is of the form:

φ : Nred(g) →Vred(G)

1 + e �→ a1e+ · · · + an−1e
n−1,

where the ai are elements of k such that a1 
= 0. Moreover, any n-tuple (a1, . . . , an−1) with a1 
= 0
defines a unique Springer isomorphism.

When G is simple, Sobaje reminds the reader of the existence of Springer isomorphisms in
separably good characteristics (see [Sob15, Theorem 1.1 and Remark 2]). Moreover, in [Sob18,
§ 7] the author investigates the non-separably good characteristic case. He also emphasises that
in separably good characteristics one can always find an isomorphism φ : Nred(g) → Vred(G) that
restricts to an isomorphism of reduced schemesW (radu(B)) ∼= radu(B) → RadU (B) for any Borel
subgroup B ⊂ G. The author then stresses that the differential of this restriction at 0 is a scalar
multiple of the identity (this does not depend on the considered Borel subgroup). More precisely,
the situation is the following (note that the two vertical arrows are closed immersions):

and φ̃ is such that (d φ̃)0 = λ id with λ ∈ k∗. Note that the fact that the restriction φ̃ maps
to Lie(RadU (B)) is actually a consequence of the φ-infinitesimal saturation of the unipotent
radical of Borel subgroups (see Definition 4.1 for a definition of this notion as well as Remark 4.2
for a proof of this fact). Sobaje attributes the existence of such specific Springer isomorphisms
to McNinch and Testerman (see [MT09, Theorem E]). This can be generalised to any reductive
k-group in separably good characteristic. Indeed the properties required for φ are preserved under
separable isogenies for G (see [Her13, Corollary 5.5] and [McN05, Proposition 9]). This allows
us to consider semisimple groups rather than simple ones. The reductive case follows because
‘Springer isomorphisms are insensitive to the centre’. Indeed the radical of g is the Lie algebra
of the centre of G, thus is toral and does not contain any p-nilpotent elements (see Lemma 2.6
and Remark 6.2(ii)).
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Let P be a so-called restricted parabolic subgroup, that is, a parabolic subgroup for which
the Lie algebra of the unipotent radical has p-nilpotency order equal to 1. For instance, when
p > h(G) (where h(G) is the Coxeter number of G) any Borel subgroup of G is restricted (because
then, as explained in the introduction, any p-nilpotent element of G has p-nilpotent order equal
to 1; see [McN02] for more details). We denote:

− the Lie algebra of the unipotent radical of P by radu(P ); and
− the unipotent radical of P by RadU (P ).

In [Sei00, Proposition 5.3] (credited by Seiz to Serre), the author explains how to obtain a
P -equivariant isomorphism of algebraic groups expP : radu(p) → RadU (P ) by base-changing the
usual exponential map in characteristic zero. Note that here radu(p) is endowed with the group
law induced by the Baker–Campbell–Hausdorff law (which is well-defined, see the preamble of
[Sei00, § 5]). When p > h(G), Sobaje explains in [Sob18, Theorem 6.0.2] that there exists a unique
Springer isomorphism φ that restricts to expP , whose tangent map is the identity and that is
compatible with the p-power. Note that when p < h(G), maps satisfying the three aforementioned
requirements still exist, but this time, there are many of such maps. Sobaje study and classify in
[Sob18, Theorem 6.0.2] a specific class of such maps, the so-called generalised exponential maps.

Let us first consider the case p > h(G) to remind the reader of the construction of such
group isomorphisms expB where B ⊂ G is a Borel subgroup, and how this leads to integration
results. In this setting, the reader might also refer to a recent article of Balaji et al. (see [BDP17,
§ 6]) for a detailed construction of the group isomorphism expB : ub → UB. This, combined with
Corollary 2.1, actually allows to integrate restricted p-nil p-Lie subalgebras of g.

Proposition 3.5. Let G be a reductive k-group over an algebraically closed field of character-
istic p > h(G). Let u ⊂ g be a restricted p-nil p-Lie subalgebra. Then u can be integrated into a
smooth connected unipotent subgroup of G. Namely there exists a smooth connected unipotent
subgroup U ⊂ G such that Lie(U) ∼= u as Lie algebras.

Proposition 3.6 will be useful to show the above statement. In the aforementioned framework
and as underlined by Serre in [Ser96, 2.2], if B ⊂ G is a Borel subgroup, the group law on radu(B)
comes from the characteristic-zero framework by lifting and specialisation.

More precisely, if we denote:

(i) by GZ a reductive Z-group and by BZ ⊂ GZ a Borel subgroup such that G = GZ ⊗Z k and
B = BZ ⊗Z k (such groups both exist according to [SGA3III, XXV, Corollaire 1.3]);

(ii) by GQ and BQ the groups obtained from GZ and BZ by base change from Z to Q;

then we have the following result.

Proposition 3.6 [Ser96, 2.2]. The law making radu(B) into an algebraic k-group comes from
that on radu(B)Q: it is defined over Q, extends on radu(B)Z(p)

and induces a group law on radu(B)Fp

then on radu(B) by specialisation. Namely, the situation can be read on the following diagram,
the point being the existence of the dotted arrow. In other words, the Baker–Campbell–Hausdorff
law has Z(p)-integral coefficients.
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We refer the reader to [Jea20, Annexe D] for a proof of Proposition 3.6 stated in these terms.
We are now able to show Proposition 3.5.

Proof of Proposition 3.5. According to [Ser94, II, Lecture 2, Theorem 3], when p > h(G) the Lie
algebra of the unipotent radical of any Borel subgroup B ⊂ G is endowed with a group structure
induced by the Baker–Campbell–Hausdorff law (which has p-integral coefficients as shown, for
example, in [Ser96, 2.2, Propositon 1]). This law being defined with iterated Lie brackets, it
reduces to any subalgebra of radu(B), endowing it with a group structure. As, by assumption, one
has p > h(G), the characteristic of k is not of torsion for G. Thus, there exists a Borel subgroup
B ⊂ G such that u is a Lie subalgebra of radu(B) (according to Corollary 2.1). Hence, what
precedes implies, in particular, that u is an algebraic group for the Baker–Campbell–Hausdorff
law.

The isomorphism of groups expb : radu(B) → RadU (B) defined by Serre in [Ser94, Part II,
Lecture 2, Theorem 3] thus restricts to u. Denote by U the image of the restricted morphism. It
is a smooth connected unipotent subgroup of G.

It remains to show that Lie(U) ∼= u.
The algebraic groups u and U being smooth, the isomorphism of algebraic groups (expb)|u

induces an isomorphism Lie(U) ∼= Lie(u) (see [SGA3I, VIIA Proposition 8.2]). As u is a vector
space over a field one has Lie(u) ∼= u, hence Lie(U) ∼= u as Lie algebras. In other words, the
map expb induces the identity on tangent spaces. Therefore, the restricted p-nil p-subalgebra u

integrates into a smooth connected unipotent subgroup U of G. �
Remarks 3.7. The following points should help the reader to better understand the issues that
are specific to the characteristic p > 0 framework.

(i) What precedes ensures that when p > h(G), any restricted p-nil p-subalgebra of g can be
integrated into a smooth unipotent connected subgroup ofG. In particular, under this assumption
on p, any restricted p-nil p-subalgebra of an integrable p-nil subalgebra of g can be integrated.
This is not true in general, as shown in § 3.11 (see, in particular, Remark 3.13).

(ii) Note that the work of Seitz mentioned in the preamble of this section (see [Sei00, § 5], in
particular, Proposition 5.3) allows one to relax assumptions on p and to still obtain an integration
when G is semisimple (this should extend easily to arbitrary reductive groups): let P � G be a
proper parabolic subgroup and let p be its Lie algebra. Denote by cl(up) the nilpotent index of
the Lie algebra of UP , the unipotent radical of P . Results of Seitz ensure that there exists an
isomorphism of algebraic groups between expP : up → UP , where the Lie algebra is endowed with
an algebraic group structure given by the Baker–Campbell–Hausdorff law (which is well-defined
here as shown by the author). This result, coupled with works of McNinch [McN07] allows us to
integrate several nil Lie subalgebras in characteristic p < h(G). Indeed, when p is not of torsion
for G, given a p-nil subalgebra u � g there exists a so-called optimal parabolic subgroup Pu(G)
such that u is a Lie subalgebra of upu (see also [Jea20, II.3] for more details on this paper and the
aforementioned construction, with the same notation as used here). Therefore, a precise bound
for 3.5 would be to consider p > cl(upu ). However, this does not help to get rid of the difficulties
that occur for small separably good characteristics p, hence we preferred a ‘rough’ statement
which avoids getting lost in technical details here.

(iii) The situation might seem to be quite similar to the characteristic-zero framework.
Unfortunately, and contrary to what happens in characteristic zero, the adjoint repre-
sentation is not compatible with this integration in general. Namely it is not always
true that exp(t ad(x)) = Ad(exp(tx)) for any x ∈ g (where we denote by ad the derived
representation Lie(Ad)). Nevertheless, this is automatically satisfied if the adjoint representation
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Ad is of low height according to [BDP17, 4.6]. The authors mention this result as a corollary of
[Ser98, Lecture 4, Theorem 5].

(iv) Let us emphasise another property that is lost in characteristic p > 0 and already mentioned
in the introduction (see [DG70, IV, § 2, 4.5] for more details on the characteristic-zero case): even
in characteristic p > h(G) the integration process no longer induces an equivalence of categories
between the category of restricted p-nil p-Lie algebras and the category of smooth connected
unipotent algebraic groups. More precisely, we have the following.

− Let U be a unipotent subgroup of G and denote by u := Lie(U) its Lie algebra. The field
k is algebraically closed, thus perfect. The subgroup U is therefore k-embeddable into the
unipotent radical of a Borel subgroup B ⊂ G.

− Let logB : RadU (B) → radu(B) be the inverse isomorphism of algebraic groups of the mor-
phism expb, see [BDP17, § 6] for an explicit construction. As for expb it is induced by an
isomorphism of reduced k-schemes log : Vred(G) → Nred(g).

In general, one cannot expect the integrated group exp(u) to be the starting group U .
Equivalently, the equality logB(U) 
= u needs not being satisfied a priori.

For example, let G = SL3 and p > 3. We consider the unipotent connected smooth subgroups
of G generated respectively by the matrices⎛

⎝1 t 0
0 1 0
0 0 1

⎞
⎠ and

⎛
⎝1 t tp

0 1 0
0 0 1

⎞
⎠ .

As U1 
= U2, the restricted p-nil p-algebras log(U1) and log(U2) do not coincide, even though the
Lie algebras u1 = u2 are the same; namely it is the restricted p-nil p-Lie algebra generated by⎛

⎝0 1 0
0 0 0
0 0 0

⎞
⎠ .

3.2 From Lie algebras to groups: a natural candidate
Let G be a reductive group over an algebraically closed field k of characteristic p > 0 which is
assumed to be separably good for G. Let φ : Nred(g) → Vred(G) be a Springer isomorphism for G
such that for any Borel subgroup B ⊂ G the differential of φ restricted to radu(B) is the identity
at zero (this last assumption is allowed by [Sob15, Theorem 1.1 and Remark 2] as explained in
§ 3.1.2). It defines for any p-nilpotent element of g a t-power map:

φx : Ga →G

t �→ φx(t).

Let u be a restricted p-nil p-Lie subalgebra of g. The t-power map φx induces the following
morphism:

ψu : W (u)× Ga →G

(x, t) �→ φx(t),

where the notation is that of [SGA3I, I, 4.6] (see also [SGA3I, II, Lemme 4.11.7]). Denote by
Ju the subgroup of G generated by ψu as a fppf-sheaf (see [SGA3I, VIB, Proposition 7.1 and
Remark 7.6.1]). This is:

(i) a connected subgroup by [SGA3I, VIB, Corollaire 7.2.1] as W (u) is geometrically reduced
and geometrically connected;
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(ii) smooth (according to [SGA3I, VIB, Proposition 7.1(i)] as G is locally of finite type over the
field k);

(iii) unipotent as we show in § 4 (see Lemma 4.4).

One thus needs to compare u with the Lie algebra of Ju, denoted by ju. We show that when the
restricted p-nil p-Lie subalgebra u ⊆ g satisfies some maximality properties (such as that required
in the statements of Lemmas 5.1 and 5.3), it is integrable by Ju. Before going any further, let us
stress that when this integration holds true the normalisers NG(Ju) and NG(u) turn out to be
the same. More precisely, we have the following.

Lemma 3.8. Let u be a restricted p-nil p-Lie subalgebra of g. The subgroup NG(u) normalises Ju.

Proof. First note that φ is G-equivariant (because it is a Springer isomorphism), so is φx. Hence,
the morphism ψu is compatible with the G-action on u. In other words, for any g ∈ G and any
(x, t) ∈ u × Ga the equality Ad(g)ψu(x, t) = ψu

(
Ad(g)x, t

)
is satisfied.

Let R be a k-algebra, and consider g ∈ NG(u)(R) and h ∈ Ju(R). By the definition of Ju,
there exists an fppf-covering S → R such that hS = ψu(x1, s1) · · ·ψu(xn, sn) for xi ∈ uR ⊗R S and
si ∈ S (so that ψu(xi, si) ∈ Ju(S)). However, then one has (Ad(g)h)S =

∏n
i=1 Ad(gS)ψu(xi, si).

The morphism ψu being compatible with the G-action, this can be rewritten as follows:

(Ad(g)h)S =
n∏

i=1

Ad(gS)ψu(xi, si) =
n∏

i=1

ψu

(
Ad(gS)xi, si

) ∈ Ju(S) ∩G(R) = Ju(R),

where the equality Ju(S) ∩G(R) = Ju(R) follows from the fact that Ju is generated by ψu as a
fppf-sheaf.

We thus have shown that Ad(g)h ∈ Ju(R) for all g ∈ Ng(u)(R). In other words, we have
shown the inclusion NG(u)(R) ⊆ NG(Ju)(R) for any k-algebra R. Yoneda’s lemma then leads to
the desired inclusion NG(u) ⊆ NG(Ju). �

Lemma 3.9. When Ju integrates u, the equality NG(Ju) = NG(u) is satisfied.

Proof. By Lemma 3.8 one only needs to show the inclusion NG(Ju) ⊆ NG(u). This is direct
according to Lemma 6.3 as the equality Lie(Ju) = u is satisfied by assumption. �

Remarks 3.10. Let us emphasise the following points.

(i) The assumptions on normalisers in Lemma 3.9 hold true, in particular, when u is a subalgebra
of g made of all the p-nilpotent elements of the radical of Ng(u). This is shown in Lemma 5.1.

(ii) As mentioned in the introduction, no Springer isomorphism is compatible with the p-structure
of the restricted p-nil p-algebra. This is actually not a requirement here. Indeed one considers
the image of all p-nilpotent elements of u so x and all its p-powers are taken into account in the
integration process. Moreover, one only needs to compare the subalgebras u and ju and both of
them inherit their p-structure from that of g.

3.3 Obstructions to the existence of an integration for embedded restricted p-nil
p-subalgebras

3.3.1 Witt vectors and family of counter-examples. In what follows, we make use of some
general results on Witt vectors to construct a family of counter-examples to the existence of an
integration of morphisms and restricted p-nil p-Lie algebras in general.
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Example 3.11. Let k be a perfect field of characteristic p > 0 and let us consider the following
commutative diagram of algebraic groups,

where:

− we denote the absolute Frobenius automorphism by Frob;
− the central term of the lower sequence is the pushout of the morphisms i and Frob.

The group Ga being smooth, the exactness of the two horizontal sequences is preserved by
derivation (see [SGA3I, II, § 5, Proposition 5.3] and [DG70, II, § 7, n◦3, Proposition 3.4]). This
leads to the following commutative diagram of restricted p-Lie algebras and p-morphisms.

As Lie(Frob) = 0 the p-morphism w′
2 → k is split (as a p-morphism). Let s : Lie(Ga) → w′

2 be
the resulting splitting.

Even though Lie(Ga) and w2 are integrable, this splitting does not lift into a morphism
of algebraic k-groups. The field k being perfect, one only needs to check this on k points. As
the vertical morphisms induce the identity morphism on k-points if the lifting s : Lie(Ga) → w′

2

were integrable into a morphism of algebraic groups σ : Ga(k) →W ′
2(k) such that Lie(σ)k = sk,

the lower exact sequence of the above commutative diagram of algebraic groups would be
split (because the Lie-functor is left exact). According to the previous remark on k-points, the
following exact sequence would then also be split.

This leads to a contradiction as W2 would appear as a vector group, while it has p2-torsion (see
for example [Ser88, VII, § 2, n◦10, Proposition 9]: the construction of W ′

2 is explained in the
proof of the proposition, see also [Ros58] for a reminder of vector groups).

Remark 3.12. As pointed out by the referee, connected abelian unipotent subgroups of dimen-
sion two over a field are classified, up to isomorphism, by a pair of invariants (see the paragraph
after [Ser88, VII, § 2, 11, Proposition 11]). Let U be such a group and denote by U ′′ the
subgroup of U whose elements have order dividing p. The group law is denoted additively.
As explained in the aforementioned reference, the purely inseparable isogeny U/pU → U ′′ :
x �→ px has degree ph and h is the second invariant of the above pair. This invariant could
also be used to show that the splitting s is not integrable in Example 3.11 (as this would imply
that W2 has h = 2 while it is actually equal to 1).

3.3.2 Obstructions in the reductive framework. Let us go back to the framework we are
interested in: let G be a reductive group over an algebraically closed field of characteristic
p > 0 which is assumed to be separably good for G. Let U and V ⊂ G be two subgroups.
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What precedes tells us, in particular, that if f : u = Lie(U) → v = Lie(V ) is a morphism of
restricted p-Lie algebras, it is not true in general that there exists a morphism of groups U → V
such that Lie(φ) = f . Namely the map Hom(G,Ga) → Homp−Lie(g, k) is not surjective. In what
follows, a morphism of restricted p-Lie algebras is integrable if it lifts into a morphism of algebraic
groups with smooth kernel.

Remarks 3.13. One can make the following important remarks on integration of p-nil subalge-
bras.

(i) Let u ⊂ g be a restricted p-nil p-subalgebra which is integrable into a unipotent smooth
connected subgroup U ⊆ G. Example 3.11 together with Lemma 3.14 also shows that not any
restricted p-nil p-subalgebra v ⊆ u of a restricted p-nil p-Lie algebra is integrable into a smooth
connected unipotent group V such that Lie(V ) = v. Nevertheless, if we require the inclusion v ⊆ u

to be integrable into a morphism of algebraic groups with smooth kernel, then v is integrable
into a smooth unipotent subgroup of U (by virtue of [DG70, II, § 5, Proposition 5.3]). Hence,
in what follows a morphism of p-Lie algebras f : h → h′ is said to be integrable if there exists a
morphism of algebraic groups φ : H → H ′ with smooth kernel such that Lie(φ) = f .

(ii) Let us stress that only the restricted p-subalgebras h ⊆ g can pretend to derive from an
algebraic group (as this last property automatically implies that h is endowed with a p-structure
inherited from the group; see, for example, [DG70, II, § 7, n◦3, Proposition 3.4]). Moreover,
as underlined by the example presented in Remark 3.7(iii) the integration of restricted p-nil
p-subalgebras of g does no longer induce a bijective correspondence with unipotent subgroups
of G. This implies, in particular, that the integration of morphisms of restricted p-Lie algebras
depends on the integration of the Lie algebra one starts with.

The following lemma makes a connection between integration of morphisms and integration
of subalgebras.

Lemma 3.14. Let G and H be two algebraic smooth k-groups with Lie algebras g := Lie(G),
respectively h := Lie(H). Assume that f : g → h is a morphism of restricted p-nil p-Lie algebras
which is integrable into a morphism of groups with smooth kernel. Let us denote by φ : G→ H
the resulting integrated morphism, then f(g) is integrable into an algebraic smooth connected
k-group.

Proof. Denote by v := f(g) the image of the morphism f , which is assumed to be integrable
into a morphism φ : G→ H with smooth kernel. One can a priori only expect the inclusions
f(g) ⊆ Lie(φ(G)) ⊆ h to hold true. However, as k is a field and ker(φ) and G are smooth so
is φ(G). As a consequence, the restricted morphism f = Lie(φ) : g → Lie(φ(G)) is surjective (see
[DG70, II, § 5, Proposition 5.3]), whence the equality v = Lie(φ(G)). In particular, the restricted
p-Lie algebra v is integrable into an algebraic smooth connected k-group. �

Remark 3.15. Let φ : G→ H be a smooth morphism of algebraic k-groups. Assume that the
derived morphism Lie(φ) : g → h has a splitting s : h → g which is also a morphism of restricted
p-Lie algebras. It is worth noting that this splitting does not necessarily lift into a splitting of
algebraic groups: consider, for instance, the Artin–Schreier covering of Ga → Ga : t �→ tp − t, its
derived morphism is nothing but the identity, whence it admits a splitting that does not lift to
a splitting of algebraic groups.
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4. φ-infinitesimal saturation and proof of Theorem 1.1

In what follows, G is a reductive group over an algebraically closed field k of characteristic
p > 0 which is assumed to be separably good for G. Let φ : Nred(g) → Vred(G) be a Springer
isomorphism for G such that for any Borel subgroup B ⊆ G the differential at 0 of φ restricted
to radU (B) is the identity.

4.1 φ-infinitesimal saturation
The following definition extends the notion of infinitesimal saturation to the separably good
characteristics.

Definition 4.1. A subgroup G′ ⊆ G is φ-infinitesimally saturated if for any p-nilpotent element
x ∈ g′ := Lie(G′) the t-power map

φx : Ga →G,

t �→ φ(tx),

factorises through G′. In other words we ask for the following diagram to commute.

It follows from the definition that the group G is itself φ-infinitesimally saturated. Let us
stress that there are non-trivial examples of φ-infinitesimally saturated subgroups ofG, as follows.

Lemma 4.2. Any parabolic subgroup of G is φ-infinitesimally saturated, so are the Levi
subgroups and the unipotent radical of any parabolic subgroup P ⊂ G.

Proof. In order to show this result, we make use of the dynamic method introduced in [Con14,
4] and [CGP15, § 2.1]. Let T ⊂ P ⊂ G be a maximal torus and a parabolic subgroup of G,
respectively. As k is a field, there exists a non-necessarily unique cocharacter of T , denoted here
by λ : Gm → G such that P = PG(λ) (see [CGP15, Proposition 2.2.9]). We aim to show that for
any p-nilpotent element x ∈ p the image of the t-power map φx belongs to P = PG(λ). The field
k being algebraically closed, this is enough to show it on k-points. As a reminder, when P is of
the form PG(λ) the k-points of P are nothing but the set

PG(λ)(k) =
{
g ∈ G(k)

∣∣∣ lim
s→0

λ(s) · g exists
}
.

Hence, one only needs to prove that lims→0 λ(s) · φ(tx) exists. This can be done by making use
of the G-equivariance of φ. This leads to the equality λ(s) · φ(tx) = φ(λ(s) · tx). Moreover, as
x ∈ pg(λ) := Lie(PG(λ)) the limit lims→0 λ(s) · x exists by definition. We deduce from the above
equality that lims→0 λ(s) · φ(tx) exists, meaning that φ(tx) ∈ PG(λ) = P , whence the result.

The same reasoning as before, together with [CGP15, Lemma 2.1.5], allows us to show that:

− the unipotent radical of any parabolic subgroup P ⊆ G is φ-infinitesimally saturated as

RadU (PG(λ))(k) =
{
g ∈ G(k)

∣∣∣ lim
s→0

λ(s) · g = 1
}

;

− the Levi subgroups of any parabolic subgroup P ⊆ G are φ-infinitesimally saturated as

ZG(PG(λ))(k) = PG(λ) ∩ PG(−λ). �
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Remark 4.3. As mentioned in the preamble of § 3.1.2 when p > h(G) the only Springer iso-
morphism for G that restricts to expB : ub → UB, whose tangent map is the identity and that
is compatible with the p-power is nothing but the classical exponential map truncated at the
power p (this last condition is not necessary here). In this framework, being φ-infinitesimally
saturated is nothing but being exp-saturated, that is, being infinitesimally saturated as defined
by Deligne in [Del14, Définition 1.5]).

Having introduced this, we can show the following lemma which states that the generated
subgroup Ju seems to be the good candidate to integrate u in general.

Lemma 4.4. Let u ⊆ g be a restricted p-nil p-subalgebra. Then:

(i) the generated subgroup Ju is unipotent;
(ii) the inclusion u ⊆ Lie(Ju) := ju is satisfied.

Proof. With the Lie algebra u being a restricted p-nil p-subalgebra of g and p being separably
good for G (thus, not of torsion), Corollary 2.1 allows to embed u into the Lie algebra of the
unipotent radical of a Borel subgroup B ⊂ G. Let us remind the reader of the notation introduced
in § 3.2:

− the Springer isomorphism φ being fixed, we define

ψu : W (u)× Ga →G

(x, t) �→ φx(t),

where φx(t) := φ(tx) is the t-power map;
− we then denote by Ju the subgroup of G obtained by considering the fppf-sheaf generated by

the image of ψu.

What precedes, in particular, tells us that Ju is k-embeddable into the unipotent radical of a
Borel subgroup. This is because B is φ-infinitesimally saturated according to Lemma 4.2. In
other words, Ju is unipotent (see, for example, [DG70, IV, § 2, n◦2, Proposition 2.5(vi)]).

We still denote by φ the restriction of the Springer isomorphism to radu(B). Recall that:

− this restriction maps to RadU (B);
− its differential satisfies (dφ)0 = id by assumption.

The subgroup Ju being generated by the images of the t-power maps φx for all x ∈ u, the Lie
algebra ju contains the differential at 0 of all such maps, hence the expected inclusion. �

It is worth noting that the inclusion u ⊆ ju is strict in general, as underlined by the following
lemma which is a variation of [SGA3I, VIB, Proposition 7.6]. Notwithstanding this, it is shown
in § 5 that Ju does actually integrate u when the latter satisfies some maximality hypotheses (see
Lemmas 5.1 and 5.3).

Proposition 4.5. Let k be a separably closed field and let (Gi)i∈{1,...,n} and G be smooth
connected k-groups. For any i ∈ {1, . . . , n}, consider a smooth morphism of k-groups fi : Gi → G.
Then set

f :=
n∏

i=1

fi :
( n∏

i=1

Gi

)
→ G

(g1, . . . , gn) �→ f1 (g1) · · · fn(gn)
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and for any N ∈ N>0 define

fN := f × · · · × f :
( n∏

i=1

Gi

)×N

→G

(x1, . . . , xN ) �→ f(x1) · · · f(xN )

given by taking N times the morphism f . The following assertions are equivalent:

(i) there exists an integer N � 1 for which the morphism fN is surjective and smooth over a
non-empty open subset of (

∏n
i=1Gi)×N ;

(ii) for N � 1 large enough the morphism fN is surjective and separable;
(iii) the Lie algebra of G decomposes as a k-vector space as follows,

Lie(G) =
n∑

j=1

Ad(hj)
(
Lie(fj(Gj))

)
,

where hj ∈M(k) for M = 〈fi(Gi)〉i∈{1,...,n}, the subgroup generated by the fi(Gi);
(iv) the group G is generated by the images of the Gj on the big étale site.

Remark 4.6. If the equivalent conditions of Lemma 4.5 are satisfied, then, in particular, the
k-group G is generated by the images of the Gj for the fppf-topology.

Proof. We show

In order to avoid heavy notation, we only focus on the case n = 2 in the statement of the lemma,
the general proof follows by induction.

(i) =⇒ (ii) Let N � 1 be an integer such that fN : (G1 ×G2)×N → G is smooth and surjective
over a non-empty open subset of (

∏n
i=1Gi)×N . Denote by U the image of this open set under

fN . It is open in G as f is open. One first needs to obtain the surjectivity on the whole product
of m terms (for m large enough). We remark that because we are working with algebraic groups,
it is enough to consider f2N (thus, m = 2N) rather than fN to obtain this property. This is so
because the natural morphism U(k) · U(k) → G(k) is surjective as G is a k-algebraic group).

Now, as being separated is nothing but being generically smooth, one only needs to show
that f2N is smooth on a dense open subset of G. It suffices to show that there exists z ∈
(G1 ×G2)×2N such that (df2N )z is surjective because the source and the target of f2N are smooth
varieties (see [DG70, I, § 4, Corollaire 4.14]). The map fN being smooth over a non-empty open
subset of (G1 ×G2)×N , one can find an element x ∈ (G1 ×G2)×N such that (dfN )x is surjective.
This implies that so is (df2N )(1,x) and allows us to conclude that f2N is smooth over an open
neighbourhood of (1, x).

(ii) =⇒ (iii) Let N ∈ N>0 be such that the morphism fN is separable and surjective. These
two assumptions together ensure that there exists an element

h =
(
h1,i, h2,i

)N

i=1
∈ (G1(k) ×G2(k))×N
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such that (dfN )h : T
(
(G1 ×G2)N

)
h
→ T (G)g is surjective for g = fN (h). Set g1,i =

h1,1h1,2 . . . h1,i and g2,i = h2,1h2,2 . . . h2,i and consider the map

α : (G1 ×G2)×N → (G1 ×G2)×N

(x1,1, . . . x2,N ) �→ (h1,1x1,1, . . . , h2,Nx2,N ).

This allows us to translate fN to the origin as illustrated by the following diagram that can be
shown to be commutative:

where AdN (gj,i) :=
∏N

i=1(Ad(g1,i),Ad(g2,i)) is the diagonal conjugation by the gj,i for j ∈ {1, 2}
and ρ(g−1) is the right multiplication. This implies, in particular, that the differential d

(
f ′′N ◦

AdN (gj,i)
)
e

: T
(
(G1 ×G2)×N

)
e
→ Lie(G) =: g is surjective. Thus, any z ∈ g occurs as

d(f ′′N ◦ (
AdN (gj,i)

)
)e(x1,1, . . . , x2,N ) =

N∑
i=1

(
Ad(h1,i)(x1,i) + Ad(h2,i)(x2,i)

)
for an element (x1,1, . . . , x2,N ) ∈ T

(
(G1 ×G2)×N

)
e
, whence the desired equality of vector spaces.

(iii) =⇒ (i) Let x ∈ g, by assumption there exist natural integers n and m such that

x =
n∑

i=1

(
Ad(h1,i)(x1,i) + Ad(h2,i)(x2,i)

)

=
n∑

i=1

(
Ad

( m∏
j=1

g1,i
1,jg

1,i
2,j

)
(x1,i) + Ad

( m∏
l=1

g2,i
1,lg

2,i
2,l

)
(x2,i)

)
,

where:

− for q ∈ {1, 2}, the hq,i belong to 〈f1(G1)(k), f2(G2)(k)〉, hence decompose into products of
gq,i
r,j ∈ fr(Gr)(k) for r ∈ {1, 2} and j ∈ {1, . . . ,m}; note that they may be equal to 1;

− the xq,i = f(zq,i) are elements of Lie(fq(Gq)).

Recall that, as noted previously (in the proof of the last implication), for any g ∈ G the
tangent space of G at g identifies with the Lie algebra of G. Hence, the surjectivity of (dfN)e (as
for any x ∈ g, the N -tuple (z1,i, z2,i) is an antecedent for (dfN)e). The derived morphism (dfN )e

being surjective and G and (G1 ×G2)×N being smooth, the morphism fN is smooth over a non-
empty open subset U ⊂ (G1 ×G2)N (according to [DG70, I, § 4, Corollaire 4.14]). It remains to
show the surjectivity of fN which is direct from the natural morphism U(k) · U(k) → G(k) being
surjective (because G is an algebraic group).

(i) =⇒ (iv) For any k-algebra R and any g ∈ G(R) one needs to show that there exists
an étale cover S → R on which g writes gS = g1,1g2,1 · · · g1,Ng2,N , where g1,i ∈ f1(G1)(S) and
g2,i ∈ f2(G2)(S) for i ∈ {1, . . . , N}. This is, therefore, actually enough to prove the statement
when R is strictly henselian. One thus only needs to prove it on the residue field κ, as the Hensel
lemma holds true allowing one to lift the desired property. The morphism fN is surjective and
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smooth over an open cover of (G1 ×G2)×N so its image is a dense open subset U ⊂ G, hence
the result as U(κ) · U(κ) → G(κ) is surjective.

(iv) =⇒ (iii) By assumption, there exists an integer N � 1 for which the morphism fN

is a covering (see [SGA3I, VIB, Propositions 7.4 and 7.6]), hence its surjectivity. Any g ∈
G(k[ε1, ε′1, . . . , εN , ε′N ]) thus writes g =

∏N
j=1(h1,j + εjx1,j)(h2,j + ε′jx2,j) for hi,j ∈ fi(Gi)(k) with

i ∈ {1, 2}, and xi,j ∈ Lie(fi(Gi)). Hence, the map

T
(
(f1(G1) × f2(G2))×N

)
h
→ T (G)fN (h)

is surjective, for h = (h1,j , h2,j)j∈{1,...,N}. We now run exactly the same reasoning as in the proof
(ii) =⇒ (iii): set g1,i = h1,1h1,2 . . . h1,i and g2,i = h2,1h2,2 . . . h2,i. That leads to considering the
map

α : (G1 ×G2)×N → (G1 ×G2)×N

(x1,1, . . . x2,N ) �→ (h1,1x1,1, . . . , h2,Nx2,N ).

This allows us to translate fN to the origin, as this can be read on the following diagram (which
is commutative):

where AdN (gj,i) :=
∏N

i=1(Ad(g1,i),Ad(g2,i)) is the diagonal conjugation by the gj,i for j ∈ {1, 2}.
This implies, in particular, that the differential

d
(
f ′′N ◦ AdN (gj,i)

)
e

: T
(
(G1 ×G2)×N

)
e
→ Lie(G) =: g

is surjective. Thus, any z ∈ g can be rewritten as

d(f ′′N ◦ (
AdN (gj,i)

)
)e(x1,1, . . . , x2,N ) =

N∑
i=1

(
Ad(h1,i)(x1,i) + Ad(h2,i)(x2,i)

)
for an element (x1,1, . . . , x2,N ) ∈ T

(
(G1 ×G2)×N

)
e
, whence the desired equality of vector

spaces. �
Remark 4.7. Let G be a reductive k-group of finite presentation and letH ⊆ G be the k-subgroup
of G generated by the fi(Gi) as chosen in the previous lemma. Note that H is smooth and
connected because so are the Gi. Under some extra assumptions such as:

(i) the smoothness of all normalisers NG(v) of all subspaces v of g (which is ensured under very
strict conditions on p, as described in [HS16, Theorem A]);

(ii) the smoothness of NG(〈Lie(fi(Gi))〉ni=1);

the third point of the above lemma also allows us to conclude that Lie(G) is generated by
the Lie(fi(Gi)) as a restricted p-Lie algebra. Indeed one only needs to obtain the inclusion
H ⊆ NG(〈Lie(fi(Gi))〉). As the fi are morphisms of groups, one actually only needs to show
that fi(Gi) ⊂ NG(〈Lie(fi(Gi))〉). Under the above assumptions the proof is the same as that in
characteristic zero (that can be found, for instance, in [Bor91, II, 7.6]).

This remark provides some examples under which the Lie algebra of H is the restricted p-Lie
algebra generated by the Lie algebras of the fi. The following remark, however, illustrates the
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necessity of assumptions made in Proposition 4.5, by providing examples for which its conclusion
does not hold true.

Remark 4.8. Let G be an algebraic group over a separably closed field k of characteristic p > 0
and let (fi : Gi → G)i=1,...,n be a family of n smooth morphisms of k-groups, where the Gi are
assumed to be smooth and connected. Assume that G is generated by the fi(Gi). In general, it is
not true that Lie(G) is generated by the Lie(fi(Gi)), as shown in the following two examples.

(i) Assume G = (Ga)2. Set

f1 : G1 := Ga →G

x �→ (x, 0),

f2 : G2 := Ga →G

x �→ (x, xp),

so G = 〈f1(G1), f2(G2)〉. Note that Lie(f1(G1)) = Lie(f2(G2)) = k, hence,

〈Lie(f1(G1)),Lie(f2(G2))〉 = k 
= Lie(G).

(ii) The Lie algebra of [G,G] (for [G,G] the derived group of G) does not necessarily coincide
with the derived Lie algebra [g, g]. For example, if G = SLp = [GLp,GLp], then slp is nothing
but the matrices of size p× p with trace zero, which does not coincide with [glp, glp] due to
the assumption on the characteristic.

The notion of φ-infinitesimal saturation introduced here also allows us to extend theorems
[Del14, Théorème 1.7] and [BDP17, Theorem 2.5] to φ-infinitesimally reductive k-groups N over
an algebraically closed field k of characteristic p > 0 which is assumed to be separably good
for G. This is the point of Theorem 1.1. Let us first remark that points (i) and (iii) of [Del14,
Lemme 2.3] are still valid in the aforementioned framework and allow us to reduce ourselves to
show the result for connected N . More precisely, we have the following.

Lemma 4.9. Let G be a reductive group over an algebraically closed field k of characteristic
p > 0 which is assumed to be separably good for G, and let N ⊂ G be a subgroup of G. The
following assertions hold true:

(i) if N is φ-infinitesimally saturated in G, then so is N0;
(ii) if the reduced part N0

red of N0 and its unipotent radical RadU (N0
red) are normal subgroups

of N0, then they are normal in N .

Proof. See [Del14, Lemme 2.3] for a proof as the notion of φ-infinitesimal saturation is nothing
but a generalisation of those of infinitesimal saturation to the framework described previously
(see Remark 4.3). �

In what follows, the φ-infinitesimally saturated groupN is therefore assumed to be connected.
In order to state and show the φ-infinitesimal version of Deligne’s result stated in the introduction
of this article (see Theorem 1.1), one will need a fundamental result on maximal k-groups of
multiplicative type, which is stated and shown in § 4.2.

4.2 A preliminary result on maximal k-groups of multiplicative type
Corollary 4.10 (Corollary of [CGP15, Proposition A.2.11]). Let k be a field and let G be an
affine smooth algebraic k-group. The maximal connected subgroups of multiplicative type of G
are the maximal tori of G.
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Proof. Without loss of generality, one can assume G to be connected (as any maximal connected
subgroup of G is contained in the identity component G0). Let H ⊂ G be a maximal connected
subgroup of multiplicative type.

Note that, as explained in the proof of [BDP17, Corollaire 3.3], the connected centraliser of
H in G, denoted by Z0

G(H), is a smooth subgroup of G. This is an immediate consequence of
the smoothness theorem for centralisers (see for example [DG70, II, § 5, 2.8]): the group G being
smooth, the set of H-fixed points of G (for the H-conjugation) is smooth over k.

We proceed by induction on the dimension of G, the case of dimension zero being trivial.
If now the group G is of strictly positive dimension, then one of the following holds.

(i) Either the inclusion Z0
G(H) ⊂ G is strict and then H is a maximal connected subgroup of

Z0
G(H) of multiplicative type, thus H is a k-torus (of Z0

G(H), hence of G) by induction.
(ii) Or Z0

G(H) = G and H is central in G. Then, by [CGP15, Proposition A.2.11] (applied to
G) one has the following exact sequence:

where V is a unipotent smooth connected group and Gt is the k-subgroup of G generated
by the k-tori of G. The subgroup H ⊆ G is maximal and connected of multiplicative type
in G. It thus fulfils the same conditions in Gt. The quotient G/Gt = U is indeed unipotent,
thus the subgroup of multiplicative type H intersects U trivially. It is therefore included
in Gt. If V 
= 1, then H is a k-torus by induction. Otherwise one has Gt = G and if T is a
k-torus of G the subgroup H · T ⊂ G is connected of multiplicative type and contains H so
it is equal to H (as H is assumed to be maximal). Finally, one actually has T ⊂ H, hence
Gt ⊂ H, so we have shown that H = Gt. This implies, in particular, the smoothness of H
which turns out to be a k-torus. �

4.3 An infinitesimal version of Theorem 1.1
Let H ⊆ N ⊆ G be a maximal connected subgroup of multiplicative type of the φ-infinitesimally
saturated subgroup N . The k-group H is the direct product of a k-torus T together with a
diagonalisable k-group D. The latter is a product of subgroups of the form μpi , with i ∈ N.
Moreover, the k-torus T is nothing but the intersection H ∩Nred and it is a maximal torus of N
and Nred (according to Corollary 4.10).

Let Z := Z0
Nred

(T ) be the connected centraliser of T for the action of Nred and set W = Z/T .
This is a unipotent subgroup of N , the reasoning is the same as that of [Del14, § 2.5]): according
to [SGA3II, XVII, Proposition 4.3.1(iv)] as the field k is algebraically closed, one only needs to
show that this quotient has no subgroup of μp-type. This is clear: if such a factor would exist
its inverse image in Z would be an extension of μp by T in Nred, hence of multiplicative type.
This is absurd as the maximal connected subgroups of multiplicative type of a smooth algebraic
group over a field are the maximal tori (by Corollary 4.10). Moreover:

− the groups T and Z being smooth, so is W according to [DG70, II, § 5, n◦5, Proposition
5.3(ii)];

− the group W is also unipotent according to what precedes.

The field k being perfect [SGA3II, exposé XVII, Théorème 6.1.1] holds true and implies the
exactness of the following exact sequence.
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To summarise, we have an isomorphism ZNred
(T ) ∼= T ×W . Let X be the reduced k-subscheme

of p-nilpotent elements of n0 = W (n0) = Lie(ZNred
(T )).

Lemma 4.11. The centraliser Z0
Nred

(T ) is the subgroup of N generated by T and the morphism:

ψX :X × Ga →G

(x, t) �→ φ(tx).

It is normalised by H.

Proof. Let JX ⊆ G be the subgroup of N generated by the image of ψX . The subgroup N
being φ-infinitesimally saturated, the t-power map induced by φ maps any p-nilpotent element
of Lie(ZN (T )) to N . Thus, ψX factorises through N . Moreover, as JX is the image of a reduced
k-scheme it is reduced, hence smooth (as k is algebraically closed). Thus, the inclusion JX ⊂ Nred

holds true. Finally, φ is G-equivariant because it is a Springer isomorphism. This implies that
the image of ψX commutes with any element of T . We just have shown that JX ⊂ ZNred

(T ).
Also let ET,J0

X
be the subgroup generated by T and J0

X as a fppf-sheaf. It is:

− a smooth subgroup of ZNred
(T ) as T ∈ Z0

Nred
(T ) is smooth and J0

X ⊂ Z0
Nred

(T ) by what
precedes;

− connected according to [SGA3I, VIB, Corollaire 7.2.1], the torus T being geometrically
connected and geometrically reduced.

Thus, ET,J0
X

is actually contained in the identity component of the reduced centraliser. At the
Lie algebras level this leads to the following inclusion:

Lie(ET,J0
X

) ⊆ Lie(Z0
Nred

(T )) = Lie(ZNred
(T )).

As W is a unipotent subgroup of Z0
Nred

(T ) ∼= T ×W the Lie algebra w := Lie(W ) is a
restricted p-nil p-subalgebra of Z0

Nred
(T ), hence is contained in the reduced subscheme X.

The latter is the set of p-nilpotent elements of Lie(ZN (T )) so it is contained in the set of all
p-nilpotent elements of g. This set coincides with radp(g) by Lemma 2.13, which holds true as
either p � 3 or if p = 2 the conditions defined in Remark 2.9(ii) are satisfied. As p is not of
torsion for G, Corollary 2.1 holds true and allows to embed radp(g), thus X, into the Lie algebra
of the unipotent radical of a Borel subgroup B ⊆ G. Remember that the differential at 0 of
the restriction of φ to this subalgebra satisfies (dφ)0 = id. The group JX being generated by
the image of ψX , this property ensures that the differential at 0 of any φ(tx), for any t ∈ Ga

and x ∈ X, belongs to jX := Lie(JX) = Lie(JX)0. In other words, one has the following inclu-
sions w ⊆ X ⊆ Lie(J0

X). Moreover, the inclusion T ⊆ ET,J0
X

induces an inclusion of Lie algebras
t := Lie(T ) ⊆ Lie(ET,J0

X
) = Lie(ET,J0

X
).

As one has ZNred
(T ) ∼= T ×W , what precedes leads to the following inclusion:

Lie(Z0
Nred

(T )) = Lie(ZNred
(T )) ⊆ Lie(ET,J0

X
),

thus to the equality Lie(Z0
Nred

(T )) = Lie(ET,J0
X

). As the groups involved here are smooth and
connected this equality of Lie algebras lifts to the group level according to [DG70, II, § 5, n◦5.5],
whence the equality Z0

Nred
(T ) = ET,J0

X
.

It then remains to show that ET,J0
X

is normalised by H. Recall that it is the subgroup
generated by T ⊆ H (which is normal in H) and J0

X (which is characteristic in JX , see [DG70,
II, § 5, n◦1.1]). Hence, one only needs to show that JX is H-stable. First remark that X is
stabilised by H because the latter stabilises Lie(ZN (T )) and the p-nilpotency is preserved by the
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adjoint action. The G-equivariance of φ (thus, its H-equivariance) then allows us to conclude:
let R be a k-algebra. For any j ∈ JX(R) and h ∈ H(R) there is an fppf-covering S → R such
that jS = ψX(x1, t1) · · ·ψX(xn, tn) where xi ∈ XR ⊗R S and si ∈ S. However, then one has

(Ad(h)j)S =
n∏

i=1

Ad(hS)ψX(xi, si) =
n∏

i=1

ψX

(
Ad(hS)xi, si

) ∈ JX(S) ∩G(R) = JX(R),

and by the Yoneda lemma ET,J0
X

is stable under the H-action. �

Lemma 4.12. The restricted p-Lie algebra nred := Lie(Nred) is an ideal of n acted on by H.

Proof. According to the proof of [BDP17, Lemma 2.14] the morphism of k-schemes Nred ×H →
N is faithfully flat. This being said N appears as the fppf-sheaf generated by Nred and H. Thus,
in order to show that nred is actually N -stable one only needs to show that nred is H-stable. The
torus T = H ∩Nred acts on Nred, respectively on N , leading to the following decompositions:

nred = Lie(Nred) = Lie(ZNred
(T )) ⊕

⊕
α∈X(T )∗

nα
red,

and

Lie(N) = Lie(ZN (T )) ⊕
⊕

α∈X(T )∗
nα,

where X(T )∗ stands for the group of non-trivial characters of T . Any factor in the decomposition
of Lie(N) is stable for H as T is normal in H and we need to show that so is any factor of the
decomposition of nred. Let us first study the positive weight spaces. The group N being generated
as a fppf-sheaf by Nred and the subgroup of multiplicative type H (whose Lie algebra is toral) the
p-nilpotent elements of Lie(N) are the p-nilpotent elements of Lie(Nred). This being observed, as
for any α 
= 0 the weight space nα has only p-nilpotent elements (because we consider the action
of a torus here) the equality nα

red := nα ∩ nred = nα is satisfied, whence the desired H-stability.
It remains to show that Lie(ZNred

(T )) is H-stable. According to Lemma 4.11 the subgroup
H normalises ZNred

(T )0, thus the stability of Lie(ZNred
(T )0) = Lie(ZNred

(T )).
According to what precedes nred is stable for the action of H on n, hence this subalgebra is

invariant for the action of N . Reasoning on the R[ε]-points for any k-algebra R, one can shows
that nred is an ideal of n. �

The proof of the following lemma is the same as the proof of [Del14, Lemma 2.22] because
relaxing the hypotheses had no consequences on the involved arguments. We reproduce the proof
here to ensure consistency in notation.

Lemma 4.13 (Deligne [Del14, 2.22]). Let V be the unipotent radical of Nred. The action of H
on Lie(Nred) = nred leaves Lie(V ) := v invariant.

Proof. The torus T acts on nred thus on v. The Lie algebras nred and v have a weight space
decomposition for this action, namely nred = n0

red ⊕⊕
α∈X(T )∗ nα

red and v = v0 ⊕⊕
α∈X(T )∗ vα.

According to the proof of Lemma 4.12 the decomposition of nred is H-stable. It remains to show
that so is any vα.

Consider the following commutative diagram. As a reminder as Z = T ×W and T and Z
are normal in Nred, so is the subgroup W ⊆ Nred. Moreover, W is also unipotent smooth and
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connected so it is contained in V := RadU (Nred).

Let us first study the H-stability of the weight-zero part of v. As the diagram above is cartesian,
one has v0 = n0

red ∩ v = z ∩ v = w. However, w is H-stable as the subgroups T and Z are (for Z
this has been shown in Lemma 4.11) and the sequence is split.

Let us now focus on the positive weights. Let q be the Lie algebra of the reductive quotient
Nred/V . The torus T acts on this Lie algebra which writes q = q0 ⊕⊕

α∈X∗(T ) qα. There are two
possible situations.

− Either α is not a weight of T on q. Then one has vα = nα
red, whence the H-stability of vα.

− Or α is a non-trivial weight of T on q. Then the weight spaces qα and q−α are of dimension
one (according to [SGA3III, XIX, Proposition 1.12(iii)]). As p > 2 (because it is separably
good for G), the pairing

qα × q−α → q0 := Lie( TQ)

(Xα, X−α) �→ [Xα, X−α]

induced by the bracket on q is non-degenerate (see [SGA3III, XXIII, Corollaire 6.5]), thus
maps to a one-dimensional subspace hα.

Likewise, the bracket on nred induces a non-degenerate pairing of nα
red and n−α

red, and one
has the following commutative diagram.

Denote by d the image of the pairing of nα
red and n−α

red composed with the projection n0
red →

n0
red/w. According to what precedes this is a line of n0

red/w.
The situation can be summarised as in the following commutative diagram.

In other words, one has v±α = ker
(
v±α → Hom(n∓α

red, d)
)

and v±α is a sub-representation of
the representation defined by the action of H on nred, thus it is H-stable. �
Combining Lemmas 4.12 and 4.13 one can show an infinitesimal version of [BDP17,

Théorème 2.5].

Proposition 4.14. Let G be a reductive group over an algebraically closed field k of character-
istic p > 0 which is assumed to be separably good for G. Let φ : Nred(g) → Vred(G) be a Springer
isomorphism for G. If N ⊆ G is a φ-infinitesimally saturated subgroup, then:

(i) the Lie algebra nred is an ideal of n;
(ii) the Lie algebra of the unipotent radical of Nred is an ideal of n.
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Proof. The first point is provided by Lemma 4.12. The second point follows from a direct applica-
tion of Lemma 4.13 combined with [BDP17, Lemma 2.14]: with the subgroup N being generated
as an fppf-sheaf by H and Nred, one only needs to show that radu(Nred) is H-stable. This has
been shown by the aforementioned lemma. A reasoning on R[ε]-points for any k-algebra R then
leads to obtaining that radu(Nred) is an ideal of n. �

4.4 Proof of Theorem 1.1
We can now prove Theorem 1.1.

We start by showing that Nred is a normal subgroup of N . The latter being generated by H
and Nred as an fppf-sheaf, one actually needs to show that Nred isH-stable. The reasoning follows
the proof of Lemma 4.12: we consider the subgroup EZ0,Jnα generated by Z0 := Z0

Nred
(T ) and

Jnα for α ∈ X(T )∗. Recall that the Jnα are themselves the subgroups generated as fppf-sheaves
by the image of the morphisms

ψα : W ( nα) × Ga →G

(x, t) �→ φ(tx).

Note that ψα is well-defined for any α ∈ X(T )∗:

− any weight space nα consists of p-nilpotent elements because we consider the action of a torus;
− any weight space nα is geometrically reduced and geometrically connected as it is a vector

space.

Thus, the groups Jnα are smooth and connected (this last point is ensured by [SGA3I,
VIB, Corollaire 7.2.1]).

The arguments of the proof of Lemma 4.11 apply and allow us to show that the k-subgroup
EZ0,Jnα is contained in N (this subgroup being φ-infinitesimally saturated), and even in Nred as
it is smooth. Moreover, recall that p is not of torsion for G and that for any non-zero weight
the corresponding weight space is p-nil. Therefore, they are all embeddable into the Lie algebra
of the unipotent radical of a Borel subgroup B ⊆ G. The weight spaces nα are all contained in
Lie(EZ0,Jnα ) =: e because the differential at 0 of the restriction of φ to the Lie algebra of the
unipotent radical of any Borel subgroup is the identity. The Lie algebra Lie(Z0) also satisfies
this inclusion as Z0 ⊂ EZ0,Jnα .

To summarise, we have shown that nred = Lie(Z0) ⊕⊕
α∈X(T )∗ nα ⊆ e. With the groups

involved here being smooth and connected, the equality of Lie algebras lifts to an equality
of groups (see [DG70, II, § 5, n◦5.5]), hence the identity EZ0,Jnα = N0

red.
Thus, the problem restricts to showing the H-stability of EZ0,Jnα . By Lemma 4.11 the cen-

traliser Z0 is H-invariant, so one only has to show the H-stability of the Jnα . As H normalises
T and as φ is G-equivariant, any nα is H-invariant. Hence, Nred is a normal subgroup of N .

Recall that in the preamble of § 4.3 we have explained that H is actually equal to the product
T ×D (for D a k-diagonalisable group). To prove that N/Nred is of multiplicative type we show
that it is isomorphic to the group D. As:

− the group H normalises Nred (which is normal in N);
− the equality HNred = N is satisfied as well as the following isomorphism Nred

∼= H ∩Nred;

one has an isomorphism of fppf-sheaves which turns out to be an isomorphism of algebraic groups
H/Hred

∼= N/Nred
∼= D.
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To end the proof of the first point of the theorem it remains to show that the unipotent radical
of Nred, denoted by V , is normal in N . Once again, the fppf-formalism reduces the problem to
showing the H-invariance of V , the unipotent radical RadU (Nred) being normal in Nred. The
reasoning follows the proof of the normality of Nred in N : we consider the subgroup EW,Jα

v

generated by W and Jvα for α ∈ X(T )∗. As W and Jvα are normal in Nred, the subgroup EW,Jvα

is a unipotent smooth connected normal subgroup of N , thus it is contained in the unipotent
radical of Nred.

Moreover, for any non-zero weight, the corresponding weight space can be embedded into
the Lie algebra of the unipotent radical of a Borel subgroup (as p is not of torsion for G and the
considered weight space is p-nil). Once again we make use of the properties of the differential of φ
at 0 to conclude that v = w ⊕⊕

α∈X(T )∗ vα is contained in Lie(EW,Jα
v
). This implies the equality

V = EW,Jα
v

for the same reasons as previously. This equality being satisfied, the result follows
from stability properties established in the proof of Lemma 4.13. Indeed, we have shown that
thenW as well as any Jα

v , for non-trivial α, areH-stable. Combining this with the G-equivariance
of φ leads to the conclusion that V is a normal subgroup of N .

It remains to show the last point of Theorem 1.1 which is a generalised version of [Del14,
Theorem 1.7(iii)] (see also [BDP17, Theorem 2.5(ii)]). A careful reading of the proof of this
latter shows that it does not depend on the additional assumptions made by the author (that,
in practice, reduce the range of allowed characteristics). The arguments are, hence, the same as
that provided by Deligne in the framework of [Del14, 2.25] (see also [BDP17, Corollary 2.15])
and the proof is reproduced here only for the sake of clarity.

The reduced part Nred ⊆ N is now assumed to be reductive. We show that the connected
component of the identity M0 of M = ker

(
H → Aut(Nred)

)
is the central connected subgroup

of multiplicative type we are seeking. It is clearly of multiplicative type as it is a closed subgroup
of H (see [DG70, IV, § 1, Corollaire 2.4(a)]). Thus, we need to show that it is central and that
M0 ×Nred → N is an epimorphism. The first assertion is clear as:

− the connected group M0 centralises Nred; and
− N is generated by H and Nred as a fppf-sheaf (as shown previously).

To show that M0 ×Nred → N is an epimorphism, one proves that N is generated by M0 and
Nred as a fppf-sheaf. We already know that N is generated by Nred and H. To conclude we
show:

− that M is generated by Mred ⊂ Nred and M0;
− that H is generated by M and T .

The assertion for M is the consequence of structural properties of groups multiplicative
type: the field k being algebraically closed, any group of multiplicative type is diagonalisable.
Hence, M is isomorphic to a product of Gm, μq and μpi (for (q, p) = 1) (see the proof of [SGA3I,
VIII, Proposition 2.1]). Its reduced component being smooth of multiplicative type, the order
of its torsion part is coprime with p (see [SGA3I, VIII, Proposition 2.1]). Hence, M/Mred is a
product of groups of the form μpi for i ∈ N. Conversely, the quotient M/M0 is a product of μq

with (p, q) = 1, hence the result.
One still has to show that H is generated by M and T . Recall that we have shown previously

that Nred is stable under the action of H-conjugation on N . Note that this action fixes T , hence
we have the following diagram (according to [SGA3III, XXIV, Proposition 2.11], the group Nred
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being reductive).

The action of H on Nred thus factors through TAd. Thus, we have the following exact
sequence.

.

Hence, H is generated as a fppf-sheaf by M and TAd, whence by M and T as TAd is a quotient
of T .

5. Integration of some maximal p-nil p-subalgebras g

Let us start with the very specific case which has motivated our interest in the questions studied in
this article: assume u ⊆ g to be a restricted p-subalgebra which is the set of p-nilpotent elements
of rad(Ng(u)). Note that Ng(u) is a restricted p-Lie algebra (according to Lemma 6.4 as it derives
from an algebraic k-group, namely NG(u)). Moreover, u is a restricted p-nil p-subalgebra of g.

Lemma 5.1. Let G be a reductive group over a field k of characteristic p > 0 which is assumed
to be separably good for G and let u ⊆ g be a subalgebra. If u is the set of p-nilpotent elements
of the radical of its normaliser in g, denoted by Ng(u), the subalgebra u is integrable by Ju.

Proof. According to Lemma 4.4, there is a unipotent smooth connected subgroup Ju ⊂ G such
that the inclusion u ⊆ ju := Lie(Ju) holds true. Moreover, as according to Lemma 6.3 one has
Ju ⊆ NG(Ju) ⊆ NG(ju), at the Lie algebra level the following inclusions are satisfied:

u ⊂ ju ⊆ Lie(NG(Ju)) ⊆ Ng(ju).

Assume the inclusion u ⊂ ju to be strict, then u is a proper subalgebra of its normaliser in ju
(this is a corollary of the Engel theorem; see, for example, [Bou71, § 4, n◦1, Proposition 3]). In
other words, one has u � Nju (u) := ju ∩Ng(u). However, according to Lemma 3.8 the group Ju

is normalised by NG(u), hence Nju (u) ⊆ Ng(u) is an ideal of Ng(u). It is:

− a restricted p-algebra (as it derives from an algebraic group according to Lemma 6.4);
− a restricted p-ideal (as the restriction of the p-structure of Ng(u) coincides with that inherited

from NJu (u)); and
− even a p-nil p-ideal (as ju is p-nil according to Lemma 2.12).

In particular, it is a solvable ideal of Ng(u) whence the inclusion Nju (u) ⊆ rad(Ng(u)). To sum-
marise: the set u of p-nilpotent elements of rad(Ng(u)) is contained in a p-nil ideal of this radical
(namely, Nju (u)), hence is equal to the latter. This contradicts the strictness of the inclusion,
whence the equality u = ju. This, in particular, means that there exists a unipotent smooth
connected subgroup Ju ⊆ G such that Lie(Ju) = u. Thus u is integrable. �

Now let h ⊆ g be a subalgebra, and denote by u the p-radical of Ng(h). The p-radical of
Ng(h) being a restricted p-nil p-ideal, the work done in § 4 allows us to associate to u a unipotent,
smooth, connected subgroup Ju ⊂ G.

Lemma 5.2. The subgroup NG(h) normalises Ju.

Proof. One only needs to apply verbatim the proof of Lemma 3.8 as, by assumption, u is an
ideal of Ng(h). �
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Lemma 5.3. Let G be a reductive group over a field k of characteristic p > 0 which is assumed
to be separably good for G and let h ⊆ g be a subalgebra such that the normaliser NG(h) is
φ-infinitesimally saturated. If u := radp(Ng(h)), then the subalgebra u is integrable.

Proof. Recall that according to Lemma 4.4 one has the inclusion u ⊆ ju. Moreover, NG(h) being
φ-infinitesimally saturated, the group Ju is a subgroup of NG(h). At the Lie algebra level this
leads to the following inclusions u ⊂ ju ⊆ Lie(NG(h)) = Ng(h).

Assume the inclusion u � ju to be strict. Then u is a proper subalgebra of its normaliser in
ju (according to [Bou71, § 4, n◦1, Proposition 3]). In other words, one has

u � Nju (u) := ju ∩Ng(u) = ju ∩Nju (h).

However, according to Lemma 5.2 the subgroup Ju is normalised by NG(h), hence Nju (u) ⊆ Ng(h)
is an ideal of Ng(h). The same arguments as those developed in the proof of Lemma 5.1 allow
us to show that it is a restricted p-nil p-ideal of Ng(h) such that Nju (u) ⊆ rad(Ng(h)). This leads
to the equality Nju (h) = u as u is nothing but the set of p-nilpotent elements of rad(Ng(h)).
This contradicts the strictness of the inclusion, whence the equality u = ju. In particular, u is
integrable. �

Remarks 5.4. Let us make more explicit the above condition of φ-infinitesimal saturation with
the two following remarks.

(i) In the particular case when h = u, namely when u := radp(Ng(u)) is the p-radical of its
normaliser in g, the φ-infinitesimal saturation assumption is superfluous as in this case the
inclusion Ju ⊆ NG(Ju) is clear.

(ii) The condition of φ-infinitesimal saturation of normalisers might seem to be extremely
restrictive. Let us stress that there exist non-trivial examples of φ-infinitesimally saturated nor-
malisers: any parabolic subgroup satisfies this condition (according to Lemma 4.2) and such
subgroup appears to be the normaliser of its Lie algebra. Moreover, if p > h(G), one can show that
the normaliser for the adjoint action ofG of any restricted p-nil p-subalgebra is exp-infinitesimally
saturated (or infinitesimally saturated).

6. Added in proof: technical results on normalisers and centralisers

The formalism used in this section is developed in [DG70, II, § 4]. We refer the reader, in par-
ticular, to [DG70, II, § 4, 3.7] for notation. Let A be a ring and G be an affine A-group functor.
Let us recall the following.

(i) If R is an A-algebra R, we denote by R[t] the algebra of polynomials in t and by ε the image of
t via the projection R[t] → R[t]/(t2) =: R[ε]. We associate to G a functor in Lie algebras denoted
by Lie(G) and which is the kernel of the following exact sequence.

For any y ∈ Lie(G)(R) we denote by eεy the image of y in G(R[ε]). In what follows, the notation
Lie(G)(R) refers both to the kernel of p as well and to its image in G(R[ε]). The Lie-algebra
of G is given by the k-algebra Lie(G)(A) and is denoted by Lie(G) := g. According to [DG70,
II, § 4, n◦4.8, Proposition] when G is smooth or when A is a field and G is locally of finite
presentation over A, the equality Lie(G) ⊗A R = Lie(G)(A) ⊗A R = Lie(G)(R) = Lie(GR) holds
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true for any A-algebra R (these are sufficient conditions). When the aforementioned equality is
satisfied, the A-functor Lie(G) is representable by W (g), where for any A-module M and any
A-algebra R we set W (M)(R) := M ⊗A R.

(ii) For any A-algebra R we use the additive notation to describe the group law of Lie(G)(R).

(iii) The A-group functor G acts on Lie(G) as follows: for any A-algebra R the induced
morphism is

AdR :GR → Aut(Lie(G))(R),

g �→ AdR(g) : Lie(G)(R) → Lie(G)(R) : x �→ i(g)xi(g)−1.

When G is smooth (in particular, when Lie(G) is representable) the G-action on Lie(G) defines
a linear representation G→ GL(g) (see [DG70, II, § 4, n◦4.8, Proposition]).

6.1 Centralisers
Lemma 6.1. Let A be a ring and set S = Spec(A). If G is a smooth affine S-group scheme, the
equality Lie(ZG(h)) = Zg(h) is satisfied for any subspace h ⊂ g.

Proof. By definition, one has

Lie(ZG(h)) = g ∩ ZG(h)(A[ε])

= {g ∈ g | Ad(gA[ε])(x) = x,∀x ∈ h(A[ε])}.
The last identity can be rewritten as eεgeε

′xe−εge−ε′x = eεε
′[g,x] = 1 in G(A[ε, ε′]), whence the

vanishing of the Lie bracket [g, x] (which is a condition in G(A[ε])). This leads to the following
equality:

Lie(ZG(h)) = {g ∈ g | [g, x] = 0,∀x ∈ h(A[ε])} = Zg(h). �

Remarks 6.2. Let us emphasise some very particular behaviours of the centre.

(i) Let ZG(h)red be the reduced part of the centraliser. Even when k is an algebraically closed
field, the equality Lie(ZG(h)red) = Zg(h) is a priori not satisfied (see, for example, [Jan04, 2.3]).

(ii) Let S := Spec(A) be an affine scheme and let G be a S-group scheme. Assume ZG to be
representable (this condition is, in particular, satisfied when G is locally free and separated (see
[DG70, II, § 1, n◦3.6(c), Théorème]). As mentioned in [SGA3I, II, 5.3.3] the algebra Lie(ZG) :=
Lie(ZG)(A) is a subalgebra of zg.

According to [SGA3II, XII Théorème 4.7(d) and Proposition 4.11] when G is smooth affine
of connected fibres and of zero unipotent rank over S, the centre of G is the kernel of the adjoint
representation Ad : G→ GL(g). Under these assumptions the equality Lie(ZG) = zg holds true.
Indeed the exact sequence of algebraic groups

induces by derivation an exact sequence (see [DG70, II, § 4, n◦1.5]) as follows.

The desired equality follows as, by definition, zg := ker(ad). Let us emphasise that this applies,
in particular, to any reductive S-group G and to any parabolic subgroup P ⊆ G (as any Cartan
subgroup of P is a Cartan subgroup of G).
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6.2 Normalisers
Let S = Spec(A) be an affine scheme and letG be a smooth S-group scheme of finite presentation.
In what follows, H ⊆ G is a closed locally free subgroup. Let us stress that under these conditions
the normaliser NG(H) is representable by a closed group sub-functor of G according to [DG70,
II, § 1, n◦3, Théorème 3.6(b)]. Moreover, if H is smooth, the aforementioned theorem provides
the representability of NG(Lie(H)) = NG(h) as then Lie(H) is representable by W (h) which is
locally free.

Lemma 6.3. IfH ⊆ G is a closed subgroup, then the inclusionNG(H) ⊆ NG(Lie(H)) is satisfied.
In particular, ifH is smooth this leads to the inclusionNG(H)(R) ⊆ NG(hR) for any A-algebra R.

Proof. Let us recall that G acts on Lie(G) via the adjoint representation. Namely, for any A-
algebra R one has

AdR :GR → GL(Lie(G))(R),

g �→ AdR(g) : Lie(G)(R) → Lie(G)(R) : x �→ i(g)xi(g)−1.

Let g ∈ NG(H)(R) := {g′ ∈ G(R) | Ad(g′)(H ⊗A R) = H ⊗A R} (see, for example, [DG70, II,
§ 1, n◦3.4, Definition]). In particular, for any x ∈ Lie(H)(R), one has

Ad(g)(x) = i(g)xi(g)−1 ∈ H(R[ε]) ∩ Lie(H)(R),

hence the inclusion NG(H) ⊆ NG(Lie(H)).
If now H is smooth, then Lie(H) is representable by a A-functor of Lie algebras and

one has

Lie(H)(A) ⊗A R = Lie(H)(R) = Lie(HR) := hR

for any A-algebra R. �

Lemma 6.4. Let h ⊆ g be a Lie subalgebra. Then one has Lie(NG(h)) = Ng(h).

Proof. By definition, one has that

Lie(NG(h)) = g ∩NG(h)(A[ε])

= {g ∈ g | Ad(gA[ε])(x) ∈ hA[ε],∀x ∈ h(A[ε])}.
The last relation can be written

Ad(eεg)eε
′x = eε

′xeε
′ε[g,x] = eε

′(x+ε[g,x]) ∈ hR ∩G(A[ε, ε′]),

in G(A[ε, ε′]), because ε2 = 0. In other words, one has

Lie(NG(h)) = {g ∈ g | x+ ε[g, x] ∈ hA[ε],∀x ∈ h(A[ε])}
= {g ∈ g | ε[g, x] ∈ hA[ε],∀x ∈ h(A[ε])}
= {g ∈ g | [g, x] ∈ hA[ε],∀x ∈ h(A[ε])}
= Ng(h). �

The second part of the following lemma is shown in the proof of [CGP15, Proposition 3.5.7]
when k is a separably closed field. The study of the proof shows that one actually only needs
H(k) to be Zariski-dense in H for the result to hold true. Let us stress that this is especially
verified when:

(i) the field k is perfect and the subgroup H is connected (see [Bor91, Corollary 18.2]);
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(ii) the field k is infinite and the subgroup H is reductive (see [Bor91, Corollary 18.2]);
(iii) the subgroup H is unipotent smooth connected and split.

Indeed, under these assumptions H is isomorphic to a product of Ga. These conditions are
satisfied, in particular, when k is perfect and H is unipotent smooth and connected (which is a
special case of assumption (i)).

Lemma 6.5. Let H ⊆ G be a closed and smooth subgroup. Then:

(i) in general, only the inclusion Lie(NG(H)) ⊆ Ng(h) holds true;
(ii) if H(k) is Zariski-dense in H, then

Lie(NG(H)) = {x ∈ g | Ad(h)(x) − x ∈ h ∀h ∈ H(k)}.
Proof. The inclusion NG(H) ⊆ NG(Lie(H)) is provided by Lemma 6.3. Combining this with the
equality obtained in Lemma 6.5, one obtains

Lie(NG(H)) ⊆ Lie(NG(h)) = Ng(h).

As already mentioned, the second assertion of the lemma is shown in [CGP15,
Proposition 3.5.7]. �

Remarks 6.6. The first point of the above lemma provides a strict inclusion of Lie algebras
in the general case. This is actually a positive characteristic phenomenon (see [Hum75, 10.5,
Corollary B] and the remark that follows Corollary B).

(i) When k is of characteristic zero, the aforementioned inclusion is always an equality (see
[Hum75, 13, Exercise 1]).

(ii) When k is of characteristic p > 0, the inclusion may be strict as shown in the following exam-
ple (see [Hum75, 10, Exercise 4]): assume p = 2. Set G = SL2 and consider the Borel subgroup B
of upper triangular matrices. With the group B being parabolic, it is its self-normaliser. In other
words, one has NG(B) = B. However, at the Lie algebra level one has Lie(NG(B)) = g (as k is of
characteristic two). Indeed sl2 is generated by

(
1 0
0 1

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
and one only needs to show that

the bracket of the two matrices
(

0 0
1 0

)
and

(
0 1
0 0

)
still belongs to b. One has

[(
0 1
0 0

)
,
(

0 0
1 0

)]
= id ∈ b.
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