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UNIFORM FINITE GENERATION OF THREE-
DIMENSIONAL LINEAR LIE GROUPS 

R. M. KOCH AND FRANKLIN LOWENTHAL 

1. Introduction. A connected Lie group G is generated by one-parameter 
subgroups exp(/Xi), . . . , exp(tXk) if every element of G can be written as a 
finite product of elements chosen from these subgroups. This happens just in 
case the Lie algebra of G is generated by the corresponding infinitesimal trans­
formations Xi, . . . , Xk ; indeed the set of all such finite products is an arcwise 
connected subgroup of G, and hence a Lie subgroup by Yamabe's theorem [9]. 
If there is a positive integer n such that every element of G possesses such a 
representation of length at most n, G is said to be uniformly finitely generated 
by the one-parameter subgroups. In this case define the order of generation of G 
as the least such n ; otherwise define it as infinity. Since the order of generation 
will, in general, depend upon the one-parameter subgroups, G may have many 
different orders of generation. Each such order of generation must be greater 
than or equal to the dimension of G by Sard's Theorem [8], 

Computation of the order of generation of G for given Xit . . . , Xk is ana­
logous to finding the greatest wordlength needed to write each element of a 
finite group in terms of generators gi, . . . , gk. In both cases it is natural to 
restrict attention to minimal generating sets. From now on, therefore, suppose 
that no subset of [X\, . . . , Xk) generates the Lie algebra of G. 

The only connected Lie groups of dimension two are R X R, R X S1, S1 X S1, 
and the ax + b group (that is, the identity component of the real affine group 
on the line). Clearly the order of generation of a two-dimensional abelian Lie 
group is always two ; a routine calculation shows that the same result holds for 
the ax + b group [4]. 

In this paper we find the possible orders of generation for all linear Lie groups 
of dimension three. This problem has previously been solved for some three 
dimensional Lie groups when the generating set has two elements. The order of 
generation of 50(3) and its universal covering group SU(2) may be any integer 
greater than or equal to 3 ; it is determined by the Killing form of the pair of 
infinitesimal transformations [3; 5]. The order of generation of PSL(2, R) is 
infinite if both one-parameter subgroups are elliptic, 3 if exactly one is elliptic, 
6 if both are hyperbolic with interlacing eigenvectors, and 4 in all other cases 
[2]. The same result holds for 5L(2, R) except that when the one-parameter 
subgroups are both hyperbolic with interlacing eigenvectors, the order of 
generation is 8 instead of 6 [5]. The order of generation of the isometry group of 
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UNIFORM FINITE GENERATION 397 

the Euclidean geometry E{2) is infinite if both one-parameter subgroups are 
elliptic and 3 if one is elliptic and the other parabolic [2]. £(2) is a three-
dimensional subgroup of the complex affine group az + $ (a and fi complex 
numbers). All other connected three-dimensional subgroups of this group have 
order of generation 3 except the subgroup az + 0 where a > 0, which cannot be 
generated by a pair of one-parameter subgroups [4]. It is, of course, evident that 
no abelian Lie group of dimension greater than two can be generated by a pair 
of one-parameter subgroups. 

Let n ?̂  oo be the order of generation of a connected Lie group G generated 
by exp(/Xi), . . . , exp(tXk). It is of interest to determine whether every 
element of G can be represented as a product of length n of the form 
exp(/iX t l) o . . . oexp(tnXin) where only the / / s vary from element to element 
and the generators occur in some predetermined order. We shall find all 
possible expressions of this type for all three-dimensional linear Lie groups. 

We would like to thank the referee for several helpful comments ; in partic­
ular it was his idea to consider minimal generating sets with more than two 
elements. 

2. Classification of connected three-dimensional Lie groups. Recall 
the real affine group A (n) acting on Rn ; it is the set of all transformations from 
Rn to Rn of the form v —» Av + I where A 6 GL(n, R) and / £ Rn. From now on 
denote such a transformation by (A, I). The affine group can be considered a 
subgroup of GL(n + 1,R) by thinking of / as a column vector and identifying 

[A f\ 
(A, I) with a matrix . The Lie algebra a(n) of this group is thus the 

[A l~\ 
set of all matrices of the form where A is an arbitrary n X n matrix 

and / (E Rn. Reversing the previous identification, we denote this element of 
the Lie algebra by (A\l). Notice that 

[<^|/>f (B\m)] = ([A,B]\Atn-Bl). 

LetGi be a one-parameter subgroup of GL (2, R) ; thenG= { (A,l)\A Ç Gi,/Ç R2} 
is a connected three-dimensional Lie group. Naturally, conjugate one-parameter 
subgroups give rise to isomorphic three-dimensional groups. By the theorem of 
the rational canonical form, each one-parameter subgroup of GL(2, R) is conju­
gate to a subgroup generated by precisely one of the following infinitesimal 
generators : 

[j!] w<>. [:;]• R i ] . [Ï -;] •** 
The list of three-dimensional Lie algebras given early in Jacobson's book [1] 

implies 

THEOREM 1. Every three-dimensional real Lie algebra is isomorphic to precisely 
one of the following: 
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(1) RXRXR, 

(2a) < < 4̂|Z) G a(2)\A is a scalar multiple of 

(3) \ (A\l) G a(2)\A is a scalar multiple of 

(4) < (A\l) G a{2)\A is a scalar multiple of 

(5«) \{A,l) G a{2)\A is a scalar multiple of 

1 °1 
LO aJ 
[1 i l 

Lo l j 

r° 11 

Lo oj 
a — 

[ l 

]} for a fixed a, \a\ ^ 1, 

}• 
• for a fixed a, a 2: 0, 

(6) «t(2), 
(7) 5/(2, R). 

THEOREM 2. Every connected three-dimensional Lie group is isomorphic to 
precisely one of the following: 

(1) R X R X R or R X R X Sl or R X S1 X Sl or S1 X S1 X 51, 

(20) (ax + b) XRor (ax + b) X S1, 

( 2 „ ) | < 4 , / > 6 ^4(2)M = 

(3) | < 4 , / > € ^ (2 )M = 

(4) {<^> /> e 4(2)M = 

IV 0 

Lo e01' 

IV te'l 

Lo e'j 
|~1 '11 
Lo ij/ 

? /or a fixed a, 0 < |a| ^ 1, 

or 

[1 a b" 
) / ( 

1 0 »"] 
0 1 c / 0 1 0 

LO 0 !_ )/ t 0 0 l j 
« G Z 

0, 1, 2, 3, . . . , and E(2) is the (5o) E(2)/kZ where k is a fixed integer, k 
universal covering group of E(2), 

(5a) {(A,l)£A(2)\A= e - ' ^ l ~ ™ j ] | /or aj&«f a, 0 < a, 

(6) 5 £7(2) or 50(3), 

(7) SL/kZ where k is a fixed integer, k = 0, 1, 2, 3, . . . , and SL is the 
universal covering group of SL(2, R). 

Proof. If G is a simply connected Lie group with Lie algebra g and center 
C(G), the most general connected Lie group with Lie algebra g is G/N where TV 
is a discrete subgroup of C(G) ; moreover C(G/N) = C(G)/N. If 7V\ and N2 are 
two such subgroups, G/Ni and G/N2 are isomorphic if and only if there is an 
automorphism a of G such that cr(Ni) = N2. 

Clearly the first group listed after each number in Theorem 2 is the simply 
connected group corresponding to the algebra listed in Theorem 1. A simple 
calculation shows that the groups listed in 1, 2a, 3, and 5a have trivial center. 
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The center of (ax + b) X R is {0} X R; its discrete subgroups are {0} X XZ 
for fixed X. If X ̂  0, the automorphism a(g X r) = g X r/\ takes this sub­
group to 0 X Z, so the only discrete subgroups that need be considered are {0} 
and {0} X Z, and these give rise to {ax + b} X R and {ax + b} X S1. 

The group 

(A J) e A(2)\A [i ;]} 
is the same as 

'1 a I 
0 1 i 
0 0 J 

and has center b £R) 

which in turn has discrete subgroups 

'1 0 \n 
n G Z / 

if X r* 0, the automorphism 

' 1 a/V|X| 
0 1 
0 0 

1 a bl\ [ 1 a/V|X| b/\\\ 
o i o = p i c/v\M 

_0 0 l j / LO 0 1 

takes the latter group to 

"1 0 «"Il ) 
0 1 0 \\n G z \ . 

_0 0 1JI ) 
Hence the result listed in 4. 

By a short calculation, the center of E(2) is trivial, since £(2) is topologically 
the same as Sl X R\ 7n(£(2)) = Z. Thus the center of £(2) is Z and the 
discrete subgroups of this group are kZ for k = 0, 1, 2, . . . . Since 
C(E(2)/kZ) = C(E(2))/kZ = Zk1 distinct &'s give rise to non-isomorphic 
groups. 

The center of 517(2) is ± 7 , so the only groups with Lie algebra su(2) are 
SU(2) and SU(2)/±I ^ 50(3). 

Finally, the center of PSL(2, R) is trivial. Since P5L(2, R) is topologically 

the same as S1 X R, then T1(PSL(2, R)) = Z. Thus C(SL(2,R)) = Z. By the 
technique employed for E(2) we find that the groups with Lie algebra 5/(2, R) 
are those listed in 7. 

THEOREM 3. The only non-linear three-dimensional connected Lie groups are 

' Z and 5L(2, R)/kZfor k 9* 1,2. 

1 a 
0 1 
0 0 
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Proof. The groups E(2) and Ë(2)/kZ are respectively 

\\ 

t 0 
0 cost 
0 sin t 
0 0 

0 
-sin t 
cost 
0 *Jf 

l> and < 

cos t/k — sin t/k 0 0 0 
sin i/& cos i/& 0 0 0 

0 0 cost — sin t a 
0 0 sin t cost b 
0 0 0 0 1 

! 

All other groups listed in Theorem 2 that are linear are clearly so. Let 

"1 a b~ 
" Z G = 

a 
1 
0 

and suppose p:G -+GL(n, C) is one-to-one. Notice that the Lie algebra g of G 
is nilpotent: after a suitable conjugation we may suppose that each element 
of p*(g) has the form 

• 
• o 
0 

• 
where the blocks are upper-triangular with constant entries on the diagonal. 

, the map from R to GL(n, C), given by Clearly, then, whenever X G [p*g, p*g. 

t —* (exp tX), is one-to-one. However, 
0 0 01 0 0 1 
0 0 1 = 0 0 0 
0 0 0J 0 0 0 

and exp is the identity in G whenever t £ Z. 

0 1 0 
0 0 0 

__0 0 0 
0 0 t 
0 0 0 
0 0 0_ 

Every representation of 5/(2, R) can be written as a direct sum of irreducible 
representations, which are explicitly known, [7]. These representations all come 

from representations of SL(2,R). Hence every representation of SL(2,R) 

vanishes on 2Z; 5L(2, R)/kZ possesses a faithful matrix representation only if 
* = 1 or 2. 

3. Results. Let G be a connected Lie group with Lie algebra g; let 
Xi, . . . , Xk generate g. If a\G —> G is an automorphism, a*(Xi), . . . , a*(Xk) 
also generate g. Clearly the order of generation of G with respect to Xi, . . . , Xk 

is the same as the order of generation with respect to o>(^i), . . . , <r+(Xk). We 
shall classify completely minimal generating sets up to automorphisms of G. 

Definition. Two minimal generating sets {Xi, . . . , Xk\ and { Fi, . . . , Yk) of 
the Lie algebra g of G are equivalent if there exist real numbers r\, . . . , rk 
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a permutation r of {1, . . . , k], and an automorphism a of G such that 
Yt = riPi(XTii)). 

THEOREM 4. On the next two pages is a list of all connected three-dimensional 
linear Lie groups G, their minimal generating sets up to equivalence, and the orders of 
generation of G with respect to these sets. When the order of generation n is finite, 
the last column indicates those expressions of length n which yield all elements 
of G. (For instance, X YX Y means every element of G can be written in the 
form exp(^X) o exp(/2 Y) o exp(kX) o exp(74 Y).) 

4. Proof. Let {X\f . . . , Xk} be a minimal generating set for a three-
dimensional Lie algebra with k = 2 or 3. When k = 2 the elements 
Xi, X2} [Xi, X2] are linearly independent. When k = 3 the elements Xi, X2, Xz 

are linearly independent and each pair {Xu Xf\ generates a two-dimensional 
subalgebra. 

For the moment set aside groups locally isomorphic to subgroups of -4(2). 
The theorem is trivial for abelian groups. In the case of two generators, the 
groups SU(2) and 50(3) were considered in [3] and [5] and the groups PSL(2, R) 
and SL(2, R) were considered in [2] and [5]. It is easy to see that su{2) contains 
no two-dimensional subalgebras, so SU(2) and SO(S) possess no minimal 
generating sets with three elements. 

Suppose {X, F, Z) is a minimal generating set for PSL(2, R) or SL(2,R). 
Let B G GL(2, R) ; the map A -> BAB-1 is an automorphism of SL(2, R) 
which preserves {=b/} and so induces an automorphism of PSL(2, R). The in­
duced Lie algebra automorphism maps X to BXB~l ; therefore we may assume 

" [ J -?HS ;]•<-[! -;]•»*-[!!*]»"'-[: - ' ]• 
[X, Y] = ; X and F generate a two-dimensional subalgebra only if 

c = 0. Similarly Z has the form _ so X, F, Z do not generate sl(2, R). 

o 0 - 1 1 
i oj-X, F, and [X, Y] are linearly independent unless F is a multiple of | 

Similarly Z must be a multiple of - n and X, F, Z cannot generate 

5/(2,2?) 

m ,hort. x - [J _ ; ] . if y . [« _»] . |x ,r , = [_°2c ? ] : * . 
latter is a linear combination of X and F precisel; 
may assume 

y when b = 0 or c = 0. So we 

- [ ; - : ] • - R -A-
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Notice that [ F, Z] = I _ 1 ; this is a linear combination of F and Z 

precisely when ab = — J. Conjugate X, F and Z using ; X maps to 

v Tr [ a 2a l V b Ol e 

X, F to , and Z to I , , . bo we may assume 

Notice that exp(/X) and exp(/F) generate the two-dimensional group 

i n - i a ^ ^1 î similarly exp(/J^f) and exp(/Z) generate < __t a > 0> 

and exp(/ F) and exp(/Z) generate 

The order of generation of PSL(2,R) is at least 4, for + n cannot 

be written as a product of three elements of the requisite types. Indeed 

+ -, n does not belong to the two-dimensional subgroups described 

earlier, so the only possible representations involve X, F and Z. Instead of 
writing exp(^iX) oexp(/2F) oexp(/3Z) writeX FZ; notice that X FZ = X FZX, 

since exp(O-X) = / ; thus + would have one of the forms XYZ} 

XZY, YXZ, YZX, ZXY} ZYX and therefore one of the forms (XF)(ZX), 
(XZ)(FX), (XF)(XZ), (XF)(ZX), (XZ)(XF), (XZ)(FX). But 

[a bTc Ol V* * 1 , Vc 0 T a b 1 Tac *1 
LO a - i J U ^ J = L* a-^J a n d U r-JLo ^ J = L * *J 

and neither can equal + , 

Since the order of generation of each two dimensional Lie group is 2, and 

Va b IV e 0 ~| |~ac + 6a7 bc~l 1 

can be written as a product of 4 elements then every in 5L(2, i?) with 

Z) > 0 can be so generated. Similarly 

Vc 0 T a 5 1 = Vac be 1 

Li ^ J L o a~l\ " L ^ W + a"1*-1 J 
and thence ^ can be written as a product of 4 elements if A > 0. 

https://doi.org/10.4153/CJM-1975-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-048-0


UNIFORM FINITE GENERATION 405 

Finally 

Y a b Tc +d c 1 = Va(c + d) + be ac + b(e + d)~\ 
[ 0 a~l JL e £ + d\ L <rle or\e + d) J 

[ 0 — C_11 
~ can be written 

thus. In short, whenever \ r £ 5L(2, i?), then one of + \ r n can be 

written as a product of 4 elements, and so the order of generation of PSL(2, R) 
is 4. 

No fixed expression of length 4 generates PSL(2} R). Indeed such an expres­
sion would involve all three generators ; and some generator would be repeated. 
Without loss of generality we can take this repeated generator to be X, for 

conjugation by n 1 is an automorphism interchanging X and Y and 

taking Z to — Z and conjugation by is a similar automorphism 

interchanging X and Z. The expression we seek would thus have one of the 
forms (X Y) (ZX), (XZ) ( YX), (X Y) (XZ), (XZ) (X Y), ( YX) (ZX), (ZX) ( YX) 

whereas some elements of PSL(2,R) cannot be written as n _x _x 

(c 0\(a b \ 
0r[d , - A 0 a-*)' 

An alternate geometric proof along the lines developed in [2] can also be 
given. 

The order of generation of SL(2,R) is at least 6, for n cannot be 

written as a product of five elements. Indeed an expression of length five would 
involve some generator only once. Since all automorphisms of SL(2, R) leave 

fixed, we can assume this generator is Z. Thus the product of 

length five would have the form 

Y a b Tc 0 Je f 1 T * * 1 
|_0 a-'jld c-ljl0 e~l\ la-'de a~ldf + a-lc~le~l J 

where a > 0, c > 0, e > 0; but n — 1 c a n n o t ^ e written in this form. 

The order of generation of SL(2, R) is 6, for 

[1 bTl OYl / ] J l + M (l+bd)f + bl 
|_0 l J U 1JL0 IJ L d df+1 J 

and r n Ç SL(2, R) can be so written if C ^ 0; conjugation by n 
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V T, ^ ^ T^ J M ^ l T^ Cl , Y A Bl 

maps A to — X, F to — Z, Z to — F, and ~ n t o R A a n c l s o r D 

can also be written as a product of six elements if B ^ 0. We saw earlier that 

conjugation by permutes X, F, Z up to sign; it takes ^ to 
, and so n can be written as a product of six elements 

unless A — D. Only the case of n remains. However 

|_2 lJL 2 3JL0 l j = L 0 - l j 

b*)/b. and 9 o n a s t n e f ° r m . 7 , 6 > 0, ac = (1 

No fixed expression of length six generates 5L(2, i^). Indeed assume such an 
expression exists; apply a suitable automorphism to obtain an expression 
starting with X F. The expression must then be XYZXYZ, for otherwise two 
letters would occupy three successive places ; the subgroup generated by any 
two letters has dimension two, and hence has order of generation two. Thus 

n —1 c o u l d then be written as a product of length five. If XYZXYZ 

gives all of 5L(2, R), then 

[ - 1 0 ] [a b Jc Oje+f e 1 
L_i - l j |_0 a-ijld c-ijl g g+f] 

a-H{e +f)+ a-lc-lg arHe + a-»c-»(g + f) \ 

where a > 0, c > 0, / > 0, e + g = (1 - f)/f; so d = c~l and 
- 1 = a-'c-\e +f + g)= a-lc~l((l - f)/f + / ) = a~^f^ > 0. 

An alternate geometric proof can be given using the ideas developed in [5]. 

5. All remaining groups are locally isomorphic to subgroups of A (2). The 
initial calculations which follow hold for arbitrary semidirect products of R 
and Rn. Suppose, then, that A0 is a fixed non-zero n X n matrix and 
g = { (rA0\l)\r € R,l € Rn] and that g is the Lie algebra of 

G = \{etA»,l) G A(n)\t G R, I 6 Rn}. 

For each fixed h Ç Rn
y the map (rA0\l) —> (rA0\l — rlx) is a Lie algebra 

automorphism of g induced by the group automorphism 

th:(etA\ I) -> (etA\ I - etAHx + h). 
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This automorphism leaves the center of G, { (I, l)\A0l = 0}, fixed and so 
induces an automorphism of all Lie groups locally isomorphic to G. 

If X = <̂ 4 o|0 G g, &i* sends X to (^40|0). Consequently, whenever 
{Xi, . . . , Xk) is a minimal generating set for g, we may assume X\ = (^40|0). 

The following lemma requires no proof: 

LEMMA. (1) X = (^4o|0) and Y = (rA0\v) generate g if and only if v is a 
cyclic vector for A0 (i.e., Rn has no non-trivial invariant subspaces containing v). 

(2) X = (i40|0), Y = {riAQ\vi)} and Z — (r2A$\v2) minimally generate g if 
and only if vi} v2, and r^v2 — r2V\ are not cyclic for A0 and Rn has no non-trivial 
invariant subspace containing Vi and v2. 

6. Let B £ GL{n,R), BAQB~l = \A0, Bv = v whenever A0v = 0. The map 
(A 0\l) —•> (BA oB~x\Bl) is an automorphism of g induced by the automorphism 
(etA°, I) —> (BetA°B~l, Bl) of G; since this automorphism leaves the center of G 
fixed, it induces automorphisms of all Lie groups locally isomorphic to G. 

We are interested in the special cases 

' • - [ ; • ] • w s i - ft ! ] • [s j]. ft - : ] • .*•>• 
If A o = n 1 , any B will work ; since A 0 has no cyclic vectors, g has no 

generating sets of the form {X} Y) and any {X, Y, Z) is obviously equivalent 
to one listed in Theorem 4. 

0 < M £ 1 , « * 1 , any diagonal £ will work ; „ = [ j ] 

is cyclic if and only if a ^ 0, 6 ^ 0. It is then trivial to obtain the generators 
listed in Theorem 4. 

If 4̂ o = I n n > ^ = n* 1 ' ^ = /> *s c y c n c ^ a n ^ on^y if # 5̂  0, 

b 9^ 0. Again we easily obtain the generators listed. In the case of (ax + b) X R,B 

need not preserve the center and can be taken to be * , ; a smaller list 

of generators then suffices. 

If A0 = , B = " .12 then cyclic vectors have the form , , 

b 9e 0. It is now easy to obtain the generators listed. There are no minimal 
triple systems since whenever V\ and v2 are noncyclic, Vi and v2 generate an 
invariant subspace smaller than R2. 

The same arguments work for n n ; in this case we need not worry about 

the center since G I <(l, n / w £ Z> is not a matrix group. The generat­

ing pair < <i40 |0)Yi40 . \\> is equivalent to the pair < ( i4 0 |0)Yo 1 >> 
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via the isomorphism 

<M.|[;]>-<<.+»M»|j> 
if 

. f a — 1 ~ | _ ^fcosfl — sin 0~1 

^ 0 = L l « J ' j B = X L s i n 0 c o s f l j ' 

then any non-zero vector is cyclic ; the results listed follow easily. 

7. T h e groups 

\(A,l)eA(2)\A=e4COSt
t - S i n ; ] } , « > 0 , 

[ [_sin t c o s / J j 

were considered in [4]. T h e group 5 ( 2 ) / Z = E{2) was considered in [2]. When 

the generating pair is U L 0 0 / ' \ 1 0 0 / ) ' t h e ° r d e r ° f 

generation was shown to be infinite ; this implies t h a t it is also infinite in 

E{2)/kZ for all k. When the generating pair is 

it was shown t h a t some elements in £ (2 ) cannot be wri t ten in the form YXY; 
the same conclusion then follows for E(2)/kZ. Finally it was shown t h a t all 
elements in £ (2 ) can be wri t ten in the form XYX. If £ G Ë(2), the element in 
£ (2 ) induced by £ can be wri t ten exp(tX) o exp(uY) o exp(vX), so 
£ = r] exp(tX) o exp(^ Y) o exp(vX) for some 

n € K e r [ £ ( 2 ) - ^ £ ( 2 ) ] . 

(Here we have used exp to denote both the exponential map on E(2) and the 
exponential map on E{2) and t rus t t h a t no confusion will result!) But exp(/X) 
generates the center of E(2) and the kernel of ir lies in this center, so 

£ = exp(tiX) o exp(tX) o exp(u Y) o exp(aZ) 

= exp([/i + l]X) o exp(u Y) o exp(i/Z). 

T h u s all elements in E(2) can be wri t ten in the form XYX ; the same result 
then follows for E(2)/kZ. 

Only cases 2 a , |a| ^ 1, 3, and 4 remain. 

8. Consider G = { {etA\ l) Ç A(n)\t G R, I 6 Rn\. If v is cyclic for A0 and 
X = (A0\0), Y = (0\v), the order of generation of G with respect to {X, Y] is 

https://doi.org/10.4153/CJM-1975-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-048-0


UNIFORM FINITE GENERATION 409 

^2w. Indeed 

exp(/i Y) o exp(^iZ) o . . . o exp(/ra Y) o exp(unX) 

= (e(Ui+...+un)A0f tlV _|_ t2eUlAov _|_ . _ _|_ / n g(« i+ . - .+«» - l )Ao t , ^ 

Let ri = wi, r2 = «i + «2, . . . , rn-i = «i + . . . + «n-iî it suffices to choose 
these r's so that «/, eri^0fl, . . . , ern~lA°v are linearly independent. This is certainly 
possible, for otherwise det(fl, eTlA°v, . . . , ern~lAov) = R(ri, . . . , rn_i) = 0, in 
which case 

^ - r - 2 ^ 7 »=T (0, . . . , 0) = det (v, ̂ , . . . , ̂ o*"1») = 0. 
dridr2 • . . . • dr„_i 

But v is cyclic and so {v, A0v, . . . , A0
n~lv] is a basis for i?w. 

If g G G, g - 1 = exp(/i F) o exp(u2X) o . . . o exp(/n Y) o exp(unX), then 

g = exp( — unX) o exp( — 4 F) o . . . o exp( — u\X) o exp( —^F). 

In short, every element can be written in the form YX . . . YX and also in the 
form XY ...XY. 

If 4̂ o = n L a ^ 1, n ' o r n 1 ' t^ ie a c t u a ^ order of generation 

is exactly 2n = 4. Indeed (iA \ cannot be written as 

expOiX) o exp(/2F) o exp(z*2X) = (e<Ul+u*)A°, t2e
UlA°v) 

or 

exp(/i F) o expOiX) o exp(/2 Y) = (eUlA°, txv + t2e
UlA°v). 

(More generally, it can be shown that whenever A 0 has only real eigenvalues, 
the order of generation of G with respect to { (^40|0), (0\v)\ is exactly 2n. The 
key lemma needed to establish this result appears in a paper by Polya [6].) 

9. Let G = (ax + b) X R or (ax + b) X Sl. Since the order of generation of 
(ax + b) X R with respect to { (1|0) X 0, (0|1 ) X 1) is four, the order of 
generation of (ax + b) X Sl with respect to these generators is three or four. 
It cannot be three, for exp tX o exp it Y o exp vX = (et+v, elu) X u and 
exp t F o exp uX o exp v Y = (ew, 2 + eMp) X (t + z/) ; therefore (1,0) X r can 
be written as a product of three elements only if r '—' 0. 

Consider {X, Y\ = { <1|0> X 0, (1|1) X X} where X ̂  0. Then 

exp tX o exp uY o exp vX o exp wY = (e
l+u+v+w, e

t+u+v+w - et+u+v 

+ et+u-et)X\(u + w). 
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But every (a,b) X c can be so written. Indeed chose u so large that 

, b - a + ev(ae-e/x) 
d= T^i 

is positive, choose t so that el — d and let v = In a — c/X — t,w = c/X — u. 
Then every element in (ax + b) X R and (ax + b) X S1 can be written as a 
product of 4 terms ending in expwY and by the argument in VIII, every 
element is also a product of 4 terms ending in exp wX. 

Finally, exp tX o exp uY o exp zX = (et+u+\ et+u — el) X Xu and 
exp u Y o exp z;X o exp w Y = (eu+v+u>

t eu+v+w - eu+v + eu - 1 ) X X(u + w) ; 
elements of the form (1,0) X r can be written in the required form only if 
r ~ 0. 

Consider {X, F, Z) == {(1|0) X 0, (0|1) X 0, (0|0) X 1} ; then 

exp tX o exp uY o exp yZ = (e\ elu ) X v 

exp uY o exp /X o exp vZ = (e\ u ) X v 

exp u Yo exp vZ o exp tX = (e\ u ) X v 

and each of these forms gives all of G. If g £ G, 

g - 1 = exp(/X) o exp(w F) o exp(z;Z) 

and so g = exp( —^Z) o exp( — uY) o exp( —/X) ; thus every element can be 
written in the form ZYX. Similarly any permutation of XYZ produces all 
elements of G. 

Consider {X, Y} Z{ = {<1|0> X 0, (0|1) X 0, (1|0) X X} for X ̂  0;then 

exp tX o exp u Y o exp vZ = (et+v, elu ) X Xv 

exp uY o exp tX o exp vZ = (et+v, u) X Xv 

exp u Y o exp vZ o exp /X = (et+\ u ) X Xv 

and the preceding argument is again valid. 
Consider {X, F, Z) = { <1|0> X 0, (1|1) X 0, (0|0) X 1}: 

exp tX o exp u Y o exp ^Z = (<?*+", e'+M — el) X v 

exp u Y o exp /X o exp z/Z = (ef+w, eu — 1 ) X v 

exp w F o exp z;Z o exp tX — (et+u, eu — 1 ) X v. 

An element of the form (a,b) X c can be written in the first way if and only 
if a — b > 0. It can be written in the other two ways if and only if b > — 1. 
Hence every element can be written in one of these forms, but no fixed order 
produces all elements of G. 

10. Let 

G = {{A,l)eA(2)\A =[e
Q £ ] } , 0 < M ; g l . 
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exp tX oexp uYo exp vZ = (^e
Q galj , | j ^ J ) 

exp u Y o exp tX o exp vZ = (]^Q gatj , [ J ^ J ) 

exp u Y o exp vZ o exp tX = (^e
Q ^ J , | ^ J ^ . 

Thus, each form suffices to give all of G. 

»"•"'-{€ »-<ii]>-€.0I?]>}-«ta' 
exp tX o exp u Y o exp vZ = (^e

Q
+ Jt+V) J , ̂  ( ^ / / _ ^ J ) 

exp ^ F o exp /X o exp z;Z = ^ Q
+ Jt+V)\^ , [^ ( g a ( l + * _ ^ J ^ 

exp « F o exp z;Z o exp tX = (^^ Jt+V)^ , ̂  ( ^ / _ 1} J ^ . 

An element of the form (\ 1,1 yean be written in one of the first two 

ways if and only if aa — ac > 0. It can be written in the third form if and only 
if ac > —1. The claimed result now follows. 

Exactly the same analysis applies when 

"•'•"-{<[iai[!fl>-<[i:ii]>-<i?>}-
Suppose a = 1 and 

"•"•«-«[iïIMiïIMi ?!?>}• 
Then, 

/rt+u+v o 1 T et+u _ et *lv 
exp tX o exp u Y o exp vZ = ^ Q ^ | + M + , J , | ^ + t l + , _ ^ + W J ^ 

exp u Y o exp tX o exp ̂  = \J_ Q g < + M + ,J > | y + M + , _ ^ J / 

exp u Y o exp vZ o exp tX = ^ Q g |+ t t+ , J , |^w +„ _ g W ^ . 

An element ( ' \ can be written in the first form if and only if 
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a — c > 0 and a — c — b > 0. It can be written in the second form if and only 
if a — c > 0 and b > — 1. It can be written in the third form if and only if 
b > — 1 and b + c > — 1 . None of these forms, and so no form, suffices to 
write all elements of G. However, the first two forms suffice to write 

(l 0 °a\ ' \c \) whenever c = °* If c > °» 

and — a~lc < 0, and so ( n , V 1 can be generated by three elements. 

It follows that ( n 1,1 \y itself can be generated by three elements. 

Then 

->*-& £]•[!]> - — < [ o ;]{:;'.++
1

1]>-
Notice that the equation exp / Y o exp uX o exp v Y o exp wX = (A, I) can 
be solved for t, u, v, and w precisely when t, u, and v can be chosen so that 
exp t Y o exp uX o exp v Y applied to the zero vector gives /. Indeed exp wX 
leaves the zero vector fixed ; once /, u, and v are known, w can be chosen to make 
the first part of the expression equal to A. 

The orbits 

\e% M M = \etVi~\ Lo HUJ L^J 
of exp(tX) acting on the plane are as sketched belowr. 

0 < a < 1 

Since exp / Y = (i, \ o exp tX o ( i 

is just that of exp tX translated by 

exp v F, exp uX o exp v Y, exp / Y o exp uX o exp v Y are as below. 

- 1 ^ a < 0 

_ 1 V the orbit picture of exp / Y 

The successive images of by 
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0 <a < 1 

x ( l , l ) 

- 1 S a < 0 

x ( l , l ) 
(1,1) 

SS**5 î ss 

For our purpose it suffices to observe that the final pictures omit some points 
in the plane and that they contain all (x, y) with y < 1. We now offer an 
analytic justification of these facts. First of all, (1, 1) is not in either final 

picture, otherwise it would equal exp uX o exp v Y since it is left fixed by 

exp /F ; thus (expz>F) =exp(-z*)X or(-e< + l,-eat + l) = (e~u,e-«u) 

or 1 = el + e~u = eat + e~aU\ it follows that t < 0, u > 0, at < 0, au > 0, 
and so a > 0. Then [1 - e~u]a = 1 - [e~u]a ; however if 0 < a < 1 and 
0 < r < 1, the equation [1 — r]a = 1 — ra cannot hold. 

Let (xy,y) be a point with y < 1. Then exp / F o exp uX o exp v Y \ = 

precisely when exp uX o exp v Y = exp( —/ F) , i.e. when 

[ eu(l - ev) 1 = I" e~\x - 1) + 1 1 

Let r = e~"'(a; — 1) + 1, s = e~at(y — 1) + 1. We want to find w and v so 
g«(l - e

v) = r, eaU(l - eaV) = s. 
Suppose for the moment that — 1 ^ a < 0. Choose / so large that r > 0, 

s < 0. For each t; < 0 there is a unique w such that eu = r/(\ — ev). Choose v 
so that 

\ 1 - W e a r - l 
or ra/ — s = (1 — ev)"/(eaV — 1) ; this is possible because 

i- (1 ~ e°)a , ,. (1 - e°)a
 A 

hm -*-JJ r - = oo and hm - ^ f- = 0. 
»->o e — 1 ,_>_„ c — 1 
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Now suppose 0 < a < 1. There is no hope of solving for u and v unless r 
and s have the same sign. If r > 0 and s > 0, there is a unique u for 
each v < 0 with ew = r / ( l — ev) ; we want r«/(l — ev)a = s/1 — eaV or 
f«/s = (1 - ec)a/(l ~ eaV). Since 

lim "Y"^—5*~ = °° and hm y — — ^ - = 1, 

the equations can be solved for u and v provided ra/s > 1. If r < 0 and 5 < 0, 
there is a unique u for each v > 0 with eM = —r/(ev — 1) ; we want 

(~r)a s _ (-Q- («' - I)" 
(ev - l)a eav - 1 u l 

— 5 e o c - 1 

ince 

hm - ^ 7- = 00 and 
e->0 « — 1 

hm av :¥-'• 
the equations can be solved for w and v provided ( — r)a/ — s > 1. If r = s = 0, 
let v = 0. Choose t0 so that s(/0) = erat»(y - 1) + 1 = 0. If r(/0) = 0, the 
results follows. If r(t0) > 0, r(/0 + At) > 0 and s(/0 + A/) > 0 for all suffi­
ciently small positive At, then 

r(to + A/)a 

s(/o + A/) ^ 

if A/ is small enough. Finally if r(t0) < 0, r(/0 + At) < 0 and s(*0 + A/) < 0 
for all sufficiently small negative A/, then 

[-r(tp + A/)]" > j 
-5(/o + A0 

if At is small enough. 
Since the final pictures omit points in the plane, some elements of G cannot 

be written in the form exp / Y o exp uX o exp v Y o exp wX whence the in­
verses of these elements cannot be written in the form exp tX o exp uY o 
exp vX o exp w Y. However, every element in G can be written in one of these 

two forms. Indeed, notice that conjugation by ( —1,\ \\ interchanges exp tX 

and exp / Y and converts 

([0 £}D;]>to([o i]'["t-^+1i]): 

if lv < 1 then 

\\ r\ at \ » 7* / — exp / Y o exp uX o exp vY o exp wX 
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by the preceding orbital analysis. If lv ^ 1, —lv — eat + 1 < Oand 

= exp / Y o exp uX o exp v Y o exp wX, 
then 

\ n a, » » | ) = exp /X o exp w F o exp vX o exp w Y 

11. Let 

Then 

As in § 10, we can write {A,l)'m the form exp t Yo exp uX o exp z; Fo exp wX pre­

cisely when £, u, and y can be chosen so that (exp t Yo exp uX o exp vY)\ = /. 

Consider a typical orbit 

[o :.'][:]-f;1 
of exp(/X) acting on the plane. If v2 = 0, this orbit is exactly the left or right 

half of the x-axis. Otherwise it passes through a non-zero point on the 

[ tw~\ Ye1 tel~] 

. Thus the orbits of , t are as sketched 
below ; all orbits approach the origin horizontally. 
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Since exp (J F) = \I,\ i / ° exp(tfX) o 1IA 1 / » the orbit picture of 

exp(/ F) is just that of exp tX translated by 1 . The successive images of 

m by exp v F, exp uX o exp v F, and exp / F o exp wX o exp v Y are as follows : 

• x ( l . - l ) 

As in § 10 we show that the final picture omits some points in the plane and 
contains all (x, y) with y > — 1. First of all, (1, —1) is not in the final picture, 

since it is left fixed by exp t Y otherwise it would equal (exp uX o exp v F) , si 

thus (exp^F) = exp( — uX)\ or 

(vev - ev + 1, ev - 1) = (e~u + ue~u, -e~u) 

or ev + e~u = 1 and — ̂  + ue~u = 0; in order that ev + e~u = 1, i; < 0 and 
u > 0, so - ^ r + ue~u > 0. 

Let (x, y) be a point such that y > — 1. Then 

exp / F o exp uX o exp t; F = 

precisely when exp uX o exp z; F = exp( —/ F) , i.e., 

Uu - l)(eu+v - eu) + veu+ 

pU+V _ _ pU 

v l = r̂ -̂ (̂  - 1 - t(y + 1)) + l l 
J L e~l{y + 1) - 1 J ' 

Let r = e~\x - 1 - t(y + 1)) + 1, 5 = e~'(;y + 1) - 1. Notice that 
(u - l)(eu+v - eu) + veu+v = r, ^+° - eu = s precisely when v = ln(l + s/eu) 
and (w — 1)5 + (eu + s)\n(l + s/eu) = r. Choose t so large that r > 0, 
- 1 < s < 0. Consider/(w) = r - (u - \)s - (eu + s)ln(l + s/eu). If u > 1, 
this expression is positive. But 

lim f(u) = r - [In ( -5 ) - l]s = e~'(x + y - t(y + 1)) 
w-»ln(— 5) 

+ (1 - «"'(y + 1)) In (1 - e-'(y + 1)) = e~'[x + y - t(y + 1) + 
(e'- ( y + l ) ) l n ( l - C - ' ( y + l ) ) ] ; 

this expression is negative for large t. Therefore the above equations can be 
solved for t, u, and v. 
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Since the final picture omits points in the plane, some elements of G cannot be 
written in the form exp tY o exp uX o exp vY o exp wX, and their inverses 
cannot be written in the form exp tX o exp u Y o exp vX o exp w Y. However 
every element of G can be written in one of these two forms, by the argument 

used in discussing the previous group; indeed conjugation by (—I,\ y 

interchanges exp tX and exp t Y and converts 

<K :•']•[;;]> - <[o ::] . [ : : : f - t ]>; 
if lv S - 1 , el - 1 - lv > 0. 

12. Concluding remarks. 
It is easy to extend our analysis to the non-linear group 

1 a b 
0 1 c 
0 0 1 

1 0 n 
0 1 0 
0 0 1 

neZ) 

the order of generation is always 4. Since some automorphisms of G do not 
induce automorphisms of G, a slight modification of our argument is required. 

The groups SL(2, R)/kZ for k 7± 1, 2 require an intricate discussion to be 
given later. When neither generator is elliptic, the order of generation increases 
with increasing k. 

In contrast to results of earlier papers, we have found many examples here 
where the minimal order of generation is greater than the dimension of the 
group. 
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