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A drift-kinetic calculation in an axisymmetric tokamak, with super-diamagnetic flows,
is presented to elucidate the relation between the radial electric field, Er, zonal flows
and the rapid precession of the trapped particle (TP) population. It has been shown
earlier (Rosenbluth & Hinton, Phys. Rev. Lett., vol. 80(4), 1998, p. 724, hereafter RH)
that an initial radial electric field results in geodesic acoustic mode oscillations which
subsequently Landau damp, resulting in a much smaller final residual electric field,
and accompanying parallel zonal flows. We observe an apparent paradox: the final
angular momentum in the RH parallel zonal flow is much smaller than the angular
momentum expected from the well-known rapid precession of the trapped particle
population in the RH residual electric field. We reconcile this paradox by illuminating
the presence of a population of reverse circulating particle flows that, dominantly,
are equal and opposite to the rapid TP precession. Mathematically, the calculation
is facilitated by transforming to an energy coordinate shifted from conventional by
an amount proportional to Er. We also discuss the well-known RH coefficient in the
context of effective mass and show how the TP precession and the opposite circulating
flows contribute to this mass. Finally, we show that in the long wavelength limit, the
RH flows and RH coefficient arise as a natural consequence of conservation of toroidal
angular momentum and the second adiabatic invariant.
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1. Introduction
It is well known that the radial electric field, Er, plays an important role in

tokamak turbulence (Itoh & Itoh 1996; Burrell 1997; Diamond et al. 2005; Watanabe,
Sugama & Nunami 2011). In particular, shear in Er can suppress turbulence through
generation of zonal flows (Dorland et al. 2000; Rogers, Dorland & Kotschenreuther
2000; Terry 2000). Tokamak zonal flows, and the related geodesic acoustic mode
(GAM) oscillations, have been widely studied (Itoh et al. 2006; Sugama & Watanabe
2006a,b, 2009). In particular, an initial radial electric field, Er(0), in an axisymmetric
tokamak results in GAM oscillations. In a collisionless system, the GAMs Landau
damp. It has been shown by Rosenbluth and Hinton (RH) (Rosenbluth & Hinton
1998) that, in the asymptotic steady state of this initial value problem, there persists
a residual electric field, Er(∞), and an associated parallel zonal flow. RH showed
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2 W. Sengupta and A. B. Hassam

FIGURE 1. Comparison of initial and final RH flows. The initial E×B flow UE(0), shown
in black, reduces to the final UE(∞), shown in red. To conserve angular momentum, an
average parallel flow 〈U‖〉 must develop, as shown in purple. The field line makes an
angle ≈ ε/q with the toroidal (horizontal) direction.

that the initial and final electric fields are related according to Er(0)= (1+D)Er(∞),
where D ∼ 1.6q2/

√
ε in the large aspect ratio limit. Here, q is the tokamak safety

factor and ε is the tokamak inverse aspect ratio. Since the initial E× B flow, UE(0),
has a toroidal component and, thus, an initial toroidal angular momentum, and
the final E × B flow, UE(∞) ≈ (√ε/q2)UE(0) is much smaller than the initial, a
substantial parallel zonal flow must arise in order to preserve angular momentum (see
figure 1). The size of the parallel zonal flow, as found by RH, can be deduced from
the geometry of figure 1 to be of order (ε/q)UE(0).

A question arises when one considers the individual contributions to the angular
momentum of the trapped particle (TP) and circulating particle (CP) populations
of the plasma. It is well known that in the presence of a radial electric field,
trapped particles precess toroidally. The speed of precession is of order (q/ε)UE
and represents a rapid rate inasmuch as it is much larger than UE. In this paper,
we note that the angular momentum in the TP population precessing in the final
RH electric field is much larger than the total final RH angular momentum. The
TP precession angular momentum is of order

√
ε(q/ε)UE(∞) ≈ (1/q)UE(0), while

the RH calculated final angular momentum is of order (ε/q)UE(0), as discussed
above. Here we have accounted for the lower density of the trapped fraction, i.e.
nTP ∼ O(

√
ε). This represents an apparent paradox: the TP precession is larger than

the total angular momentum by a factor of (1/ε).
This line of investigation raises further questions when one calculates separately the

CP and TP flows associated with the residual RH zonal flows: as we will show, by
direct calculation based on conventional drift-kinetic theory, the RH parallel flow for
the TPs is found to be of O(qUE(∞)), smaller than the precession drift by 1/ε. In
addition, a direct calculation of the net flux surface averaged poloidal flow of the TPs
surprisingly gives a non-zero result, namely, a net poloidal flow of O(qUE(∞)).

As orientation, we note that the RH calculation was done using a gyrokinetic
formulation, thus optimally allowing wavelengths of order the ion gyroradius, and
allowing E× B flows to be of order the magnetic drifts, vD, i.e. UE ∼ vD. However,
as will be shown in this paper, the key results of the RH paper can be checked
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FIGURE 2. Bead-on-wire toy model. The rod models a field line inclined at angle α to the
toroidal axis. The rod moves rigidly under force F⊥. Coordinates (r, s) measure distances
parallel and perpendicular to B. A deeply trapped particle (blue) is constrained to move
only along the ζ axis. A freely circulating particle (red) moves freely along the rod.

to sustain even in the limit of long wavelengths, or if the super-diamagnetic limit,
UE � vD, were taken. Based on this observation, we restrict our calculation in
the present paper, right from the start, to long wavelengths and super-diamagnetic
flows. Accordingly, we use the drift-kinetic equation of Kulsrud as our starting point.
This has the advantage of simplifying the calculations we present, as we will show.
Particularly, in the super diamagnetic limit, zonal flows, GAMs and sound waves are
decoupled from drift waves and a self-consistent nonlinear analysis of these modes
can be carried out completely independent of the complications arising from the drift
wave turbulence. Further, since the Kulsrud equations preserve the frozen-in theorem,
the underlying physics is simpler to interpret. In particular, frozen-in allows a direct
analogy to a bead-on-wire toy model (Cerfon & Freidberg 2011), as we elaborate
below.

A toy model can be set-up as follows. We consider a massless rod and two beads
of masses mT,mC that can slide freely, without interaction, along the rod; one of them
(mT) is further constrained in that it can only move horizontally, that is to say it stays
trapped inside a linear horizontal one-dimensional channel. This system is depicted in
figure 2. The rod represents a magnetic field line; mC represents circulating particles,
while mT represents deeply trapped particles. The rod is inclined at a small angle given
by sin α = ε/q� 1. Consider now an external perpendicular force, F⊥, acting on the
rod, as shown in the figure. We define the constrained Newton’s equation as Ms̈=F⊥,
where s is the distance measured along F⊥, M is an effective mass and ṡ is the speed
of the rod in the laboratory frame. The Lagrangian for this system is

L(s, ṡ, r, ṙ)= 1
2

mC(ṙ2 + ṡ2)+ 1
2 sin2 α

mT ṡ2 + F⊥s, (1.1)

leading to the equation of motion,

ζ̇ = ṡ
sin α

= (q/ε)ṡ, s̈= F⊥
M
,

with M =mC + mT

sin2 α
=mC +mT

q2

ε2
.

 (1.2)
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This toy model shows the relative rapid precession of the trapped mass, given by ζ̇ .
It also shows that the effective mass from the constrained mass, mT , is mT(q2/ε2).

It follows from the toy model that, inasmuch as the trapped particle precession is
rapid and the trapped particle population carries a significant angular momentum, we
might expect a corresponding effective mass in the RH problem. When this hypothesis
is tested, by adding a torque to the drift-kinetic equations (DKE), an effective mass is
indeed identified, and found to be of order m(1+D). This, however, is much smaller
than if the rapid TP momentum was included: this can be shown to give an effective
mass of ∼ 1 + O(nTPq2/ε2), much larger than the RH effective mass. This heuristic
result adds to our original paradox.

Our study in this paper is motivated by an attempt to understand the discrepancy
in the individual TP and CP flows and angular momenta, as well as in the naively
expected effective mass of the RH problem. The discussion below is organized as
follows: In § 2, we present the basic system of equations, consisting of the drift-kinetic
equation and the angular momentum conservation equation in axisymmetric toroidal
geometry. We then solve the Rosenbluth–Hinton problem in the large flow and long
wavelength limit in § 3 and point out the aforementioned discrepancies in the flows.
We introduce the shifted coordinates in § 4 and revisit the RH problem in these new
coordinates in § 5, to reconcile trapped particle toroidal precession in RH flows. In
§ 6, we illustrate the role of barely circulating particles in cancelling the large trapped
particle precession and thereby explain the smaller overall RH effective mass. Finally,
in § 7, we illustrate the role of the second adiabatic invariant in the sub-bounce
dynamics of zonal flows. We summarize our results in § 8.

2. Kinetic equations
In this section we present the kinetic equations that are appropriate for studying

the physics of the trapped particle precession. We shall only be considering flows that
are large compared to the diamagnetic flow and, in principle, can be of the order of
poloidal sonic flows. It is then appropriate to use the drift-kinetic equation (DKE) as
formulated by Kulsrud (1980). This DKE is derived in the ‘Magnetohydrodynamic
(MHD) ordering’ and thus allows large, sonic level E × B flows. In the literature
it is also referred to as kinetic MHD (Cerfon & Freidberg 2011; Kunz et al. 2015;
Burby & Sengupta 2017). Frieman and Hinton-Wong (Frieman, Davidson & Langdon
1966; Hinton & Wong 1985) have obtained equivalent DKEs. A consistent ordering
also requires that the parallel electric field E‖ be very small compared to E⊥. In
the electrostatic limit (with frequencies much lower than the Alfvénic frequency) the
collisionless DKE is given by

∂f
∂t
+ (UE + v‖b) · ∇f + (−b · ((UE + v‖b) · ∇)UE +µB∇ · b+ e

M
E‖)

∂f
∂v‖
= 0, (2.1)

where

UE = B×∇ψ
B2

ϕ′(ψ), (2.2)

is the E×B flow and f = f (v‖, µ, x, t). The magnetic field B, in axisymmetry, is given
by

B= I∇ζ +∇ζ ×∇ψ, B×∇ψ = IB− (RB)2∇ζ , (2.3a,b)
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where, R, ζ are the usual radial and toroidal angle in an axisymmetric toroidal
geometry and I represents the poloidal current through the flux surface ψ . Here,
the E‖ force term is of the same order as the other parallel force terms (the mirror
force and inertial forces) in the equation. The above DKE applies for both ions and
electrons, though we will assume small electron mass and thus the electron response
will be taken to be adiabatic. The system in the electrostatic approximation consists
of four variables, namely, the two distribution functions, the potential ϕ and E‖. The
potential ϕ satisfies the ‘MHD ordering’ eϕ/T ≈ (1/ρ∗), where T is ion/electron
temperature and ρ∗ is Larmor radius normalized to the system size. These four
unknowns are governed by the two DKEs, the quasineutrality condition ne = ni, and
the equation of conservation of angular momentum, namely (Hassam & Kleva 2011)

∂t

〈
nϕ′
|∇ψ |2

B2
−
∫

d3v
Iv‖
B

f
〉
= τ⊥, τ⊥ =

〈
n
|∇ψ |

B
F⊥
m

〉
, (2.4a,b)

where 〈·〉 represents a flux surface average (Helander & Sigmar 2005), and τ⊥ is
a toroidal torque due to a perpendicular force F⊥. The latter represents an external
force, such as from a neutral beam, that could accelerate the E× B flow. It can be
shown that in axisymmetric geometry, the equation governing the angular momentum
(2.4) is identical to the radial current quasineutrality condition. This equivalence is
shown in appendix C. For the present purposes, we will find the former equation to
be more convenient. It can also be shown that although the effects of curvature and
grad B drifts do not appear in the DKE (2.1), they are fully retained in the current
quasineutrality equation (and hence in (2.4)) through the divergence of the Chew–
Goldberger–Low (CGL) pressure tensor. This allows us to capture the lowest-order
banana width effects that are crucial for the neoclassical shielding effect discussed in
RH’s original calculation.

In this paper, we will only be concerned with time scales which are subsonic, i.e.
d/dt� cs/qR. In this limit, as we will show more precisely later, E‖ is small and can
be neglected. In that case, the system can be closed by simply using the DKE for ions,
equation (2.1), and the angular momentum conservation equation (2.4). As a further
simplification, we will order q � 1 but UE ∼ vth/q. In this ordering, the nonlinear
in UE terms in the DKE can be neglected compared with cross-terms in v‖ and UE,
since |v‖UEb : ∇UE| : |bUE : ∇UE| ∼ 1 : 1/q. Given these orderings, equation (2.1) can
be recast as

∂f
∂t
+ (UE + v‖b̂) · ∇f + (v‖UE · κ −µ∇‖B) ∂f

∂v‖
= 0. (2.5)

We now use the form for UE, equation (2.2), to simplify (2.5). In particular, UE · κ =
UE · ∇B/B, in the low β limit. We also assume axisymmetry and thus B×∇ψ · ∇=
IB∇‖, where ∇‖ = b · ∇. Given these, (2.5) can be recast to the form

∂f
∂t
+
(
v‖ + Iϕ′

B

)
∇‖|v‖ f +

(
v‖

Iϕ′

B
−µB

)
∇‖B

B
∂f
∂v‖
= 0, (2.6)

where f = f (v‖, µ, x, t). We will now use (2.6) and (2.4) as the closed set of equations
for the two variables f and ϕ.

As a closing remark, we reiterate that the large q assumption has been made
mainly to simplify the analysis, since it decouples the sound dynamics from the
GAM dynamics. A calculation for q ∼ 1 can be done and has been included in
appendix D.
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3. Sub-bounce dynamics and the RH problem

In this section, we use (2.4) and (2.6) to study the sub-bounce frequency response
of the system. In particular, we will study the zonal flows in response to an externally
applied quasi-static force perpendicular to the magnetic field. This approach has the
simplification that GAMs are not excited but nevertheless contains all the zonal flow
physics that is of interest. We note that RH obtained a sub-bounce response to the
gyrokinetic equation, where they self consistently assumed drift ordering, small flows
and short perpendicular wavenumber k⊥, such that k⊥ρ∼ 1, ρ being the Larmor radius.
We will show that the RH zonal flows and the long wavelength RH coefficient Xiao,
Catto & Molvig (2007) are obtained self-consistently from our approach.

We perform a linear analysis of the kinetic system (2.4), (2.6) with the electrostatic
potential as a small perturbation. We start with an equilibrium, F0, with zero flow.
From (2.6) we find that the equilibrium distribution function F0 satisfies

v‖∇‖F0 −µ∇‖B∂F0

∂v‖
= 0, (3.1)

which yields F0 = F0(E), where E = (1/2)v2
‖ + µB is the energy. This F0 also

satisfies the (2.4) with τ⊥= 0. We transform from v‖ to E coordinates. The perturbed
distribution function, f̃ , satisfies the linearized DKE, which in energy coordinates is
given by

∂ f̃
∂t
+ v‖∇‖|E f̃ = v‖∇‖|E

(
Iϕ̃′

B
v‖

)
∂F0

∂E
, (3.2)

where ∇‖|E is the gradient operator at constant E , and we have used v‖∇‖|E(v‖) =
−µ∇‖B. Since the force is weak, we look for a sub-bounce frequency solution
according to the ordering ∂/∂t∼UE ·∇∼F⊥� v‖∇‖. Expanding f̃ as f̃ = f̃0+ f̃1+· · ·
in the smallness of ∂t/ωb� 1, we obtain, to lowest order,

v‖∇‖|E f̃0 = 0 ⇒ f̃0 = f̃0(E, t). (3.3)

To first order, equation (2.6) becomes

∂ f̃0

∂t
+ v‖∇‖|E f̃1 = v‖∇‖|E

(
Iϕ̃′
v‖
B
∂F0

∂E

)
. (3.4)

Annihilating the f̃1 term by bounce averaging (discussed in Helander & Sigmar
(2005)), denoted here by overbar as in f = ∮ (dlf /v‖)/

∮
(dl/v‖), we get f̃0 = f̃0(E)

which can be set to zero since (3.3) is homogeneous. Solving for f̃1 from (3.4) we
obtain

f̃1 = Iϕ̃′
(v‖

B
− g
)
∂EF0, (3.5)

where g(E) is yet to be determined and F′0 ≡ ∂EF0. To second order we have,

∂ f̃1

∂t
+ v‖∇‖|E f̃2 = 0. (3.6)
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Annihilation of (3.6) yields ∂t f̃1 = 0, which gives g = (v‖/B). Thus, we get the RH
solution for f̃1 correct to first order (Xiao et al. 2007), viz.

f̃1 = Iϕ̃′
(
v‖
B
−
(v‖

B

))
∂EF0. (3.7)

Let us now check for self-consistency of the above calculation, in particular the
neglect of E‖. We can use f̃0 and f̃1 above to calculate the density. Since f̃0 = 0,
and the first order f̃1 is antisymmetric in v‖, density remains constant up to second
order. Likewise, changes in parallel and perpendicular pressures are also zero because
of parity. The elements of the electron pressure tensor can be used to a posteriori
calculate E‖, as defined in equation (49) of the Kulsrud (1980) manuscript. (For
massless electrons, E‖ is given essentially by the generalized adiabatic electron
response, viz., neE‖ = −b∇ : Pe.) We find that E‖ = 0 to lowest order and also zero
to first order given the f1 symmetry. This self-consistently justifies the neglect of E‖
in our calculation above.

3.1. Rosenbluth–Hinton ‖ flows

We now calculate the parallel flow by taking the v‖ moment of f̃ = f̃0 + f̃1. Since
f̃0 = 0, we have

n0Ũ‖1 =
∫

d3vv‖ f̃1 = Iϕ̃′
∫

d3vv‖

(
v‖
B
−
(v‖

B

))
∂EF0. (3.8)

Until now, we have not done a large aspect ratio expansion. However, to evaluate the
integrals and compare the leading-order scaling behaviour of the flows with respect
to the trapped precession, we shall now consider the inverse aspect ratio ε as a small
parameter. The analysis is straightforward and has been presented in detail by several
authors (Xiao et al. 2007; Sugama & Watanabe 2009). Here we include a few details
for completeness.

In the large aspect ratio circular flux surface limit with B=B0(1− ε cos θ), θ being
the poloidal angle, we find that(v‖

B

)
= π

√
1− λ(ε + 1)

2K
(

2ελ
(ε + 1)λ− 1

)√2E,
∫ 1/(1+ε)

0
dλ
(v‖

B

)
= 2

3

√
2E(1− 1.6ε3/2 +O(ε2)),

(3.9a,b)

where, K is the complete elliptic integral of the first kind and λ = µB0/E is the
pitch angle variable (Helander & Sigmar 2005) with a range of (0, 1/(1 + ε)). The
lower limit corresponds to CPs with µ= 0 and the upper limit corresponds to barely
circulating particles on the separatrix with E =µBmax=µB0(1+ ε). In terms of λ, we
have v‖ d3v= 2π(B/B0)E dλ dE . Assuming F0 to be a Maxwellian and performing the
energy integral E from (0,∞), we obtain

Ũ‖1 =−(2ε cos θ + 1.6ε3/2 +O(ε2))
Iϕ̃′

B
, (3.10)

where Iϕ′/B can be seen to be of O(qUE/ε), which is the precession drift. We note
that the parallel flow, (3.10), is smaller than the toroidal precession speed expected of
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the TPs, by a factor of ε. In particular, given the large precession, we find a much
larger angular momentum contribution from the TPs (even given the lower density
fraction of this species). To examine this further, we calculate separately for trapped
and circulating species the parallel flows resulting from the RH solution. Using (3.8)
and integrating only over E >µBmax, we get for circulating particles (CP)

(nŨ‖1)CP = n0(−2ε cos θ + (−1.6+ (1+ cos θ)3/2)ε3/2 +O(ε2))
Iϕ̃′

B
, (3.11)

where we have used an expansion in ε. This flow speed is O(qUE) as expected.
Correspondingly, for the trapped particles (TP), we integrate inside the separatrix
over µBmin < E <µBmax to get for the parallel flow,

(nŨ‖1)TP = n0(−(1+ cos θ)3/2ε3/2 +O(ε5/2))
Iϕ̃′

B
. (3.12)

The total parallel flow is obtained by summing the last two expressions, giving

Ũ‖1 =−(2ε cos θ + 1.6ε3/2 +O(ε2))
Iϕ̃′

B
, (3.13)

in agreement with (3.10). Note that, we expect to see a large toroidal precession from
the TPs. Instead, we find from (3.12), the flow of the TP to be O(qUE) since the
density of TP is O(

√
ε). This is smaller than the toroidal precession drift of the TPs

by a factor of ε. Further, if we calculate the poloidal velocity of the trapped particle
fraction, we find

UTP
· θ̂ = (uTP

‖ +UE) · θ̂ ≈UE; (3.14)

the trapped particles seem to have a non-zero bounce averaged poloidal flow. This is
puzzling, since for adiabatic changes we expect TPs to have a purely toroidal flow.

3.2. Angular momentum conservation and the effective mass
Inserting the parallel flow (3.10) into (2.4), we get the angular momentum equation
in the form (

1+ 2q2 + 1.6
q2

√
ε
+O(q2)

)
∂tϕ̃ = τ⊥. (3.15)

From (3.15) we see that the factor multiplying ∂tϕ̃ is the Rosenbluth–Hinton
coefficient. As clarification, we note that we have calculated the RH coefficient
using the angular momentum equation. An equivalent way of doing this would be
to use quasineutrality of the charged species. In the former approach, which is also
a statement of quasineutrality in axisymmetry, only linear terms in v‖ are needed.
In the latter approach, the calculation would have to be carried to a quadratic level
(Xiao et al. 2007).

Equation (3.15) is of the form of Newton’s law τ⊥ = Ma where the acceleration
is the rate of change of UE and M is the effective mass. Thus, we can say the RH
coefficient plays the role of an effective mass. The (1+ 2q2) coefficient is the well-
known Pfirsch–Schluter coefficient (Hassam & Kulsrud 1978; Hirshman 1978) arising
from the circulating particles response. We see that 1.6q2/

√
ε is the dominant term.
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Using
∫ 2π

0 dθ/(2π)(1+ cos θ)3/2 ≈ 1.2, it can be checked from (3.11), (3.12) that the
averaged TP and CP flows are approximately in the ratio 1.2 : 0.4. The effective mass
contributions are, respectively, 1.2q2/

√
ε due to the TPs and 0.4q2/

√
ε due to the CPs.

Given that we are doing a perturbative analysis, one might certainly question the
validity of trapped particles staying trapped. However, we could consider very deeply
trapped particles which cannot be detrapped easily. Moreover, it must be realized
that we can make the dynamics arbitrarily slow by appropriately weakening τ⊥ and
thus approach a quasi-static equilibrium. In such a situation we do expect to have
well confined trapped particles. In each case, the above analysis would point out to
discrepancies in trapped particle flows and contribution to the effective mass.

In order to understand the discrepancy between the RH solution and the expected
TP contribution to the flows and, possibly, effective mass, we will now take a different
approach to solve the low frequency RH problem.

4. Shifted coordinates
As shown earlier, in axisymmetry we can rewrite the DKE as

∂f
∂t
+
(
v‖ + Iϕ′

B

)
∇‖|v‖ f +

(
v‖

Iϕ′

B
−µB

)
∇‖B

B
∂f
∂v‖
= 0. (4.1)

where f = f (v‖, µ, x, t). We reiterate that this equation is valid for large q and with
UE ordered to be of the same order as vth/q. It can be deduced from this equation,
by examining the characteristics, that E∗ = (1/2)v2

‖ +µB+ Iϕ′(v‖/B) is a constant of
motion, as can be checked by a direct substitution into (4.1). Physically, the difference
Iϕ′v‖/B between E∗ and E is due to the electrostatic potential difference experienced
by a particle undergoing a banana orbit. We have shown this in appendix A and it
is also discussed elsewhere (Hassam 1996; Kagan & Catto 2008; Landreman & Catto
2010). Thus, any distribution function f (E∗) defines an equilibrium for kinetic MHD in
an axisymmetric tokamak. Hence we shift to (E∗, v‖∗) coordinates, defined as follows:

E∗ = 1
2
v2
‖ +µB+ Iϕ′

v‖
B
= E + Iϕ′v‖

B
,

v‖∗ = v‖ + Iϕ′

B
, d3v =

∑
σ

B dµ dE∗
|v‖∗| .

 (4.2)

Here, σ = sign v‖∗ denotes the three regions in energy space, namely, the trapped
population and the rightward and leftward moving circulating particle populations. The
coordinate v‖∗ is defined with respect to coordinates shifted downward in v‖. E∗ is
then a downshifted energy-like coordinate, centred about v‖∗ = 0. This shift, of size
∆ = Iϕ′/B ≈ qUE/ε in v‖, is depicted in figure 3. In E∗ coordinates, centred with
respect to v‖∗, the DKE, equation (2.5) or (4.1), becomes

∂f
∂t
+ v‖∗∇‖|E∗ f + ∂Iϕ′

∂t
v‖
B
∂f
∂E∗
= 0, (4.3)

where f = f (E∗,µ,ψ, θ, t) and ∂/∂t is at constant E∗. The angular momentum equation,
also recast in E∗ coordinates, is now given by

∂t

〈
n0ϕ

′ |∇ψ |2
B2

〉
− ∂t

〈∫ ∑
σ

B dµ dE∗
|v‖∗|

Iv‖
B

f

〉
= τ⊥. (4.4)

In what follows, we shall use equations (4.2), (4.3), (4.4).
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(a) (b)

FIGURE 3. Contours of constant E (a) and E∗ (b). The downward shift is given by the
precession drift (= Iϕ′/B∼ qUE/ε).

5. The sub-bounce problem revisited

To make contact with the RH problem, we begin by performing a ∂t�ωb expansion,
but allowing a large UE ∼ vth/q, which corresponds to a finite downward shift as
shown in figure 3. This approach allows for a more transparent calculation. To
dominant order, we have from (4.3)

v‖∗∇‖|E∗ f ≈ 0 ⇒ f = f (E∗, t). (5.1)

Annihilating the ∇‖E∗ operator by bounce averaging gives a constraint equation for
f (E∗, t), viz.

∂f
∂t
+ ∂Iϕ′

∂t

(v‖
B

) ∂f
∂E∗
= 0. (5.2)

The constraint on f introduces a σ dependence. Equation (5.2) and the angular
momentum relation (4.4), with f = f (E∗, t), form a closed set for the nonlinear
{f , ϕ′} system. We now do a subsidiary expansion in small (Iϕ′/B)� vth, denoting
f = f0 + f1 + · · · (here, the subscript indices are not the same expansion parameter
as in earlier sections). From (5.2), the corresponding lowest- and first-order equations
are

∂f0

∂t

∣∣∣∣
E∗
= 0 ⇒ f0 = f0(E∗), (5.3a)

∂f1

∂t
+ ∂Iϕ′

∂t

(v‖
B

) ∂f0

∂E∗
= 0 ⇒ f1 =−Iϕ′

(v‖∗
B

) ∂f0

∂E∗
, (5.3b)

where the overbar corresponds to the bounce average holding E∗, µ constant, and we
note that (v‖∗/B)= 0 for TPs.

5.1. RH flows
We can now calculate the RH flows from (5.3). For general (Iϕ′/B)/vth, the dominant-
order parallel flow for either the TP or the CP populations (or both) is

(nU)‖ =
∫ ∑

σ

B dµ dE∗
|v‖∗| v‖ f =

∫ ∑
σ

B dµ dE∗
|v‖∗|

(
σ |v‖∗| − Iϕ′

B

)
f , (5.4)
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where, the integrals are to be taken over the appropriate populations and we have used
the definition of v‖∗ as in (4.2). If we were to expand in small ϕ′, correct to first order,
we would insert both f = f0+ f1 in the right-hand side integral in (5.4). However, since
f0 is independent of σ for both species, the lowest-order term, proportional to σ |v‖∗|f0,
will vanish, by symmetry (with respect to the E∗ coordinates). To first order then, two
terms must be retained: one from the ϕ′ term in the parenthesis and the other from
the f1 term. This yields the expression

(nU)‖ =
∫ ∑

σ

B dµ dE∗
|v‖∗|

(
v‖∗f1 − Iϕ′

B
f0

)
. (5.5)

We emphasize that the second term in the integrand appears because of a ‘shift in the
Jacobian’, and acts on the lowest order f . In particular, note that even for small ϕ′,
this term must be retained as it is of the same order as the preceding f1 term. Inserting
for f1 in (5.5), we have

(nU)‖ =−Iϕ′
∫ ∑

σ

B dµ dE∗
((v‖∗

B

) ∂f0

∂E∗
+ 1
|v‖∗|Bf0

)
, (5.6)

where, for TPs, we recall that (v‖∗/B)=0. (Equation (5.6) can be compared with (3.8),
the corresponding equation from the previous section; the latter equation does not have
a Jacobian shift term.)

Since (v‖∗/B)= 0 for TPs, the TP parallel flow from (5.6) is

(nU)TP
‖ =−

Iϕ′

B

∫
TP

∑
σ

B dµ dE∗
|v‖∗| f TP

0 (E∗, t)=−nTP Iϕ′

B
, (5.7)

where

nTP = n0(
√
ε(1+ cos θ)+ ε

3/2(cos θ + cos 2θ)
2
√

cos θ + 1
+O(ε2)), (5.8)

is the trapped particle density. This parallel flow is a rigid rotor flow and, we note,
has an amplitude that corresponds precisely to the precession drift speed. We can also
calculate the net poloidal velocity of the TPs,

UTP
· θ̂ =

∫
d3vf TP

0 (bv‖ +UE) · θ̂ , (5.9)

using (5.7), and we find

(nU)TP
· θ̂ = ε

q

(
(nU)TP

‖ +
Iϕ′

B
nTP

)
= 0. (5.10)

This is zero as expected. Thus, as we can see, the previously discussed discrepancies
in TP parallel flow and TP theta flow have been resolved; we note that the ‘Jacobian
shift’ is responsible for resolving the discrepancies. Importance of an analogous shift
in a time dependent problem has been recently shown by Burby (2016).

The CP flow can now be calculated from (5.6) assuming that the lowest-order
distribution function is a Maxwellian. This gives us

(nU)CP
‖ = n0

Iϕ′

B0

(√
ε(1+ cos θ)− 2ε cos θ

+ ε3/2

(
−1.6+ (cos θ + cos 2θ)

2
√

cos θ + 1

)
+O(ε2)

)
. (5.11)
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Note that, to lowest order, the CP flow is a rigid rotor flow, equal and opposite to the
TP flow. Thus from equations (5.11), (5.7) we see that to dominant order, (nU)CP

‖ +
(nU)TP

‖ ≈ 0. This says that in the accounting of parallel flows for angular momentum,
the large TP precession flow does not materialize as a large parallel flow since it is
completely balanced by an oppositely directed CP flow. The cos θ term in the CP flow
is the usual harmonic parallel flow. The net poloidal velocity of the CPs is:

UCP
· θ̂ =

∫
d3f CP

0 v(bv‖ +UE) · θ̂ = εq
(

Iϕ′

B0
nCP +O(

√
ε)

)
≈UE · θ̂ . (5.12)

Hence the poloidal velocity of the CPs is basically the E × B flow, consistent with
expectations.

Summing over the TP and CP flows, we get the total RH flow to be

(nU‖)TP+CP =− Iϕ′

B0
(2ε cos θ + 1.6ε3/2 +O(ε2))n0. (5.13)

Although the individual flows, equations (5.7), (5.11), differ from the ones obtained
using standard neoclassical methods, equations (3.12), (3.11), the total flows,
equations (5.13), (3.13) from our calculation, match the RH solution. Remarkably,
the large TP precession flow is balanced by an equally large and oppositely directed
flow from the barely CPs.

5.2. RH Effective mass
We now consider the effective mass coefficient. For this, we would insert f0 + f1 just
found into the second term of the angular momentum equation (4.4). The second term

∂t

〈∫ ∑
σ

B dµ dE∗
|v‖∗|

Iv‖
B

f

〉
(5.14)

is just the time derivative of the parallel flow, viz., ∂t〈(I/B)(nUtotal
‖ )〉. A general

expression for the parallel flow (for small ϕ′) is given by (5.6). Inserting this
expression as discussed, we obtain the angular momentum equation as

∂t

〈
ϕ′
|∇ψ |2

B2

〉
+ ∂t

〈
I2ϕ′

(
1
B2
+
∫

CP

∑
σ

B dµ dE∗
|v‖∗|n0

v‖∗
B

(v‖∗
B

) ∂f0

∂E∗

)〉
= τ⊥. (5.15)

Rearranging, we find

∂tUE = F⊥/m
1+D

, (5.16)

where,

D =
〈(

1
B2
+
∫

CP

∑
σ

B dµ dE∗
|v‖∗|n0

v‖∗
B

(v‖∗
B

) ∂f0

∂E∗

)〉〈 |∇ψ |2
I2B2

〉−1

≈ q2

ε2
〈nUtotal

‖ 〉/(Iϕ′/B0), (5.17)

represents the added effective mass.
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Zonal flow dynamics 13

To illuminate the role of each species in the effective mass, we consider the
individual effective mass contributions from the TPs and CPs. Using

∫ 2π

0 dθ(cos θ +
cos 2θ)/(4π

√
cos θ + 1) ≈ 0.15, the TP contribution to the effective mass coefficient

can be shown to be

q2

ε2
〈nUTP

‖ 〉/(Iϕ′/B0)∼ q2

ε3/2
+ 0.15

q2

√
ε
+O(q2). (5.18)

Thus the effective mass contribution from the TPs is ∼O(q2/ε3/2)� 1 as expected
from our toy model. The CP contribution to the effective mass coefficient is

q2

ε2
〈nUCP

‖ 〉/(Iϕ′/B0)∼− q2

ε3/2
+ 1.45

q2

√
ε
+O(q2). (5.19)

To lowest order this is equal and opposite to the TP effective mass. Thus the total
effective mass is 1+ 1.6q2/

√
ε +O(q2), consistent with the original RH calculation.

5.3. Flows and effective masses for truncated distributions
We have seen that the cancellation of the rapid TP precession flow by an oppositely
directed flow of barely CPs explains why the effective mass is smaller than that
expected from the TPs alone. But this finding does not unequivocally address whether
a distribution function of only TPs would result in the expected large effective mass.
To address this, we consider the distribution function in (5.17) to be populated only
for E∗ <µBmax. For this case, the TP contribution to the effective mass can be seen
from (5.18) to be independent of the details of the distribution. The contribution is
found to be ∼ (q2/ε2)nTP. Since there are no CPs, nTP = n. Therefore, we find the
effective mass to be q2/ε2, and the accompanying TP flows to be

UTP
‖ =−

Iϕ′

B
, UTP

· θ̂ = 0. (5.20a,b)

To complete this line of reasoning, we have considered a distribution function with
only energetic CPs, i.e. all particles considered to lie well above the separatrix region
(E∗ = µB0(1+ ε)) in phase space. The effective mass can be shown to be 1+O(q2).
These results are consistent with fluid models where we get the oscillating Pfirsch–
Schluter flows and the corresponding effective mass coefficient. We also find that
unless we approach the separatrix, there are no

√
ε terms.

The above findings for TP and CP flows are fully consistent with our toy model
equation (1.2) which shows the O(q2/ε2) effective mass contribution from the trapped
particle and the O(1) contribution from the freely circulating particle.

6. The role of the barely circulating particles
We have shown that the large trapped particle precession flow is cancelled to

lowest order by an opposite flow from the circulating particles, so that there are no
large composite flows of order qUE/

√
ε. We would now like to understand the origin

of the opposite flow. We show here that this flow is largely from a class of barely
circulating particles. To demonstrate this, we begin with a more sophisticated toy
model. Consider a particle on a rod as shown in figure 4. The generalized coordinates
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FIGURE 4. Upgraded bead-on-wire toy model showing a particle of mass m moving along
a field line inclined at an angle α ≈ ε/q to the toroidal direction. The field line moves
rigidly under applied force F⊥. The particle also feels the mirror force, modelled by the
potential V(θ), as it moves along B.

are (x= R0ζ , y= qR0θ), where θ, ζ are analogous to the poloidal and toroidal angles.
In addition to being constrained to move only along the rod, the particle also feels a
force due to an applied potential V(θ) = µB(θ) = µB0(1 − ε cos θ). Here, the force
from the potential, V(θ), corresponds to the µ∇‖B force, the mirror force that the
particle feels as it moves in θ along B. Thus, while our previous model allowed only
freely circulating particles and deeply trapped particles, our new model allows these
but also allows barely circulating particles.

The Lagrangian is given by,

L(θ, θ̇ , ζ , ζ̇ )= 1
2 mR2

0((qθ̇ )
2 + (ζ̇ + qθ̇ cot α)2)−µmB0(1− ε cos θ)−mR2

0c(t)ζ̇ , (6.1)

where c= (∫ F⊥ dt) sin α/(mR0) is the impulse due to the applied force F⊥. Here we
use the impulse instead of work done by the force in the Lagrangian to manifestly
preserve axisymmetry.

The equation of motion is

θ̈ +ω2
b sin θ =−F⊥ cos α

qmR0
where ωb =

√
µB0ε/qR0, (6.2)

which shows that our toy model is identical to a driven nonlinear pendulum (Henrard
2005). We can exploit this similarity to understand the particle trajectories in the
presence of the external torque. Let us consider the case where F⊥ is time independent.
In this case the work and energy E of the driven pendulum is conserved. Thus,

E = 1
2
θ̇ 2 −ω2

b cos θ + F⊥ cos α
qmR0

θ = const. (6.3)

Figure 5 shows the contours of constant E for non-zero F⊥. Note that for small F⊥,
most of the trajectories resemble the original trajectories of a torque-free pendulum.
However now there exists a group of barely circulating particles near the separatrix
(shown in red in figure 5), which can change directions so that the final direction is
in the same sense as the applied torque.
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FIGURE 5. Phase portrait of a pendulum driven by F⊥. In black and blue we show
oppositely moving freely circulating particle. In purple we show the orbit of a deeply
trapped particle and in red we show a barely circulating particle preferentially changing
direction in the presence of small F⊥.

In order to make contact with the drift-kinetic system, lets now use the Hamiltonian
description of the toy model. From the Lagrangian we calculate the canonical
momenta,

Pθ
qmR2

0
= ζ̇ cot α + qθ̇/sin2α,

Pζ
mR2

0
= ζ̇ − c+ qθ̇ cot α. (6.4a,b)

Since the Lagrangian is independent of ζ , the ‘toroidal angle’, Pζ must be a constant.
The Hamiltonian H, can now be constructed,

H/m− 1
2

(
Pζ

mR0
+ R0c

)2

= 1
2
v2
‖∗ +µB(θ), (6.5)

where, v‖∗ ≡ qR0θ̇ = (Pθ − q cot α(Pζ + cmR2
0))/qm. We can now define E∗ =

(1/2)v2
‖∗+µB(θ) and write down Liouville’s equation for this system in {θ, ζ , E∗,Pζ }

coordinates. We restrict ourselves to the ‘axisymmetric’ problem by choosing ∂ζ = 0
(in axisymmetry there always exists a local frame). Thus we have,

∂f
∂t
+ v‖∗

qR0

∂f
∂θ
− ∂

∂t
(R0c cot α)v‖∗

∂f
∂E∗
= 0. (6.6)

Let us compare the Lioville’s equation (6.6) with the drift-kinetic equation (4.3). We
note that, by making the identification Iϕ′/B⇐⇒−R0c cot α, we obtain a one–one
relation. This is perhaps not surprising because both equations describe conservation
of phase space volume.

Let us now try to understand the large cancellation of the RH flows. From the DKE–
toy model equivalence, we see that Iϕ′/B ∝ −F⊥. Figure 5 now corresponds to the
case where Iϕ′/B > 0. We have already seen that the trapped particles precess with
speed uTP

‖ ≈ qUE/ε. Their net flow from equation (5.7) is (nu‖)TP=−n
√
εIϕ′/B which

is negative in this case. The barely circulating particles on the other hand, have a
similar density,

√
ε, but have an opposite flow n

√
εIϕ′/B> 0 (see (5.11)). Thus the

two flows cancel. A further explanation of the opposite flows is provided in the next
section and in appendix D.
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7. Sub-bounce dynamics in collisionless axisymmetric systems with sub-poloidal
sonic flows
The analysis presented in § 5 was restricted to small flows. In this section, we

present a nonlinear generalization of this analysis to finite but sub-poloidal sonic flows.
We shall relax these constraints further in appendix D. Our main result in this section
is to show that the collisionless RH flows and effective inertia arise because of two
physical principles: conservation of angular momentum owing to axisymmetry, and
conservation of J‖ due to sub-bounce nature of the flows.

We shall first show that the distribution function f0 is a function of the second
adiabatic invariant J‖=

∮
v‖dl by solving (5.2) exactly. This is perhaps not surprising,

since in the drift ordered sub-bounce kinetic system, J‖ is conserved (Medvedev
et al. 1998), provided the forcing is adiabatic. Here we shall be content in restricting
ourselves to sub-bounce axisymmetric systems. The existence of a second adiabatic
invariant for kinetic MHD in more general settings has been discussed recently (Burby
& Sengupta 2017). The second adiabatic invariant J‖ is defined by

J‖ =
∮
E∗
v‖ dl=

∮
E∗
v‖∗ dl− σqR

Iϕ′

B0
. (7.1)

We note that the J‖ integral is done along a field line holding E∗ fixed. Using E∗ =
v2
‖/2+µB+ v‖Iϕ′/B and v‖∗ = v‖ + Iϕ′/B, we can show that

∂v‖
∂E∗
= 1
v‖∗
,

∂v‖
∂t

∣∣∣∣
E∗
=− 1

v‖∗

v‖
B
∂tIϕ′, (7.2a,b)

∂J‖
∂E∗
=
∮
E∗

dl
v‖∗
, ∂tJ‖ =−

∮
E∗

dl
v‖∗

v‖
B
∂tIϕ′, (7.2c,d)

where the time derivative is done at fixed (µ,E∗, ψ, θ) and E∗ derivative is at constant
(µ, θ, ψ, t). We can now simplify (5.2) using the above properties of J‖.

∂f0

∂t
+ ∂Iϕ′

∂t

(v‖
B

) ∂f0

∂E∗
= 0 ⇒ ∂f0

∂t
∂J‖
∂E∗
− ∂J‖
∂t

∂f0

∂E∗
= 0. (7.3)

The last equation clearly implies f0 = f0(J‖). Such a solution has been previously
obtained by Kulsrud (1961) treating UE as a perturbation. Our result allows large
flows.

Note the crucial sigma dependence in the expression for J‖ as noted earlier (Hastie,
Taylor & Haas 1967; Henrard 2005). There is no such sigma dependence in the
trapped particle distribution because the second term averages out as σ =±1 for TPs.
This means that the CP distribution is not symmetric with respect to v‖∗ = 0.

In MHD ordering, the net flow is given by U = (U‖/B)B + UE with UE = B ×
∇ϕ(ψ)/B2. In an axisymmetric system, using (2.3), we get the following expression
for the net flow

U= FB− ϕ′R2
∇ζ , F≡ 1

B

(
U‖ + Iϕ′

B

)
. (7.4a,b)

From the definition of U‖ we obtain,

n0F=
∫

d3v
v‖∗
B

f0 =
∑
σ∗

∫
dµ dE∗f0(E∗). (7.5)
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Let us now consider the angular momentum conservation equation

∂t〈n0U · R2
∇ζ 〉 =−τ⊥, (7.6)

where τ⊥ is defined as in (2.4). Substituting for U from (7.4) into (7.6) we get

〈n0R2〉∂tϕ
′ − I∂t〈n0F〉 = τ⊥. (7.7)

In order to evaluate (7.7) we need an evolution equation for n0F. From (7.5) we
get

∂t(n0F)=
∑
σ∗

∫
dµ dE∗

(
∂tJ‖
) ∂f0

∂J‖
=−∂tϕ

′∑
σ∗

∫
dµ dE∗
|v‖∗|n0

v‖∗
(v‖

B

) ∂f0

∂E∗
. (7.8)

For the flows to be divergence free we need ∇ · (nU)=0 which implies B ·∇(nF)=
0 from (7.4) due to axisymmetry. From (7.8) we see that the factor v‖∗(θ) cancels out
and the right side is only a function of ψ after the E∗ and µ integrals are performed.
Thus B · ∇(nF)= 0 is satisfied and the flows are indeed divergence free as expected
for a stationary state.

Using angular momentum conservation (7.7) and (7.8), we obtain the generalization
of (5.17) for finite flow, showing a generalized effective mass,

∂tϕ
′
(

I2

〈∫
d3v

(v‖∗
B

)(v‖
B

)
∂f0

∂E∗

〉
+ 〈n0R2〉

)
= τ⊥, (7.9)

where f0 can depend nonlinearly on ϕ. In the limit of small UE/vth, we recover (5.17)
and hence the RH coefficient (1+ 1.6q2/

√
ε) in the large aspect ratio limit with an

initial Maxwellian. The effective mass can also be written in terms of J‖ as shown in
(D 7).

Now let us try to understand the origin of the opposite flows from this point of view.
Note that for small (UE/vth), F is zero for TPs because the TP distribution function
is an even function of v‖∗. This ensures that the poloidal flow of TPs is zero and
the parallel flow is due to the fast precession. Also from (7.9), we can see that the
TPs always contribute the large q2/ε2 effective mass. F is however non-zero and in
fact different for the CPs above and below the separatrix. This breaks the up down
symmetry dynamically, leading to differential parallel flow due to CPs. The fact that
the CP flow must be opposite to the TPs also follow from the fact that J‖ must be
conserved and that J‖ is initially small because of the initial up–down symmetry of
the initial Maxwellian.

8. Summary
If a tokamak plasma is set into motion with an initial radial electric field Er,

the final state, after transients, is a much reduced Er and a parallel zonal flow
consistent with angular momentum conservation. However, the well-known trapped
particle precession angular momentum in the final Er field is much larger than the
zonal flow. We have shown in this paper that this apparent paradox is resolved by
the fact that there are reverse flows from the barely passing particles that cancel
the large momentum from the TP precession momentum. Mathematically, we show
that, even for small perturbations, there is a linear shift in the Jacobian of the
phase space volume element, from Er, that accounts for the reverse flows and the
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cancellation. The effective mass for this system is the same as that obtained by
Rosenbluth and Hinton (Rosenbluth & Hinton 1998) and Xiao et al. (2007). We have
shown that sub-bounce axisymmetric kinetic MHD can be formulated in terms of the
parallel adiabatic invariant J‖ much like the sub-bounce low flow drift-kinetic system.
Rosenbluth–Hinton distribution function and the effective mass follows directly from
J‖ conservation in the long wavelength limit. This is expected even in the long
wavelength low flow drift ordered kinetic systems.
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Appendix A. Relation of E∗ to toroidal angular momentum ψ∗
We shall now clarify the meaning of the shifted energy variable E∗. It is well

known (Kagan & Catto 2008) that in axisymmetry the conservation of canonical
angular momentum leads to conservation of ψ∗ defined as

ψ∗ =ψ − M
e

v · R2
∇ζ ≈ψ − Iv‖

Ω
= const., Ω = eB

M
, (A 1)

where v is the velocity vector of particle of mass m and charge e. The contribution
of perpendicular velocities to ψ∗ average out except for UE terms which are also
negligible in our large sub-poloidal sonic ordering. The second term in ψ∗ is smaller
than the first by a factor of ρ∗(≡ ρ/L) and is related to the finite banana width.

In a steady state collisionless plasma, total energy (kinetic plus electrostatic
potential) is also conserved.

w= 1
2
(v2
‖ +µB)+ e

M
ϕ(ψ)= const. (A 2)

In drift ordering all the energy terms are one to one. However in MHD ordering,
since eϕ/T = 1/ρ∗ and ρ∗ ≈ 0, the conserved quantities must be evaluated order by
order. To lowest order thus we have

ψ ≈ψ∗ = const., w= e
M
ϕ(ψ∗)= const. (A 3a,b)

To next order,

ψ ≈ψ∗ + Iv‖
Ω
, (A 4)

E∗ = 1
2
(v2
‖ +µB)+ e

M
ϕ(ψ)− e

M
ϕ(ψ∗)

= 1
2
(v2
‖ +µB)+ Iϕ′

B
= const., (A 5)

where we have Taylor expanded ϕ(ψ) about ψ =ψ∗+O(ρ∗) to obtain E∗. Thus, it is
clear that E∗ is indeed a shifted total energy, the shift being the potential difference
across a banana width. It is important to note that in kinetic MHD, ψ is needed only
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to lowest order since the radial drifts are formally an order smaller than the parallel
and the E× B drifts. Since ψ =ψ∗ to lowest order we are self-consistently ignoring
ψ̇ terms in the DKE. This does not interfere with energy conservation owing to E∗.
From the DKE it can be checked that for a time independent system, ψ̇ = Ė∗ = 0,
by direct substitution. Thus, equation (4.3) with the ∂tIϕ̃′ term is analogous to the
standard drift ordered DKE (Hazeltine 1983) with the (e/M)∂tϕ̃ term.

Appendix B. Vorticity equation in E and E∗ coordinates
We can derive the vorticity equation using 〈j · ∇ψ〉 = 0. From Kulsrud’s

equation (1980) (46), it can be shown that

∂t

〈
n
|∇ψ |2

B2
ϕ′
〉
=
〈∫

d3v
e
M

vd · ∇ψ f
〉
+ τ⊥. (B 1)

In an axisymmetric system,

B×∇ψ · ∇B= IB · ∇B, ∇‖|E
(

1
2v

2
‖
)=−µ∇‖B, (B 2a,b)

and we can show that
e
M

vd · ∇ψ = v‖∇‖|E
(

Iv‖
B

)
=−(v2

‖ +µB)I
∇‖B
B2

. (B 3)

Now,

E∗ = 1
2
v2
‖ +µB+ Iϕ′

v‖
B
= 1

2
v2
‖∗ +µB−

(
Iϕ′

B

)2

(B 4)

⇒∇‖|E∗
(

1
2
v2
‖∗

)
=−∇‖B

B

(
µB+

(
Iϕ′

B

)2
)
. (B 5)

So,

v‖∗∇‖|E∗
v‖
B
= v‖∗∇‖|E∗

(
v‖∗
B
− Iϕ′

B

)
(B 6)

= −(v2
‖ +µB)

∇‖B
B2
= v‖∇‖|E

(v‖
B

)
. (B 7)

Appendix C. Proof of equivalence of angular momentum and vorticity equation
Using the following identities,

R2
∇ζ ·UE =−|∇ψ |

2

B2
ϕ′, R2

∇ζ · b= I
B
, (C 1a,b)

the angular momentum conservation condition (4.4), simplifies to

∂t

〈
n
|∇ψ |2

B2
ϕ′
〉
− τ⊥ = ∂t

〈∫
d3v

Iv‖
B

f
〉

=
〈∫

d3v
Iv‖
B

(
∂

∂t

∣∣∣∣
E∗
+ ∂Iϕ′

∂t
v‖
B

∂

∂E∗

)
f
〉

=
〈∫

d3v
Iv‖
B
(−v‖∗∇‖|E∗ f )

〉
=
〈∫

d3v
e
M

vd · ∇ψ f
〉

(integrating by parts). (C 2)
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Appendix D. J‖ invariance and the RH problem for arbitrary q and sub-poloidal
sonic flows

So far we have presented a large q ordering. In this section we shall present the
general result for arbitrary q. We shall still assume flows to be smaller than the
poloidal sound speed in order to avoid Alfvénic resonances (Hassam 1996). The U2

E
term previously neglected in the DKE (2.1), is now kept. The E‖ term is also kept
to ensure quasineutrality, ne = ni, in the presence of large centrifugal forces. This
motivates us to introduce ϕ1(ψ, θ) such that E‖ = −∇‖ϕ1. UE depends only on the
lowest-order electrostatic potential, ϕ = ϕ(ψ), which is still a flux function. We shall
assume adiabatic electrons. In axisymmetry the ion DKE (2.1) can be written as

∂f
∂t
+
(
v‖ + Iϕ′

B

)
∇‖|v‖ f +

((
v‖

Iϕ′

B
−µB

)
∇‖B

B
+∇‖

(
U2

E

2
− eϕ1

M

))
∂f
∂v‖
= 0, (D 1)

where the last two terms come from −b ·UE ·∇UE and (e/M)E‖. It is straightforward
to show that for finite q, E∗ is given by

E∗ = 1
2
v2
‖ +

Iϕ′

B
v‖ +µB+ eϕ1

M
− U2

E

2
= 1

2
v2
‖∗ +µB+ eϕ1

M
− 1

2
R2ϕ′2. (D 2)

In E∗ coordinate we have

∂f
∂t
+ v‖∗∇‖|E∗ f + Ė∗

∂f
∂E∗
= 0, (D 3)

where Ė∗ = v‖∗∂tIϕ′/B+ ∂t(eϕ1/m− R2ϕ′2/2) and v‖∗ = v‖ + Iϕ′/B.
As before, we investigate the sub-bounce zonal flow problem by expanding f = f0+

f1 + · · · and obtain the bounce averaged equation for f0

∂f0

∂t
+ Ė∗

∂f0

∂E∗
= 0 ⇒

(∮
dl
v‖∗

)
∂f0

∂t
+
(∮

dl
v‖∗

Ė∗
)
∂f0

∂E∗
= 0. (D 4)

Once again using J‖ =
∮
∗ v‖dl the above equation can be recast into(

∂E∗J‖
)
∂tf0 −

(
∂tJ‖
)
∂E∗ f0 = 0, ⇒ f0 = f0(J‖). (D 5)

Quasineutrality then gives us ϕ1 in terms of ϕ′. The flow and angular momentum
equations in this limit are completely identical to the equations (7.5), (7.4), (7.7)
derived earlier and

∂t(n0F)=
∑
σ∗

∫
dµ dE∗∂t f0 =

∑
σ∗

∫
dµ dE∗

(
∂tJ‖
) ∂f0

∂J‖
. (D 6)

Note that, since the only time dependence comes through ϕ′, ∂tJ‖ is proportional to
∂tϕ
′. The final evolution equation for ϕ′ is now given by

∂tϕ
′
(

I

〈∑
σ∗

∫
dµ dE∗

(
∂J‖
∂ϕ′

)
∂f0

∂J‖

〉
+ 〈n0R2〉

)
= τ⊥. (D 7)
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