FINITELY DOMINATED COVERING SPACES OF 3- AND 4-MANIFOLDS

JONATHAN A. HILLMAN
(Received 1 August 2006; revised 25 October 2007)
Communicated by C. D. Hodgson

Abstract

If P is a closed 3-manifold the covering space associated to a finitely presentable subgroup v of infinite index in $\pi_{1}(P)$ is finitely dominated if and only if P is aspherical or $\widetilde{P} \simeq S^{2}$. There is a corresponding result in dimension 4 , under further hypotheses on π and v. In particular, if M is a closed 4-manifold, v is an ascendant, $F P_{3}$, finitely-ended subgroup of infinite index in $\pi_{1}(M), \pi$ is virtually torsion free and the associated covering space is finitely dominated then either M is aspherical or $\widetilde{M} \simeq S^{2}$ or S^{3}. In the aspherical case such an ascendant subgroup is usually Z, a surface group or a $P D_{3}$-group.

1991 Mathematics subject classification: 57N13, 20 J05.
Keywords and phrases: finitely dominated, 4-manifold, Poincaré duality group, subnormal subgroup.

A space X is finitely dominated if there is a finite cell complex Y with maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g f \sim i d_{X}$. (Thus, X is homotopically a retract of Y.) If the universal covering space \tilde{M} of a 4-manifold M is finitely dominated then one of the following holds: M is aspherical; \tilde{M} is homeomorphic to $S^{2} \times R^{2}$ or $S^{3} \times R$; or $\pi=\pi_{1}(M)$ is finite. More generally, if M has a finitely dominated covering space M_{ν} such that $\nu=\pi_{1}\left(M_{\nu}\right)$ is an $F P_{3}$ normal subgroup of infinite index in π there is the additional possibility (when v has infinitely many ends) that M might have a finite covering space which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a $P D_{3}$-complex. (See [9, Theorems 3.9, 10.1 and 11.1].)

In this paper we relax the hypotheses on v further. The arguments we use apply equally well to covering spaces of low-dimensional Poincaré duality complexes. We begin in dimension 3, as the surface case is trivial. In Section 2 we show that if M is a a $P D_{3}$-complex with torsion-free fundamental group π and v is a subgroup of infinite index in π the associated covering space M_{ν} is finitely dominated if and

[^0]only if v is finitely presentable and $\pi_{2}(M)=0$ or Z. In the rest of the paper we consider $P D_{4}$-complexes. Here we need to assume that the subgroup v be $F P_{3}$ and ascendant in π. (The notion of ascendant subgroup is recalled in Section 1 below.) If M is aspherical π is a $P D_{4}$-group and finitely dominated covering spaces correspond to $F P_{3}$ subgroups of π. In Section 3 we show that an ascendant $F P_{3}$ subgroup of infinite index in a $P D_{4}$-group is usually a $P D_{r}$-group for some $r \leq 3$. However, we have not been able to eliminate other possibilities completely. For instance, it is not known whether a Baumslag-Solitar group may be an ascendant subgroup of a $P D_{4}$-group. In Section 4 we consider the case of a $P D_{4}$-complex M with a finitely dominated infinite covering space M_{ν} corresponding to an ascendant $F P_{3}$ subgroup $\underset{\sim}{v}$, and give homological conditions on π and ν under which either M is aspherical or \widetilde{M} is homotopy equivalent to S^{2} or S^{3}.

1. Notation

The Hirsch-Plotkin radical $\sqrt{\pi}$ of a group π is the maximal locally nilpotent, normal subgroup of π. The Hirsch length $h(v)$ of a finitely generated nilpotent group v is the number of infinite cyclic factors of a composition series for the group; $h(\sqrt{\pi})$ is the least upper bound of $h(\nu)$ as v varies over finitely generated subgroups of $\sqrt{\pi}$. If G is a subgroup of π then $C_{\pi}(G)$ and $N_{\pi}(G)$ are the centralizer and normalizer of G in π, respectively. The centre of G is $\zeta G=G \cap C_{\pi}(G)$.

A subgroup K of a group G is ascendant if there is an increasing sequence of subgoups N_{α}, indexed by an ordinal $\beth+1$, such that $N_{0}=K, N_{\alpha}$ is normal in $N_{\alpha+1}$ if $\alpha<\beth, N_{\beta}=\cup_{\alpha<\beta} N_{\alpha}$ for all limit ordinals $\beta \leq \beth$ and $N_{\beth}=G$. (If \beth is finite K is subnormal in G.) Such ascendant series are well suited to arguments by transfinite induction. For instance, it is easily seen that $\sqrt{K} \leq \sqrt{N}_{\alpha}$, for all $\alpha \leq \beth$. We write \mathbb{Z} for the ring of integers and Z for an abstract infinite cyclic group. If A is an abelian group and I a set let $\oplus^{I} A$ be the direct sum of copies of A indexed by I.

We shall assume that the fundamental group π of a space or cell complex X acts on the universal cover \widetilde{X} on the left, and so the (cellular) chain complex $C_{*}(\widetilde{X})$ is naturally a complex of left $\mathbb{Z}[\pi]$-modules. The equivariant cochain complex $\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C_{*}(\widetilde{X}), \mathbb{Z}[\pi]\right)$ is then a complex of right $\mathbb{Z}[\pi]$-modules. Let $E(\pi)=$ $H^{1}(\pi ; \mathbb{Z}[\pi])$; this is naturally a right $\mathbb{Z}[\pi]$-module.

If X is a Poincaré duality complex with fundamental group π and orientation character $w=w_{1}(X)$ and R is a right $\mathbb{Z}[\pi]$-module we let \bar{R} be the conjugate left module, with module structure given by $g . r=w(g) r g^{-1}$ for all $g \in \pi$ and $r \in R$.

2. $\boldsymbol{P} \boldsymbol{D}_{\mathbf{3}}$-complexes

It is easy to see that an infinite covering space of a closed surface is finitely dominated if and only if its fundamental group is finitely generated. Here we show that there is a similar criterion for an infinite covering space of a $P D_{3}$-complex to be finitely dominated.

LEMMA 1. Let π be a finitely generated torsion free group which is not free. Then $E(\pi)$ is a free right $\mathbb{Z}[\pi]$-module.

Proof. Since π is finitely generated it is a free product of finitely many indecomposable groups, and since π is torsion-free the latter either have one end or are infinite cyclic. Thus, π is an iterated Higman-Neumann-Neumann (HNN) extension with base a nontrivial free product of one-ended groups and trivial associated subgroups. In other words, π is the fundamental group of a finite graph of groups \mathcal{G} in which all of the vertex groups have one end and all of the edge groups are trivial. It follows from the Mayer-Vietoris sequences of [1, Theorems 2.10 and 2.11] that $E(\pi)$ is a free right $\mathbb{Z}[\pi]$-module with basis corresponding to the edges of \mathcal{G}.

When π is a free group $E(\pi)$ is a finitely presentable $\mathbb{Z}[\pi]$-module of projective dimension 1, and we shall need a different result.

Lemma 2. Let $\pi=\nu * \sigma$, where v is finitely generated, and let $I=v \backslash \pi / \nu$ be the double coset space. Then $\oplus^{I} E(v)$ is a direct summand of the abelian group $E(\pi) \otimes_{\nu} \mathbb{Z}$.

Proof. The group v is clearly a retract of π and so $H^{1}(\nu ; \mathbb{Z}[\pi])$ is a direct summand of $E(\pi)$ (as a right $\mathbb{Z}[\pi]$-module). Now $H^{1}(\nu ; \mathbb{Z}[\pi]) \cong E(\nu) \otimes_{\nu} \mathbb{Z}[\pi]$, since ν is finitely generated. Therefore, $H^{1}(\nu ; \mathbb{Z}[\pi]) \otimes_{\nu} \mathbb{Z} \cong E(\nu) \otimes_{\nu} \mathbb{Z}[\pi / \nu] \cong \oplus^{I} E(\nu)$ is a direct summand of $E(\pi) \otimes_{\nu} \mathbb{Z}$ (as an abelian group).

THEOREM 3. Let P be a $P D_{3}$-complex with fundamental group π and let v be a subgroup of infinite index in π. Then the associated covering space P_{v} is finitely dominated if and only if π is virtually Z or $\pi_{2}(P)=0$ and v is finitely presentable.

Proof. The Hurewicz theorem and Poincaré duality give isomorphisms of left $\mathbb{Z}[\pi]$ modules $\Pi=\pi_{2}(P) \cong H_{2}(P ; \mathbb{Z}[\pi]) \cong \overline{E(\pi)}$. The fundamental group of a $P D_{3}$ complex is a free product of $P D_{3}$-groups with a finitely generated, virtually free group, and so is virtually torsion free [4]. Moreover, a complex is finitely dominated if and only if it has a finite covering space which is finitely dominated. Thus we may assume that π is torsion free, after passing to a finite covering space, if necessary.

The spectral sequence of the covering $\widetilde{P} \rightarrow P_{v}$ gives an exact sequence

$$
H_{3}(v ; \mathbb{Z}) \rightarrow \mathbb{Z} \otimes_{\nu} \Pi \rightarrow H_{2}\left(P_{\nu} ; \mathbb{Z}\right) \rightarrow H_{2}(\nu ; \mathbb{Z}) \rightarrow 0
$$

We may assume that v is finitely presentable. It is then a finite free product of finitely presentable subgroups of $P D_{3}$-groups with a free group, by the Kurosh subgroup theorem. In particular, $H_{s}(v ; \mathbb{Z})$ is finitely generated for all $s \geq 0$, and so $H_{2}\left(P_{v} ; \mathbb{Z}\right)$ is finitely generated if and only if $\mathbb{Z} \otimes_{\nu} \Pi$ is finitely generated.

If π is free of rank 1 then $\pi \cong Z$ and $E(\pi) \cong \mathbb{Z}$. Hence, $\pi_{2}(P)$ is infinite cyclic, so $\widetilde{P} \simeq S^{2}$. In this case every covering space is finitely dominated.

If π is free of rank $r>1$ then we may assume that ν is a proper free factor of π, after passing to a subgroup of finite index, if necessary [3]. We may also assume that P is orientable. It is easy to see that the double set space $I=v \backslash \pi / v$ is infinite. Since $\mathbb{Z} \otimes_{\nu} \Pi \cong \overline{E(\pi) \otimes_{\nu} \mathbb{Z}}$ is not finitely generated, by Lemma $2, P_{\nu}$ cannot be finitely dominated.

If π is not free $\Pi \cong \mathbb{Z}[\pi]^{s}$ for some $s \geq 0$, by Lemma 1 . Thus, $\mathbb{Z} \otimes_{\nu} \Pi$ is free of infinite rank as an abelian group, unless $s=0$. Thus, if P_{ν} is finitely dominated $s=0$ and so $\Pi=0$.

Suppose conversely that $\Pi=0$ and that v is a finitely presentable subgroup of infinite index in π. Then the universal covering space \widetilde{P} is contractible, and so P is aspherical. Therefore $c . d . v \leq 2$, by [16], and $P_{\nu} \simeq K(v, 1)$. Let Y be the finite 2-complex determined by a finite presentation for ν. The cellular chain complex for \widetilde{Y} gives an exact sequence of $\mathbb{Z}[\nu]$-modules

$$
0 \rightarrow \pi_{2}(Y) \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow \mathbb{Z} \rightarrow 0
$$

where $C_{q}=C_{q}(\tilde{Y})$ is a finitely generated free $\mathbb{Z}[\nu]$-module, for $q \leq 2$. Since c.d. $\nu \leq 2$ the module of 1-cycles $Z_{1}=\operatorname{Im}\left(\partial_{2}\right)$ is projective, and so $C_{2} \cong Z_{1} \oplus \pi_{2}(Y)$. Thus, $\pi_{2}(Y)$ is a finitely generated projective module. Let F be a free $\mathbb{Z}[\nu]$-module of countably infinite rank. Then $\pi_{2}(Y) \oplus F \cong F$, by the 'Eilenberg swindle'. Hence, we may construct a $K(\pi, 1)$ complex K by adding countably many 3-cells to $Y \vee V$, where V is a countable wedge of 2-spheres. Let $c: Y \rightarrow K$ be the classifying map and $p: K \rightarrow Y$ be the map which collapses V and the adjoined 3-cells. Then $c p \sim i d_{K}$, and so $P_{\nu} \simeq K$ is finitely dominated.

In particular, a closed 3-manifold has a finitely dominated infinite covering space if and only if its universal covering space is contractible or homotopy equivalent to S^{2} or S^{3}.

3. Poincaré duality groups

Subgroups of $P D_{n}$-groups are the algebraic analogues of covering spaces of aspherical $P D_{n}$-complexes. The analogues of finitely dominated covering spaces are the $F P_{n-1}$ subgroups, for which the trivial module \mathbb{Z} has a projective resolution which is finitely generated in degrees $\leq n-1$. (There is then a finite projective resolution of length at most n, since either v is a $P D_{n}$-group or $c . d . v<n$ [16].) The algebraic notion is broader in one respect: we do not assume that the $P D_{n}$-groups or their $F P$ subgroups are finitely presentable.

In [10] it was shown that if v is an $F P_{2}$ ascendant subgroup of infinite index in a $P D_{3}$-group π then either $v \cong Z$ and is normal in π or ν is a $P D_{2}$-group and $\left[\pi: N_{\pi}(\nu)\right]<\infty$ or π is a virtually poly- Z group (and every subgroup is $F P_{2}$).

THEOREM 4. Let G be a nontrivial $F P_{3}$ normal subgroup of infinite index in a $P D_{4}$ group π. Then either:
(1) G is a $P D_{3}$-group and π / G has two ends;
(2) G is a $P D_{2}$-group and π / G is virtually a $P D_{2}$-group; or
(3) $G \cong Z, H^{s}(\pi / G ; \mathbb{Z}[\pi / G])=0$ for $s \leq 2$ and $H^{3}(\pi / G ; \mathbb{Z}[\pi / G]) \cong Z$.

Proof. The subgroup G is $F P$, since $c . d . G<4$ (see [16]), and hence so is π / G. The E_{2} terms of the Lyndon-Hochschild-Serre (LHS) spectral sequence with coefficients $\mathbb{Q}[\pi]$ can then be expressed as tensor products $E_{2}^{p q}=H^{p}(\pi / G ; \mathbb{Q}[\pi / G]) \otimes$ $H^{q}(G ; \mathbb{Q}[G])$. If $H^{j}(\pi / G ; \mathbb{Q}[\pi / G])$ and $H^{k}(G ; \mathbb{Q}[G])$ are the first nonzero such cohomology groups then $E_{2}^{j k}$ persists to E_{∞}. Hence, $j+k=4$ and $E_{2}^{j k} \cong \mathbb{Q}$. Therefore, $H^{j}(\pi / G ; \mathbb{Q}[\pi / G])$ and $H^{n-j}(G ; \mathbb{Q}[G])$ each have dimension 1 over \mathbb{Q}. In particular, π / G has one or two ends and G is a $P D_{4-j}$-group over \mathbb{Q} [6]. If π / G has two ends then it is virtually Z, and so G is a $P D_{3}$-group (over \mathbb{Z}), by [1, Theorem 9.11]. If $H^{2}(G ; \mathbb{Q}[G]) \cong H^{2}(\pi / G ; \mathbb{Q}[\pi / G]) \cong \mathbb{Q}$ then G and π / G are virtually $P D_{2}$-groups [2]. Since G is torsion-free it must be a $P D_{2}$-group. The only remaining possibility is (3).

Do the conclusions of this theorem hold if the hypothesis that G be $F P_{3}$ is relaxed to ' G is $F P_{2}$ '? (If G is an $F P_{2}$ normal subgroup of a $P D_{4}$-group π and π / G is virtually a $P D_{r}$-group then G is a $P D_{4-r}$-group [11].) If $v . c . d . \pi / G<\infty$ then π / G is virtually a $P D$-group in case (3) also, by [1, Theorem 9.11].

COROLLARy. If G is an $F P_{3}$ normal subgroup of infinite index in π and K is an ascendant $F P_{2}$ subgroup of G then K is a $P D_{k}$-group for some $k<4$.

Proof. This follows immediately from Theorem 4 together with the [10, corollary of Theorem 11].

We shall consider next $F P_{3}$ ascendant subgroups of $P D_{4}$-groups.
THEOREM 5. Let G be a nontrivial $F P_{3}$ ascendant subgroup of infinite index in a $P D_{4}$-group π. If G has finitely many ends then one of the following holds:
(1) G is a $P D_{3}$-group, $\left[\pi: N_{\pi}(G)\right]<\infty$ and $N_{\pi}(G) / G$ has two ends;
(2) c.d. $G=3$ and $H^{2}(G ; \mathbb{Z}[G])$ is not finitely generated as an abelian group;
(3) G is a $P D_{2}$-group, $\left[\pi: N_{\pi}(G)\right]<\infty$ and π is virtually the group of a surface bundle over a surface;
(4) G is a $P D_{2}$-group, $\zeta G=1$ and π is virtually the group of the mapping torus of a self homeomorphism of a surface bundle over the circle;
(5) \quad c.d. $G=2, \quad \chi(G)=0, H^{2}(G ; \mathbb{Z}[G])$ is not finitely generated as an abelian group and $\left[\pi: N_{\pi}(G)\right]=\infty$; or
(6) $\quad G \cong Z$ and either $G<\sqrt{\pi}<\pi$ is a subnormal chain or π is virtually nilpotent of Hirsch length 4.
Proof. Let $G=N_{0}<N_{1}<\cdots<N_{\beth}=\pi$ be an ascendant sequence, and let ϕ be the union of the finite ordinals $\leq \beth$. If G is normal in π then the theorem follows from Theorem 4. Otherwise, replacing N_{1} by the union of the terms N_{α} which normalize G and reindexing, if necessary, we may assume that G is not normal in N_{2}.

Since $[\pi: G]=\infty$ we have $c . d . G<4$, by [16]. Suppose first that $c . d . G=3$ and that $H^{2}(G ; \mathbb{Z}[G])$ is finitely generated as an abelian group. Then $H^{s}(G ; \mathbb{Z}[G])=0$ for $s \leq 2$, by [5] or [2]. If ϕ is infinite then N_{ϕ} is not finitely generated, and so $c . d . N_{\phi}=4$, by [8, Theorem 3.3]. However, then [$\pi: N_{\phi}$] $<\infty$ [16] and so N_{ϕ} is finitely generated. Therefore, ϕ is finite, so N_{ϕ} is one-ended, $F P$ and ascendant in π, and it is easily seen that the theorem holds for G if it holds for N_{ϕ}. Thus, we may assume that $\left[N_{1}: G\right]=\infty$. It follows immediately from the LHS spectral sequence that $H^{s}\left(N_{1} ; W\right)=0$ for $s \leq 3$ and any free $\mathbb{Z}\left[N_{1}\right]$-module W. Hence, c.d. $N_{1}=4$ and so $\left[\pi: N_{1}\right]<\infty$, by [16]. Hence, N_{1} is a $P D_{4}$-group and (1) follows from Theorem 4. If $c . d . G=3$ and $H^{2}(G ; \mathbb{Z}[G])$ is not finitely generated as an abelian group (2) holds.

Suppose now that $c . d . G=2$ and that $\chi(G) \neq 0$. If $\left[N_{i}: G\right]$ is finite, then $\chi(G)=$ [$\left.N_{i}: G\right] \chi\left(N_{i}\right)$. Hence, we again find that ϕ is finite. If $G_{1}<G_{2}$ are two such groups with G_{1} normal in G_{2}, then [$G_{2}: G_{1}$] is finite, by [1, Theorem 8.2]. Moreover, if G_{2} is normal in J then $\left[J: N_{J}\left(G_{1}\right)\right]<\infty$, since G_{2} has only finitely many subgroups of index $\left[G_{2}: G_{1}\right]$. Therefore, we may assume that G is maximal among normal subgroups of N_{1} with cohomological dimension 2 and that $\left[N_{1}: G\right]=\infty$. If $N_{1}=\pi$, then (3) holds, by Theorem 4. Otherwise, we may assume that G is not normal in N_{2}, as observed earlier, and so there is an n in N_{2} such that $n G n^{-1} \neq G$. Let $H=$ $G . n G n^{-1}$. Then $G<H$ and H is normal in N_{1}, so $[H: G]=\infty$ and $c . d . Q H=3$. Moreover, H is $F P$ and $H^{s}(H ; \mathbb{Z}[H])=0$ for $s \leq 2$, so either N_{1} / H is locally finite or $c . d_{\mathbb{Q}} N_{1}>c . d . \mathbb{Q} H$, by [1, Theorem 8.2]. If N_{1} / H is locally finite but not finite, then we again have $c . d_{\mathbb{Q}} N_{1}>c . d \cdot \mathbb{Q} H$, by [8, Theorem 3.3]. If $c . d . \mathbb{Q} N_{1}=4$, then $\left[\pi: N_{1}\right]<\infty$, so N_{1} is a $P D_{4}$-group and (3) holds, by Theorem 4. Otherwise $\left[N_{1}: H\right]<\infty$ and then c.d. $N_{1}=3, N_{1}$ is $F P$ and $H^{s}\left(N_{1} ; \mathbb{Z}\left[N_{1}\right]\right)=0$ for $s \leq 2$. Hence, N_{1} is a $P D_{3}$-group by (1), and so (4) holds.

Suppose that $\chi(G)=0$ and that G is a $P D_{2}$-group. Then $G \cong Z^{2}$ or $Z \times_{-1} Z$, so $h(\sqrt{\pi}) \geq 2$ and $\chi(\pi)=0$. We may assume that π is orientable, so $\operatorname{Hom}(\pi, Z) \neq 0$. If $h(\sqrt{\pi})>2$ then π is virtually poly- Z, by [9, Theorem 8.1]. Therefore, we may also assume that $h(\sqrt{\pi})=2$. In this case $\sqrt{\pi} \cong Z^{2}$ and π is virtually the group of a torus bundle over a surface, by [9, Theorem 9.2]. Since $[\sqrt{\pi}: G]<\infty$ it follows also that $\left[\pi: N_{\pi}(G)\right]<\infty$ and so (3) holds. If $c . d . G=2$ but G is not a $P D_{2}$-group then $H^{2}(G ; \mathbb{Z}[G])$ is not finitely generated as an abelian group [6] and $\left[\pi: N_{\pi}(G)\right]=\infty$, and so (5) covers the remaining possibilities with one end.

If G has two ends, then $G \cong Z$, so $G \leq \sqrt{\pi}$. If $h=h(\sqrt{\pi}) \leq 2$ then $\sqrt{\pi}$ is abelian of rank h, by [9, Theorem 9.2]. If $h>2$ then π is virtually poly- Z of Hirsch length 4, by [9, Theorem 8.1]. If $\sqrt{\pi}$ is abelian or nilpotent of class 2 then G is a normal subgroup of $\sqrt{\pi}$; otherwise π is virtually nilpotent of type $\mathbb{N} i l^{4}$, by [9, Theorem 1.5].

To what extent can the hypotheses be relaxed? Are all ascendant $F P$ subgroups $P D$-groups? If so then cases (2) and (5) cannot arise. (This is certainly so if there is a subnormal sequence consisting of $F P$ subgroups.) Can a finitely generated noncyclic free group be an ascendant subgroup of a $P D_{4}$-group?

Example. Let G be a $P D_{2}$-group such that $\zeta G=1$. Let $\theta: G \rightarrow G$ have infinite order in $\operatorname{Out}(G)$, and let $\lambda: G \rightarrow Z$ be an epimorphism. Let $\pi=(G \times Z) \times_{\phi} Z$ where $\phi(g, n)=(\theta(g), \lambda(g)+n)$ for all $g \in G$ and $n \in Z$. Then G is subnormal in π but this group is not virtually the group of a surface bundle over a surface.

Any group with a finite two-dimensional Eilenberg-Mac Lane complex is the fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-handles to D^{4}. On applying the reflection group trick of Davis to the boundary we see that each such group embeds in a $P D_{4}$-group (see [12]). The simplest such groups G with $\chi(G)=0$ which are not $P D_{2}$-groups are the Baumslag-Solitar 1-relator groups $G_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ with $|p q|>1$. Can they be realized as ascendant subgroups of $P D_{4}$-groups?

4. $P D_{4}$-complexes

In this section we consider $P D_{4}$-complexes M with a finitely dominated covering space associated to an ascendant $F P_{3}$ subgroup of $\pi_{1}(M)$.

THEOREM 6. Let M be a $P D_{4}$-complex with fundamental group π and let v be an ascendant $F P_{3}$ subgroup of infinite index in π. Suppose that the associated covering space M_{v} is finitely dominated. Then:
(1) if v is finite then the universal covering space \tilde{M} is contractible or homotopy equivalent to S^{2} or to S^{3}, and $\left[\pi: N_{\pi}(\nu)\right]$ is finite;
(2) if v has one end then M is aspherical;
(3) if v has two ends then either M is aspherical or it is finitely covered by $S^{2} \times S^{1} \times S^{1}$ or $h(\sqrt{\pi})=1$ and $H^{2}(\pi ; \mathbb{Z}[\pi])$ is not finitely generated as an abelian group;
(4) if v has infinitely many ends and $v \leq N$ where N is an $F P_{2}$ normal subgroup of infinite index in π then either M has a finite covering space which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a $P D_{3}$ complex and $\left[\pi: N_{\pi}(v)\right]$ is finite or M is aspherical and N is not $F P_{3}$.

Proof. Let $v=N_{0}<N_{1}<\cdots<N_{\beth}=\pi$ be an ascendant sequence. Suppose first that v is finite. Then \widetilde{M} is also finitely dominated, and so is contractible (in which case $v=1$) or is homotopy equivalent to S^{2} or S^{3}, by [9, Theorem 3.9]. If $\widetilde{M} \simeq S^{2}$ the kernel of the natural homomorphism from π to $\operatorname{Aut}\left(\pi_{2}(M)\right)$ is torsion free. Hence, $v=Z / 2 Z$ and so v is central in N_{1}. Moreover as it is the torsion subgroup of ζN_{1} it is characteristic in N_{1}, and hence normal in N_{2}. Transfinite induction now shows that ν is normal in π. If $M \simeq S^{3}$ then π has two ends, and so $\left[\pi: N_{\pi}(\nu)\right]$ is finite.

If v is infinite then transfinite induction using the LHS spectral sequence, [8, Theorem 3.3] and [15, Lemma 4.1] shows that π has one end, and that if v has one end $H^{2}(\pi ; \mathbb{Z}[\pi])=0$. Since v is $F P_{3}$ and M_{ν} is finitely dominated $\pi_{2}(M)=$ $\pi_{2}\left(M_{\nu}\right)$ is finitely generated as a $\mathbb{Z}[\nu]$-module, and so $\operatorname{Hom}_{\pi}\left(\pi_{2}(M), \mathbb{Z}[\pi]\right)=0$.

Therefore, $\pi_{2}(M) \cong \overline{H^{2}(\pi ; \mathbb{Z}[\pi])}$, by [9, Lemma 3.3]. In particular, if v has one end then $\pi_{2}(M)=0$ and so M is aspherical.

If v has two ends then it has an infinite cyclic normal subgroup of finite index, and so we may assume without loss of generality that $v \cong Z$. Hence $v \leq \sqrt{\pi}$. If $h(\sqrt{\pi})>2$ then $H^{2}(\pi ; \mathbb{Z}[\pi])=0$, by [9, Theorem 1.16], and so M is aspherical. (In fact M is then homeomorphic to an infrasolvmanifold, by [9, Theorem 8.1].) If $h(\sqrt{\pi})=2$ and $\sqrt{\pi}$ has infinite index in π, then we again have $H^{2}(\pi ; \mathbb{Z}[\pi])=0$ and so M is aspherical. (If $\sqrt{\pi}$ is finitely generated it is nilpotent, hence $F P$, and the vanishing of $H^{2}(\pi ; \mathbb{Z}[\pi])$ follows immediately from an LHS spectral sequence argument. If $\sqrt{\pi}$ is not finitely generated then it is the increasing union of finitely generated subgroups of Hirsch rank 2, and we may apply [8, Theorem 3.3] to conclude that $H^{s}(\sqrt{\pi} ; \mathbb{Z}[\pi])=0$ for $s \leq 2$.) If $h(\sqrt{\pi})=2$ and $\sqrt{\pi}$ has finite index in π then π is virtually Z^{2}. We may then assume that $\pi \cong Z^{2}$ and $\pi / \nu \cong Z$. Since $H_{*}\left(M_{\nu} ; \mathbb{Q}\right)$ is finitely generated it follows from the Wang sequence for the projection of M_{ν} onto M that $\chi(M)=0$. Hence, M is finitely covered by $S^{2} \times S^{1} \times S^{1}$, by [9, Theorem 10.10].

Suppose that $h(\sqrt{\pi})=1$ and let \sqrt{M} be the associated covering space. Since $h(v)=h(\sqrt{\pi})$ the stages of a subnormal chain between v and $\sqrt{\pi}$ are locally finite, and so the rational homology spectral sequences between the corresponding covering spaces collapse, to show that $H_{*}(\sqrt{M} ; \mathbb{Q})$ is finitely generated and $\chi(\sqrt{M})=\chi\left(M_{\nu}\right)$. In particular, $\pi / \sqrt{\pi}$ has finitely many ends, since $H_{3}(\sqrt{M} ; \mathbb{Q})$ is finite dimensional.

If $[\pi: \sqrt{\pi}]$ is finite then $\sqrt{\pi}$ is finitely generated. However, then $[\sqrt{\pi}: \nu]<\infty$ and so $[\pi: \nu]<\infty$, contrary to hypothesis.

If $\pi / \sqrt{\pi}$ has two ends then we may assume that $\pi / \sqrt{\pi} \cong Z$. However, then π is an ascending HNN construction over a finitely generated base, and so the torsion subgroup T of $\sqrt{\pi}$ is finite, while $\sqrt{\pi} / T$ is abelian. Therefore, $\sqrt{\pi}$ has a finitely generated infinite normal subgroup and so $H^{2}(\pi ; \mathbb{Z}[\pi])$ is free abelian [13]. Since $H_{*}(\sqrt{M} ; \mathbb{Q})$ is finitely generated \sqrt{M} satisfies Poincaré duality with simple coefficients \mathbb{Q} and formal dimension 3 [14] and so $\chi(\sqrt{M})=0$. Hence $\chi\left(M_{v}\right)=$ 0 . This in turn implies that $\pi_{2}\left(M_{\nu}\right)$ is a torsion $\mathbb{Z}[\nu]$-module. Now $\pi_{2}\left(M_{\nu}\right)$ is finitely generated as a $\mathbb{Z}[\nu]$-module, and is \mathbb{Z}-torsion-free, since $\pi_{2}\left(M_{\nu}\right)=\pi_{2}(M) \cong$ $H^{2}(\pi ; \mathbb{Z}[\pi])$. Therefore, $\pi_{2}\left(M_{v}\right)$ is finitely generated as an abelian group, since $\mathbb{Z}[\nu] \cong \mathbb{Z}\left[t, t^{-1}\right]$. Since π has elements of infinite order $H^{2}(\pi ; \mathbb{Z}[\pi])$ must therefore be 0 or Z, by [5, Corollary 5.2]. But M cannot be aspherical as $c . d \cdot \mathbb{Q}(\pi) \leq$ c.d. $\mathbb{Q} \sqrt{\pi}+c . d . \mathbb{Q} Z=2$. Therefore, $\widetilde{M} \simeq S^{2}$. As π is elementary amenable it must be virtually Z^{2}, by [9, Theorem 10.10]. However, this contradicts the assumption that $h(\sqrt{\pi})=1$. Therefore, $\pi / \sqrt{\pi}$ has one end. As we may again exclude the possibility that $H^{2}(\pi ; \mathbb{Z}[\pi]) \cong Z$, either M is aspherical or $H^{2}(\pi ; \mathbb{Z}[\pi])$ is not finitely generated as an abelian group.

Suppose that v has infinitely many ends and $v \leq N$ where N is an $F P_{2}$ normal subgroup of infinite index in π. If [$N: \nu$] is finite then N has infinitely many ends and M_{N} is finitely dominated, so π / N has two ends and the covering space associated to N is a $P D_{3}$-complex, by [9, Theorem 3.9]. If $[N: v]=\infty$ then N has one end (as above).

Hence $H^{s}(\pi ; \mathbb{Z}[\pi])=0$ for $s \leq 2$ and so M is aspherical, as before. This cannot happen if N is $F P_{3}$, by the corollary to Theorem 4.

The hypothesis that v be $F P_{3}$ is used to ensure that $\operatorname{Hom}_{\pi}\left(\pi_{2}(M), \mathbb{Z}[\pi]\right)=0$, and is automatic if π is finite or has two ends. Does the theorem hold without this hypothesis?

Products $M=S^{1} \times N$ where $N=S^{3}, S^{2} \times S^{1},\left(S^{1}\right)^{3}$ or $\left(S^{2} \times S^{1}\right) \#\left(S^{2} \times S^{1}\right)$ give examples realizing most of the possibilities allowed by the theorem. The main exception is the final alternative in case (3); the following corollary suggests that this is rather unlikely.

Corollary. If v has finitely many ends and either $\sqrt{\pi}$ is abelian or $h(\sqrt{\pi}) \neq 1$ then M is aspherical or \widetilde{M} is homotopy equivalent to S^{2} or S^{3}.

Proof. We may assume that $\sqrt{\pi}$ is abelian of rank 1 and $\pi / \sqrt{\pi}$ has one end. However, then $H^{2}(\pi ; \mathbb{Z}[\pi])=0$, by [7] and [13], and so M is aspherical.

In case (4) the question raised after Theorem 4 also remains: is every $F P_{2}$ normal subgroup of a $P D_{4}$-group $F P_{3}$?

What happens if we drop the hypothesis on ascendancy? If a $P D_{4}$-complex M has a finitely dominated infinite covering space must $\pi_{1}(M)$ have one or two ends?

References

[1] R. Bieri, Homological dimensions of discrete groups, Queen Mary College Mathematics Notes (Queen Mary College, London, 1976).
[2] B. H. Bowditch, 'Planar groups and the Seifert conjecture', J. Reine Angew. Math. 576 (2004), 11-62.
[3] R. G. Burns, 'A note on free groups', Proc. Amer. Math. Soc. 23 (1969), 14-17.
[4] J. Crisp, 'The decomposition of 3-dimensional Poincaré duality complexes', Comment. Math. Helv. 75 (2000), 232-246.
[5] F. T. Farrell, 'The second cohomology group of G with coefficients $Z / 2 Z[G]$ ', Topology 13 (1974), 313-326.
[6] F. T. Farrell, 'Poincaré duality and groups of type F P', Comment. Math. Helv. $\mathbf{5 0}$ (1975), 187-195.
[7] R. Geoghegan and M. L. Mihalik, 'A note on the vanishing of $H^{n}(G ; Z[G])$ ', J. Pure Appl. Algebra 39 (1986), 301-304.
[8] D. Gildenhuys and R. Strebel, 'On the cohomological dimension of soluble groups', Canad. Math. Bull. 24 (1981), 385-392.
[9] J. A. Hillman, Four-manifolds, geometries and knots, Geometry and Topology Monographs, 5 (Geometry and Topology Publications, University of Warwick, Coventry, 2002).
[10] J. A. Hillman, 'Centralizers and normalizers in $P D_{3}$-groups and open $P D_{3}$-groups', J. Pure Appl. Algebra 204 (2006), 244-257.
[11] J. A. Hillman and D. S. Kochloukova, 'Finiteness conditions and $P D_{r}$-covers of $P D_{n}$-complexes', Math. Z. 256 (2007), 45-56.
[12] G. Mess, 'Examples of Poincaré duality groups', Proc. Amer. Math. Soc. 110 (1990), 1144-1145.
[13] M. L. Mihalik, 'Ends of double extension groups', Topology 25 (1986), 45-53.
[14] J. W. Milnor, 'Infinite cyclic coverings', Conference on the Topology of Manifolds (ed. J. G. Hocking) (Prindle, Weber and Schmidt, Boston, London, Sydney, 1968), pp. 115-133.
[15] D. J. S. Robinson, 'On the cohomology of soluble groups of finite rank', J. Pure Appl. Algebra 6 (1975), 155-164.
[16] R. Strebel, 'A remark on subgroups of infinite index in Poincaré duality groups', Comment. Math. Helv. 52 (1977), 317-324.

JONATHAN A. HILLMAN, School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
e-mail: jonh@maths.usyd.edu.au

[^0]: (C) 2008 Australian Mathematical Society 1446-7887/08 \$A2.00 +0.00

