FINITELY DOMINATED COVERING SPACES OF 3- AND 4-MANIFOLDS

JONATHAN A. HILLMAN

(Received 1 August 2006; revised 25 October 2007)

Communicated by C. D. Hodgson

Abstract

If *P* is a closed 3-manifold the covering space associated to a finitely presentable subgroup v of infinite index in $\pi_1(P)$ is finitely dominated if and only if *P* is aspherical or $\tilde{P} \simeq S^2$. There is a corresponding result in dimension 4, under further hypotheses on π and v. In particular, if *M* is a closed 4-manifold, v is an ascendant, *FP*₃, finitely-ended subgroup of infinite index in $\pi_1(M)$, π is virtually torsion free and the associated covering space is finitely dominated then either *M* is aspherical or $\tilde{M} \simeq S^2$ or S^3 . In the aspherical case such an ascendant subgroup is usually *Z*, a surface group or a *PD*₃-group.

1991 Mathematics subject classification: 57N13, 20J05.

Keywords and phrases: finitely dominated, 4-manifold, Poincaré duality group, subnormal subgroup.

A space X is *finitely dominated* if there is a finite cell complex Y with maps $f: X \to Y$ and $g: Y \to X$ such that $gf \sim id_X$. (Thus, X is homotopically a retract of Y.) If the universal covering space \widetilde{M} of a 4-manifold M is finitely dominated then one of the following holds: M is aspherical; \widetilde{M} is homeomorphic to $S^2 \times R^2$ or $S^3 \times R$; or $\pi = \pi_1(M)$ is finite. More generally, if M has a finitely dominated covering space M_{ν} such that $\nu = \pi_1(M_{\nu})$ is an FP_3 normal subgroup of infinite index in π there is the additional possibility (when ν has infinitely many ends) that M might have a finite covering space which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a PD_3 -complex. (See [9, Theorems 3.9, 10.1 and 11.1].)

In this paper we relax the hypotheses on ν further. The arguments we use apply equally well to covering spaces of low-dimensional Poincaré duality complexes. We begin in dimension 3, as the surface case is trivial. In Section 2 we show that if *M* is a a *PD*₃-complex with torsion-free fundamental group π and ν is a subgroup of infinite index in π the associated covering space M_{ν} is finitely dominated if and

^{© 2008} Australian Mathematical Society 1446-7887/08 \$A2.00 + 0.00

J. A. Hillman

only if v is finitely presentable and $\pi_2(M) = 0$ or Z. In the rest of the paper we consider PD_4 -complexes. Here we need to assume that the subgroup v be FP_3 and ascendant in π . (The notion of ascendant subgroup is recalled in Section 1 below.) If M is aspherical π is a PD_4 -group and finitely dominated covering spaces correspond to FP_3 subgroups of π . In Section 3 we show that an ascendant FP_3 subgroup of infinite index in a PD_4 -group is usually a PD_r -group for some $r \leq 3$. However, we have not been able to eliminate other possibilities completely. For instance, it is not known whether a Baumslag–Solitar group may be an ascendant subgroup of a PD_4 -group. In Section 4 we consider the case of a PD_4 -complex M with a finitely dominated infinite covering space M_v corresponding to an ascendant FP_3 subgroup v, and give homological conditions on π and v under which either M is aspherical or \tilde{M} is homotopy equivalent to S^2 or S^3 .

1. Notation

The Hirsch–Plotkin radical $\sqrt{\pi}$ of a group π is the maximal locally nilpotent, normal subgroup of π . The Hirsch length h(v) of a finitely generated nilpotent group v is the number of infinite cyclic factors of a composition series for the group; $h(\sqrt{\pi})$ is the least upper bound of h(v) as v varies over finitely generated subgroups of $\sqrt{\pi}$. If *G* is a subgroup of π then $C_{\pi}(G)$ and $N_{\pi}(G)$ are the centralizer and normalizer of *G* in π , respectively. The centre of *G* is $\zeta G = G \cap C_{\pi}(G)$.

A subgroup *K* of a group *G* is *ascendant* if there is an increasing sequence of subgoups N_{α} , indexed by an ordinal $\Box + 1$, such that $N_0 = K$, N_{α} is normal in $N_{\alpha+1}$ if $\alpha < \Box$, $N_{\beta} = \bigcup_{\alpha < \beta} N_{\alpha}$ for all limit ordinals $\beta \leq \Box$ and $N_{\Box} = G$. (If \Box is finite *K* is *subnormal* in *G*.) Such ascendant series are well suited to arguments by transfinite induction. For instance, it is easily seen that $\sqrt{K} \leq \sqrt{N_{\alpha}}$, for all $\alpha \leq \Box$. We write \mathbb{Z} for the ring of integers and *Z* for an abstract infinite cyclic group. If *A* is an abelian group and *I* a set let $\oplus^I A$ be the direct sum of copies of *A* indexed by *I*.

We shall assume that the fundamental group π of a space or cell complex X acts on the universal cover \widetilde{X} on the left, and so the (cellular) chain complex $C_*(\widetilde{X})$ is naturally a complex of left $\mathbb{Z}[\pi]$ -modules. The equivariant cochain complex $\operatorname{Hom}_{\mathbb{Z}[\pi]}(C_*(\widetilde{X}), \mathbb{Z}[\pi])$ is then a complex of right $\mathbb{Z}[\pi]$ -modules. Let $E(\pi) = H^1(\pi; \mathbb{Z}[\pi])$; this is naturally a right $\mathbb{Z}[\pi]$ -module.

If X is a Poincaré duality complex with fundamental group π and orientation character $w = w_1(X)$ and R is a right $\mathbb{Z}[\pi]$ -module we let \overline{R} be the conjugate left module, with module structure given by $g.r = w(g)rg^{-1}$ for all $g \in \pi$ and $r \in R$.

2. PD₃-complexes

It is easy to see that an infinite covering space of a closed surface is finitely dominated if and only if its fundamental group is finitely generated. Here we show that there is a similar criterion for an infinite covering space of a PD_3 -complex to be finitely dominated.

101

LEMMA 1. Let π be a finitely generated torsion free group which is not free. Then $E(\pi)$ is a free right $\mathbb{Z}[\pi]$ -module.

PROOF. Since π is finitely generated it is a free product of finitely many indecomposable groups, and since π is torsion-free the latter either have one end or are infinite cyclic. Thus, π is an iterated Higman–Neumann–Neumann (HNN) extension with base a nontrivial free product of one-ended groups and trivial associated subgroups. In other words, π is the fundamental group of a finite graph of groups \mathcal{G} in which all of the vertex groups have one end and all of the edge groups are trivial. It follows from the Mayer–Vietoris sequences of [1, Theorems 2.10 and 2.11] that $E(\pi)$ is a free right $\mathbb{Z}[\pi]$ -module with basis corresponding to the edges of \mathcal{G} .

When π is a free group $E(\pi)$ is a finitely presentable $\mathbb{Z}[\pi]$ -module of projective dimension 1, and we shall need a different result.

LEMMA 2. Let $\pi = v * \sigma$, where v is finitely generated, and let $I = v \setminus \pi / v$ be the double coset space. Then $\bigoplus^{I} E(v)$ is a direct summand of the abelian group $E(\pi) \otimes_{v} \mathbb{Z}$.

PROOF. The group ν is clearly a retract of π and so $H^1(\nu; \mathbb{Z}[\pi])$ is a direct summand of $E(\pi)$ (as a right $\mathbb{Z}[\pi]$ -module). Now $H^1(\nu; \mathbb{Z}[\pi]) \cong E(\nu) \otimes_{\nu} \mathbb{Z}[\pi]$, since ν is finitely generated. Therefore, $H^1(\nu; \mathbb{Z}[\pi]) \otimes_{\nu} \mathbb{Z} \cong E(\nu) \otimes_{\nu} \mathbb{Z}[\pi/\nu] \cong \bigoplus^I E(\nu)$ is a direct summand of $E(\pi) \otimes_{\nu} \mathbb{Z}$ (as an abelian group). \Box

THEOREM 3. Let P be a PD₃-complex with fundamental group π and let v be a subgroup of infinite index in π . Then the associated covering space P_v is finitely dominated if and only if π is virtually Z or $\pi_2(P) = 0$ and v is finitely presentable.

PROOF. The Hurewicz theorem and Poincaré duality give isomorphisms of left $\mathbb{Z}[\pi]$ -modules $\Pi = \pi_2(P) \cong H_2(P; \mathbb{Z}[\pi]) \cong \overline{E(\pi)}$. The fundamental group of a PD_3 -complex is a free product of PD_3 -groups with a finitely generated, virtually free group, and so is virtually torsion free [4]. Moreover, a complex is finitely dominated if and only if it has a finite covering space which is finitely dominated. Thus we may assume that π is torsion free, after passing to a finite covering space, if necessary.

The spectral sequence of the covering $\widetilde{P} \to P_{\nu}$ gives an exact sequence

$$H_3(\nu; \mathbb{Z}) \to \mathbb{Z} \otimes_{\nu} \Pi \to H_2(P_{\nu}; \mathbb{Z}) \to H_2(\nu; \mathbb{Z}) \to 0.$$

We may assume that ν is finitely presentable. It is then a finite free product of finitely presentable subgroups of PD_3 -groups with a free group, by the Kurosh subgroup theorem. In particular, $H_s(\nu; \mathbb{Z})$ is finitely generated for all $s \ge 0$, and so $H_2(P_{\nu}; \mathbb{Z})$ is finitely generated if and only if $\mathbb{Z} \otimes_{\nu} \Pi$ is finitely generated.

If π is free of rank 1 then $\pi \cong Z$ and $E(\pi) \cong \mathbb{Z}$. Hence, $\pi_2(P)$ is infinite cyclic, so $\widetilde{P} \simeq S^2$. In this case every covering space is finitely dominated.

If π is free of rank r > 1 then we may assume that ν is a proper free factor of π , after passing to a subgroup of finite index, if necessary [3]. We may also assume that P is orientable. It is easy to see that the double set space $I = \nu \setminus \pi/\nu$ is infinite. Since $\mathbb{Z} \otimes_{\nu} \Pi \cong \overline{E(\pi) \otimes_{\nu} \mathbb{Z}}$ is not finitely generated, by Lemma 2, P_{ν} cannot be finitely dominated.

If π is not free $\Pi \cong \mathbb{Z}[\pi]^s$ for some $s \ge 0$, by Lemma 1. Thus, $\mathbb{Z} \otimes_{\nu} \Pi$ is free of infinite rank as an abelian group, unless s = 0. Thus, if P_{ν} is finitely dominated s = 0 and so $\Pi = 0$.

Suppose conversely that $\Pi = 0$ and that ν is a finitely presentable subgroup of infinite index in π . Then the universal covering space \widetilde{P} is contractible, and so P is aspherical. Therefore $c.d.\nu \le 2$, by [16], and $P_{\nu} \simeq K(\nu, 1)$. Let Y be the finite 2-complex determined by a finite presentation for ν . The cellular chain complex for \widetilde{Y} gives an exact sequence of $\mathbb{Z}[\nu]$ -modules

$$0 \to \pi_2(Y) \to C_2 \to C_1 \to C_0 \to \mathbb{Z} \to 0,$$

where $C_q = C_q(\widetilde{Y})$ is a finitely generated free $\mathbb{Z}[\nu]$ -module, for $q \leq 2$. Since $c.d.\nu \leq 2$ the module of 1-cycles $Z_1 = \operatorname{Im}(\partial_2)$ is projective, and so $C_2 \cong Z_1 \oplus \pi_2(Y)$. Thus, $\pi_2(Y)$ is a finitely generated projective module. Let F be a free $\mathbb{Z}[\nu]$ -module of countably infinite rank. Then $\pi_2(Y) \oplus F \cong F$, by the 'Eilenberg swindle'. Hence, we may construct a $K(\pi, 1)$ complex K by adding countably many 3-cells to $Y \vee V$, where V is a countable wedge of 2-spheres. Let $c: Y \to K$ be the classifying map and $p: K \to Y$ be the map which collapses V and the adjoined 3-cells. Then $cp \sim id_K$, and so $P_{\nu} \simeq K$ is finitely dominated. \Box

In particular, a closed 3-manifold has a finitely dominated infinite covering space if and only if its universal covering space is contractible or homotopy equivalent to S^2 or S^3 .

3. Poincaré duality groups

Subgroups of PD_n -groups are the algebraic analogues of covering spaces of aspherical PD_n -complexes. The analogues of finitely dominated covering spaces are the FP_{n-1} subgroups, for which the trivial module \mathbb{Z} has a projective resolution which is finitely generated in degrees $\leq n - 1$. (There is then a finite projective resolution of length at most *n*, since either ν is a PD_n -group or $c.d.\nu < n$ [16].) The algebraic notion is broader in one respect: we do not assume that the PD_n -groups or their FP subgroups are finitely presentable.

In [10] it was shown that if ν is an FP_2 ascendant subgroup of infinite index in a PD_3 -group π then either $\nu \cong Z$ and is normal in π or ν is a PD_2 -group and $[\pi : N_{\pi}(\nu)] < \infty$ or π is a virtually poly-Z group (and every subgroup is FP_2).

THEOREM 4. Let G be a nontrivial FP₃ normal subgroup of infinite index in a PD₄group π . Then either:

102

- (1) *G* is a *PD*₃-group and π/G has two ends;
- (2) G is a PD₂-group and π/G is virtually a PD₂-group; or
- (3) $G \cong Z$, $H^s(\pi/G; \mathbb{Z}[\pi/G]) = 0$ for $s \le 2$ and $H^3(\pi/G; \mathbb{Z}[\pi/G]) \cong Z$.

PROOF. The subgroup *G* is *FP*, since *c.d.G* < 4 (see [16]), and hence so is π/G . The E_2 terms of the Lyndon–Hochschild–Serre (LHS) spectral sequence with coefficients $\mathbb{Q}[\pi]$ can then be expressed as tensor products $E_2^{pq} = H^p(\pi/G; \mathbb{Q}[\pi/G]) \otimes H^q(G; \mathbb{Q}[G])$. If $H^j(\pi/G; \mathbb{Q}[\pi/G])$ and $H^k(G; \mathbb{Q}[G])$ are the first nonzero such cohomology groups then E_2^{jk} persists to E_∞ . Hence, j + k = 4 and $E_2^{jk} \cong \mathbb{Q}$. Therefore, $H^j(\pi/G; \mathbb{Q}[\pi/G])$ and $H^{n-j}(G; \mathbb{Q}[G])$ each have dimension 1 over \mathbb{Q} . In particular, π/G has one or two ends and *G* is a PD_{4-j} -group over \mathbb{Q} [6]. If π/G has two ends then it is virtually *Z*, and so *G* is a *PD*₃-group (over \mathbb{Z}), by [1, Theorem 9.11]. If $H^2(G; \mathbb{Q}[G]) \cong H^2(\pi/G; \mathbb{Q}[\pi/G]) \cong \mathbb{Q}$ then *G* and π/G are virtually *PD*₂-groups [2]. Since *G* is torsion-free it must be a *PD*₂-group. The only remaining possibility is (3).

Do the conclusions of this theorem hold if the hypothesis that G be FP_3 is relaxed to 'G is FP_2 '? (If G is an FP_2 normal subgroup of a PD_4 -group π and π/G is virtually a PD_r -group then G is a PD_{4-r} -group [11].) If $v.c.d.\pi/G < \infty$ then π/G is virtually a PD-group in case (3) also, by [1, Theorem 9.11].

COROLLARY. If G is an FP₃ normal subgroup of infinite index in π and K is an ascendant FP₂ subgroup of G then K is a PD_k-group for some k < 4.

PROOF. This follows immediately from Theorem 4 together with the [10, corollary of Theorem 11]. \Box

We shall consider next FP_3 ascendant subgroups of PD_4 -groups.

THEOREM 5. Let G be a nontrivial FP_3 ascendant subgroup of infinite index in a PD_4 -group π . If G has finitely many ends then one of the following holds:

- (1) *G* is a *PD*₃-group, $[\pi : N_{\pi}(G)] < \infty$ and $N_{\pi}(G)/G$ has two ends;
- (2) c.d.G = 3 and $H^2(G; \mathbb{Z}[G])$ is not finitely generated as an abelian group;
- (3) *G* is a PD_2 -group, $[\pi : N_{\pi}(G)] < \infty$ and π is virtually the group of a surface bundle over a surface;
- (4) *G* is a PD_2 -group, $\zeta G = 1$ and π is virtually the group of the mapping torus of a self homeomorphism of a surface bundle over the circle;
- (5) c.d.G = 2, $\chi(G) = 0$, $H^2(G; \mathbb{Z}[G])$ is not finitely generated as an abelian group and $[\pi : N_{\pi}(G)] = \infty$; or
- (6) $G \cong Z$ and either $G < \sqrt{\pi} < \pi$ is a subnormal chain or π is virtually nilpotent of Hirsch length 4.

PROOF. Let $G = N_0 < N_1 < \cdots < N_{\Box} = \pi$ be an ascendant sequence, and let ϕ be the union of the finite ordinals $\leq \Box$. If G is normal in π then the theorem follows from Theorem 4. Otherwise, replacing N_1 by the union of the terms N_{α} which normalize G and reindexing, if necessary, we may assume that G is not normal in N_2 .

Since $[\pi : G] = \infty$ we have c.d.G < 4, by [16]. Suppose first that c.d.G = 3 and that $H^2(G; \mathbb{Z}[G])$ is finitely generated as an abelian group. Then $H^s(G; \mathbb{Z}[G]) = 0$ for $s \le 2$, by [5] or [2]. If ϕ is infinite then N_{ϕ} is not finitely generated, and so $c.d.N_{\phi} = 4$, by [8, Theorem 3.3]. However, then $[\pi : N_{\phi}] < \infty$ [16] and so N_{ϕ} is finitely generated. Therefore, ϕ is finite, so N_{ϕ} is one-ended, *FP* and ascendant in π , and it is easily seen that the theorem holds for *G* if it holds for N_{ϕ} . Thus, we may assume that $[N_1 : G] = \infty$. It follows immediately from the LHS spectral sequence that $H^s(N_1; W) = 0$ for $s \le 3$ and any free $\mathbb{Z}[N_1]$ -module *W*. Hence, $c.d.N_1 = 4$ and so $[\pi : N_1] < \infty$, by [16]. Hence, N_1 is a *PD*₄-group and (1) follows from Theorem 4. If c.d.G = 3 and $H^2(G; \mathbb{Z}[G])$ is not finitely generated as an abelian group (2) holds.

Suppose now that c.d.G = 2 and that $\chi(G) \neq 0$. If $[N_i : G]$ is finite, then $\chi(G) = [N_i : G]\chi(N_i)$. Hence, we again find that ϕ is finite. If $G_1 < G_2$ are two such groups with G_1 normal in G_2 , then $[G_2 : G_1]$ is finite, by [1, Theorem 8.2]. Moreover, if G_2 is normal in J then $[J : N_J(G_1)] < \infty$, since G_2 has only finitely many subgroups of index $[G_2 : G_1]$. Therefore, we may assume that G is maximal among normal subgroups of N_1 with cohomological dimension 2 and that $[N_1 : G] = \infty$. If $N_1 = \pi$, then (3) holds, by Theorem 4. Otherwise, we may assume that G is not normal in N_2 , as observed earlier, and so there is an n in N_2 such that $nGn^{-1} \neq G$. Let $H = G.nGn^{-1}$. Then G < H and H is normal in N_1 , so $[H : G] = \infty$ and $c.d._QH = 3$. Moreover, H is FP and $H^s(H; \mathbb{Z}[H]) = 0$ for $s \leq 2$, so either N_1/H is locally finite or $c.d_{\mathbb{Q}}N_1 > c.d._{\mathbb{Q}}H$, by [1, Theorem 8.2]. If N_1/H is locally finite but not finite, then we again have $c.d_{\mathbb{Q}}N_1 > c.d._{\mathbb{Q}}H$, by [8, Theorem 3.3]. If $c.d._{\mathbb{Q}}N_1 = 4$, then $[\pi : N_1] < \infty$, so N_1 is a PD_4 -group and (3) holds, by Theorem 4. Otherwise $[N_1 : H] < \infty$ and then $c.d.N_1 = 3$, N_1 is FP and $H^s(N_1; \mathbb{Z}[N_1]) = 0$ for $s \leq 2$. Hence, N_1 is a PD_3 -group by (1), and so (4) holds.

Suppose that $\chi(G) = 0$ and that *G* is a *PD*₂-group. Then $G \cong Z^2$ or $Z \times_{-1} Z$, so $h(\sqrt{\pi}) \ge 2$ and $\chi(\pi) = 0$. We may assume that π is orientable, so $\text{Hom}(\pi, Z) \ne 0$. If $h(\sqrt{\pi}) > 2$ then π is virtually poly-*Z*, by [9, Theorem 8.1]. Therefore, we may also assume that $h(\sqrt{\pi}) = 2$. In this case $\sqrt{\pi} \cong Z^2$ and π is virtually the group of a torus bundle over a surface, by [9, Theorem 9.2]. Since $[\sqrt{\pi} : G] < \infty$ it follows also that $[\pi : N_{\pi}(G)] < \infty$ and so (3) holds. If c.d.G = 2 but *G* is not a *PD*₂-group then $H^2(G; \mathbb{Z}[G])$ is not finitely generated as an abelian group [6] and $[\pi : N_{\pi}(G)] = \infty$, and so (5) covers the remaining possibilities with one end.

If G has two ends, then $G \cong Z$, so $G \leq \sqrt{\pi}$. If $h = h(\sqrt{\pi}) \leq 2$ then $\sqrt{\pi}$ is abelian of rank h, by [9, Theorem 9.2]. If h > 2 then π is virtually poly-Z of Hirsch length 4, by [9, Theorem 8.1]. If $\sqrt{\pi}$ is abelian or nilpotent of class 2 then G is a normal subgroup of $\sqrt{\pi}$; otherwise π is virtually nilpotent of type $\mathbb{N}il^4$, by [9, Theorem 1.5].

To what extent can the hypotheses be relaxed? Are all ascendant FP subgroups PD-groups? If so then cases (2) and (5) cannot arise. (This is certainly so if there is a subnormal sequence consisting of FP subgroups.) Can a finitely generated noncyclic free group be an ascendant subgroup of a PD_4 -group?

EXAMPLE. Let G be a PD_2 -group such that $\zeta G = 1$. Let $\theta : G \to G$ have infinite order in Out(G), and let $\lambda : G \to Z$ be an epimorphism. Let $\pi = (G \times Z) \times_{\phi} Z$ where $\phi(g, n) = (\theta(g), \lambda(g) + n)$ for all $g \in G$ and $n \in Z$. Then G is subnormal in π but this group is not virtually the group of a surface bundle over a surface.

Any group with a finite two-dimensional Eilenberg–Mac Lane complex is the fundamental group of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and 2-handles to D^4 . On applying the reflection group trick of Davis to the boundary we see that each such group embeds in a PD_4 -group (see [12]). The simplest such groups G with $\chi(G) = 0$ which are not PD_2 -groups are the Baumslag–Solitar 1-relator groups $G_{p,q} = \langle a, t | ta^p t^{-1} = a^q \rangle$ with |pq| > 1. Can they be realized as ascendant subgroups of PD_4 -groups?

4. PD₄-complexes

In this section we consider PD_4 -complexes M with a finitely dominated covering space associated to an ascendant FP_3 subgroup of $\pi_1(M)$.

THEOREM 6. Let M be a PD_4 -complex with fundamental group π and let v be an ascendant FP_3 subgroup of infinite index in π . Suppose that the associated covering space M_v is finitely dominated. Then:

- (1) if v is finite then the universal covering space \widetilde{M} is contractible or homotopy equivalent to S^2 or to S^3 , and $[\pi : N_{\pi}(v)]$ is finite;
- (2) *if v has one end then M is aspherical;*
- (3) if v has two ends then either M is aspherical or it is finitely covered by $S^2 \times S^1 \times S^1$ or $h(\sqrt{\pi}) = 1$ and $H^2(\pi; \mathbb{Z}[\pi])$ is not finitely generated as an abelian group;
- (4) if v has infinitely many ends and $v \le N$ where N is an F P₂ normal subgroup of infinite index in π then either M has a finite covering space which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a PD₃-complex and $[\pi : N_{\pi}(v)]$ is finite or M is aspherical and N is not F P₃.

PROOF. Let $\nu = N_0 < N_1 < \cdots < N_{\Box} = \pi$ be an ascendant sequence. Suppose first that ν is finite. Then \widetilde{M} is also finitely dominated, and so is contractible (in which case $\nu = 1$) or is homotopy equivalent to S^2 or S^3 , by [9, Theorem 3.9]. If $\widetilde{M} \simeq S^2$ the kernel of the natural homomorphism from π to $Aut(\pi_2(M))$ is torsion free. Hence, $\nu = Z/2Z$ and so ν is central in N_1 . Moreover as it is the torsion subgroup of ζN_1 it is characteristic in N_1 , and hence normal in N_2 . Transfinite induction now shows that ν is normal in π . If $\widetilde{M} \simeq S^3$ then π has two ends, and so $[\pi : N_{\pi}(\nu)]$ is finite.

If ν is infinite then transfinite induction using the LHS spectral sequence, [8, Theorem 3.3] and [15, Lemma 4.1] shows that π has one end, and that if ν has one end $H^2(\pi; \mathbb{Z}[\pi]) = 0$. Since ν is FP_3 and M_{ν} is finitely dominated $\pi_2(M) = \pi_2(M_{\nu})$ is finitely generated as a $\mathbb{Z}[\nu]$ -module, and so $\text{Hom}_{\pi}(\pi_2(M), \mathbb{Z}[\pi]) = 0$.

Therefore, $\pi_2(M) \cong \overline{H^2(\pi; \mathbb{Z}[\pi])}$, by [9, Lemma 3.3]. In particular, if ν has one end then $\pi_2(M) = 0$ and so M is aspherical.

If ν has two ends then it has an infinite cyclic normal subgroup of finite index, and so we may assume without loss of generality that $\nu \cong Z$. Hence $\nu \le \sqrt{\pi}$. If $h(\sqrt{\pi}) > 2$ then $H^2(\pi; \mathbb{Z}[\pi]) = 0$, by [9, Theorem 1.16], and so M is aspherical. (In fact M is then homeomorphic to an infrasolvmanifold, by [9, Theorem 8.1].) If $h(\sqrt{\pi}) = 2$ and $\sqrt{\pi}$ has infinite index in π , then we again have $H^2(\pi; \mathbb{Z}[\pi]) = 0$ and so M is aspherical. (If $\sqrt{\pi}$ is finitely generated it is nilpotent, hence FP, and the vanishing of $H^2(\pi; \mathbb{Z}[\pi])$ follows immediately from an LHS spectral sequence argument. If $\sqrt{\pi}$ is not finitely generated then it is the increasing union of finitely generated subgroups of Hirsch rank 2, and we may apply [8, Theorem 3.3] to conclude that $H^s(\sqrt{\pi}; \mathbb{Z}[\pi]) = 0$ for $s \le 2$.) If $h(\sqrt{\pi}) = 2$ and $\sqrt{\pi}$ has finite index in π then π is virtually Z^2 . We may then assume that $\pi \cong Z^2$ and $\pi/\nu \cong Z$. Since $H_*(M_\nu; \mathbb{Q})$ is finitely generated it follows from the Wang sequence for the projection of M_ν onto Mthat $\chi(M) = 0$. Hence, M is finitely covered by $S^2 \times S^1 \times S^1$, by [9, Theorem 10.10].

Suppose that $h(\sqrt{\pi}) = 1$ and let \sqrt{M} be the associated covering space. Since $h(v) = h(\sqrt{\pi})$ the stages of a subnormal chain between v and $\sqrt{\pi}$ are locally finite, and so the rational homology spectral sequences between the corresponding covering spaces collapse, to show that $H_*(\sqrt{M}; \mathbb{Q})$ is finitely generated and $\chi(\sqrt{M}) = \chi(M_v)$. In particular, $\pi/\sqrt{\pi}$ has finitely many ends, since $H_3(\sqrt{M}; \mathbb{Q})$ is finite dimensional.

If $[\pi : \sqrt{\pi}]$ is finite then $\sqrt{\pi}$ is finitely generated. However, then $[\sqrt{\pi} : \nu] < \infty$ and so $[\pi : \nu] < \infty$, contrary to hypothesis.

If $\pi/\sqrt{\pi}$ has two ends then we may assume that $\pi/\sqrt{\pi} \cong Z$. However, then π is an ascending HNN construction over a finitely generated base, and so the torsion subgroup T of $\sqrt{\pi}$ is finite, while $\sqrt{\pi}/T$ is abelian. Therefore, $\sqrt{\pi}$ has a finitely generated infinite normal subgroup and so $H^2(\pi; \mathbb{Z}[\pi])$ is free abelian [13]. Since $H_*(\sqrt{M}; \mathbb{Q})$ is finitely generated \sqrt{M} satisfies Poincaré duality with simple coefficients \mathbb{Q} and formal dimension 3 [14] and so $\chi(\sqrt{M}) = 0$. Hence $\chi(M_{\nu}) =$ 0. This in turn implies that $\pi_2(M_{\nu})$ is a torsion $\mathbb{Z}[\nu]$ -module. Now $\pi_2(M_{\nu})$ is finitely generated as a $\mathbb{Z}[\nu]$ -module, and is \mathbb{Z} -torsion-free, since $\pi_2(M_\nu) = \pi_2(M) \cong$ $H^2(\pi; \mathbb{Z}[\pi])$. Therefore, $\pi_2(M_{\nu})$ is finitely generated as an abelian group, since $\mathbb{Z}[\nu] \cong \mathbb{Z}[t, t^{-1}]$. Since π has elements of infinite order $H^2(\pi; \mathbb{Z}[\pi])$ must therefore be 0 or Z, by [5, Corollary 5.2]. But M cannot be aspherical as $c.d._{\mathbb{Q}}(\pi) \leq$ $c.d._{\mathbb{Q}}\sqrt{\pi} + c.d._{\mathbb{Q}}Z = 2$. Therefore, $\widetilde{M} \simeq S^2$. As π is elementary amenable it must be virtually Z^2 , by [9, Theorem 10.10]. However, this contradicts the assumption that $h(\sqrt{\pi}) = 1$. Therefore, $\pi/\sqrt{\pi}$ has one end. As we may again exclude the possibility that $H^2(\pi; \mathbb{Z}[\pi]) \cong Z$, either M is aspherical or $H^2(\pi; \mathbb{Z}[\pi])$ is not finitely generated as an abelian group.

Suppose that ν has infinitely many ends and $\nu \le N$ where N is an FP_2 normal subgroup of infinite index in π . If $[N : \nu]$ is finite then N has infinitely many ends and M_N is finitely dominated, so π/N has two ends and the covering space associated to N is a PD_3 -complex, by [9, Theorem 3.9]. If $[N : \nu] = \infty$ then N has one end (as above).

Hence $H^s(\pi; \mathbb{Z}[\pi]) = 0$ for $s \le 2$ and so *M* is aspherical, as before. This cannot happen if *N* is *FP*₃, by the corollary to Theorem 4.

The hypothesis that ν be FP_3 is used to ensure that $\operatorname{Hom}_{\pi}(\pi_2(M), \mathbb{Z}[\pi]) = 0$, and is automatic if π is finite or has two ends. Does the theorem hold without this hypothesis?

Products $M = S^1 \times N$ where $N = S^3$, $S^2 \times S^1$, $(S^1)^3$ or $(S^2 \times S^1)#(S^2 \times S^1)$ give examples realizing most of the possibilities allowed by the theorem. The main exception is the final alternative in case (3); the following corollary suggests that this is rather unlikely.

COROLLARY. If v has finitely many ends and either $\sqrt{\pi}$ is abelian or $h(\sqrt{\pi}) \neq 1$ then M is aspherical or \widetilde{M} is homotopy equivalent to S^2 or S^3 .

PROOF. We may assume that $\sqrt{\pi}$ is abelian of rank 1 and $\pi/\sqrt{\pi}$ has one end. However, then $H^2(\pi; \mathbb{Z}[\pi]) = 0$, by [7] and [13], and so *M* is aspherical.

In case (4) the question raised after Theorem 4 also remains: is every FP_2 normal subgroup of a PD_4 -group FP_3 ?

What happens if we drop the hypothesis on ascendancy? If a PD_4 -complex M has a finitely dominated infinite covering space must $\pi_1(M)$ have one or two ends?

References

- [1] R. Bieri, *Homological dimensions of discrete groups*, Queen Mary College Mathematics Notes (Queen Mary College, London, 1976).
- [2] B. H. Bowditch, 'Planar groups and the Seifert conjecture', J. Reine Angew. Math. 576 (2004), 11–62.
- [3] R. G. Burns, 'A note on free groups', Proc. Amer. Math. Soc. 23 (1969), 14–17.
- [4] J. Crisp, 'The decomposition of 3-dimensional Poincaré duality complexes', *Comment. Math. Helv.* 75 (2000), 232–246.
- [5] F. T. Farrell, 'The second cohomology group of G with coefficients Z/2Z[G]', Topology 13 (1974), 313–326.
- [6] F. T. Farrell, 'Poincaré duality and groups of type FP', Comment. Math. Helv. 50 (1975), 187–195.
- [7] R. Geoghegan and M. L. Mihalik, 'A note on the vanishing of $H^n(G; Z[G])$ ', J. Pure Appl. Algebra **39** (1986), 301–304.
- [8] D. Gildenhuys and R. Strebel, 'On the cohomological dimension of soluble groups', *Canad. Math. Bull.* 24 (1981), 385–392.
- [9] J. A. Hillman, *Four-manifolds, geometries and knots*, Geometry and Topology Monographs, 5 (Geometry and Topology Publications, University of Warwick, Coventry, 2002).
- [10] J. A. Hillman, 'Centralizers and normalizers in PD₃-groups and open PD₃-groups', J. Pure Appl. Algebra 204 (2006), 244–257.
- [11] J. A. Hillman and D. S. Kochloukova, 'Finiteness conditions and PD_r-covers of PD_n-complexes', Math. Z. 256 (2007), 45–56.
- [12] G. Mess, 'Examples of Poincaré duality groups', Proc. Amer. Math. Soc. 110 (1990), 1144–1145.
- [13] M. L. Mihalik, 'Ends of double extension groups', *Topology* 25 (1986), 45–53.
- [14] J. W. Milnor, 'Infinite cyclic coverings', Conference on the Topology of Manifolds (ed. J. G. Hocking) (Prindle, Weber and Schmidt, Boston, London, Sydney, 1968), pp. 115–133.

J. A. Hillman

- [15] D. J. S. Robinson, 'On the cohomology of soluble groups of finite rank', J. Pure Appl. Algebra 6 (1975), 155–164.
- [16] R. Strebel, 'A remark on subgroups of infinite index in Poincaré duality groups', *Comment. Math. Helv.* 52 (1977), 317–324.

JONATHAN A. HILLMAN, School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia e-mail: jonh@maths.usyd.edu.au

108