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ON TRANSIENCE OF M/G/∞ QUEUES

SERGUEI POPOV ,∗ University of Porto

Abstract

We consider an M/G/∞ queue with infinite expected service time. We then provide the
transience/recurrence classification of the states (the system is said to be at state n if
there are n customers being served), observing also that here (unlike irreducible Markov
chains, for example) it is possible for recurrent and transient states to coexist. We also
prove a lower bound on the growth speed in the transient case.
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In this note we consider a classical M/G/∞ queue (see e.g. [3]): the customers arrive accord-
ing to a Poisson process with rate λ; upon arrival, a customer immediately enters the service,
and the service times are i.i.d. (non-negative) random variables with some general distribution.
For notational convenience, let S be a generic random variable with that distribution. We also
assume that at time 0 there are no customers being served. Let Yt denote the number of cus-
tomers in the system at time t, which we also refer to as the state of the system at time t; note
that, in general, Y is not a Markov process. Nevertheless, let us still call a state m recurrent if
the set {t : Yt = m} is a.s. unbounded (i.e. m is ‘visited infinitely many times’) and transient
if that set is a.s. bounded (i.e. the system escapes from m eventually). Let us also observe that
P[S = ∞] > 0 clearly implies that Y goes to infinity (indeed, it is straightforward to obtain that
lim inft→∞ (Yt/t) ≥ λP[S = ∞]), so from now on we assume that S < ∞ a.s.

We are mainly interested in the situation where the system is unstable, i.e. when ES = ∞.
In this situation, in principle, our (Markovian) intuition tells us that the system can be transient
(in the sense Yt → ∞ a.s.) or recurrent (i.e. all states are visited infinitely many times a.s.).
However, it turns out that for this model the complete picture is more complicated.

Theorem 1. Define

k0 = min

{
k ∈Z+ :

∫ ∞

0
(E(S ∧ t))kexp(−λE(S ∧ t)) dt = ∞

}
(1)

(with the convention min ∅ = +∞). Then

lim inf
t→∞ Yt = k0 a.s.
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FIGURE 1. A Poisson representation of M/G/∞. In this example, there are exactly three customers at
time t.

In particular, if ∫ ∞

0
(E(S ∧ t))kexp(−λE(S ∧ t)) dt < ∞ for all k ≥ 0, (2)

then the system is transient; if ∫ ∞

0
exp(−λE(S ∧ t)) dt = ∞,

then the system is recurrent.

Before proving this result, we make the following remark. Let us define M(t) to be the
maximal remaining service time of the customers that are present at time t. This is a so-called
extremal shot noise process; see [1] and references therein. It is not difficult to obtain that
transience of M(·) is the same as transience of state 0 in M/G/∞; then Theorem 2.5 of [1]
provides a criterion for the transience of M(·) (and therefore for the transience of state 0 in our
situation).

Proof of Theorem 1. We start with a simple observation: for any j ≥ 0, {lim inf Yt = j} is a
tail event, so it has probability 0 or 1. This implies that lim inf Yt is a.s. a constant (which may
be equal to +∞).

We use the following representation of the process (see Figure 1): consider a Poisson pro-
cess in R

2+, with the intensity measure λ dt × dFS(u), where FS(u) = P[S ≤ u] is the distribution
function of S. Then, a point (t, u) of this Poisson process is interpreted in the following way: a
customer arrived at time t and the duration of its service will be u. Now, draw a (dotted) line
in the southeast direction from each point, as shown in the picture; as long as this line stays in
R

2+, the corresponding customer is present in the system. If we draw a vertical line from (t, 0)
in the upwards direction, then the number of dotted lines it intersects is equal to Yt.

Next, for k ∈Z+ let
Tk: = {t ≥ 0 : Yt = k}

denote the set of times when the system has exactly k customers, and let

Ut = {
(s, u) ∈R

2+ : s ∈ [0, t], u ≥ t − s
}
.
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We note that Yt equals the number of points in Ut, which has Poisson distribution with mean

∫
Ut

λ dt dFS(u) = λE(S ∧ t).

Therefore, by Fubini’s theorem, we have (here |A| stands for the Lebesgue measure of A ⊂R)

E|Tk| =E

∫ ∞

0
1{Yt = k} dt = λk

k!
∫ ∞

0
(E(S ∧ t))kexp(−λE(S ∧ t)) dt. (3)

Now, assume that E|Tk| < ∞ for some k ≥ 0; it automatically implies that E|T�| < ∞ for
0 ≤ � ≤ k. This means that |T0|, . . . , |Tk| are a.s. finite, and let us show that T0, . . . , Tk have
to be a.s. bounded (this is a small technical issue that we have to resolve because we are
considering continuous time). Probably the cleanest way to see this is as follows. First notice
that, in fact, T0 is a union of intervals of random i.i.d. (with Exp(λ) distribution) lengths,
because each time the system becomes empty it will remain so until the arrival of the next
customer. Therefore, |T0| < ∞ clearly means that sup T0 ≤ K0 for some (random) K0. Now,
after K0 there are no longer any 1 → 0 transitions, so the remaining part of T1 again becomes
a union of such intervals, meaning that it should be bounded as well; we then repeat this
reasoning a suitable number of times to finally obtain that Tk must be a.s. bounded. This implies
that lim inft→∞ Yt ≥ k0 a.s.

Next, assume that {0, . . . , k} is a transient set, in the sense that lim inft→∞ Yt ≥ k + 1 a.s.;
let us show that this implies that E|Tk| < ∞. Indeed, first we can choose a sufficiently large
h > 0 in such a way that

P[Yt ≥ k + 1 for all t ≥ h] ≥ 1

2
.

Define a stopping time τ = inf{t ≥ h : Yt ≤ k} (again, with the convention inf ∅ = +∞). Then,
a crucial observation is that what one sees after τ is a superposition of two independent sys-
tems: one is formed by those customers (with their remaining lifetimes) present at τ , and the
other is a copy of the original system. Then, a simple coin-tossing argument, together with
the fact that an initially non-empty system (i.e. with some customers being served, with any
assumptions on their remaining service times) dominates an initially empty system, shows that
|Tk| (in fact, |T0| + · · · + |Tk|) is dominated by h × Geom0( 1

2 ) random variable and therefore
has a finite expectation. It means that we have lim inft→∞ Yt ≤ k0 a.s. (because otherwise, in
the situation when k0 < ∞, we would have E|Tk0 | < ∞, which, by definition, is not the case).
This concludes the proof of Theorem 1. �

Regarding this result, we may observe that in most situations one would have k0 = 0 or +∞;
this is because convergence of such integrals is usually determined by what is in the exponent.
Still, it is not difficult to construct ‘strange examples’ with 0 < k0 < ∞, i.e. where the process
will visit {0, . . . , k0 − 1} only finitely many times, but will hit every k ≥ k0 infinitely often a.s.
(a behaviour one cannot have with irreducible Markov chains). For instance, let λ = 1 and fix
b > 0; next, consider a service time distribution such that

1 − FS(u) = 1

u
+ b

u ln u

for large enough u. Then it is elementary to obtain that E(S ∧ t) = ln t + b ln ln t + O(1) and
the integrals in (1) diverge whenever k ≥ b − 1, meaning that k0 = �b� − 1.
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Now, in the situation when (2) holds and Y is transient, it may also be useful to be able
to say something about the speed of convergence of Yt to infinity. We do not intend to enter
deeply into this question here, but only prove a particular result needed for future reference.
Namely, in [2] we work with a different model which in some sense dominates M/G/∞.
So, we will now give a lower bound on the growth of Yt; more specifically, we will show that
under certain conditions Yt will eventually be at least a constant fraction of its expected value.
For q ∈ (0, 1), let us define γq = 1 − q − q ln q−1 > 0.

Theorem 2. Fix q ∈ (0, 1) and assume that
∫ ∞

0
exp(−γqλE(S ∧ t)) dt < ∞. (4)

Then
P[Yt ≥ qλE(S ∧ t) for all large enough t] = 1. (5)

Proof. Let
Hq = {t ≥ 0 : Yt < qλE(S ∧ t)};

our goal is to show that Hq is a.s. bounded in the case when (4) holds. We recall a standard
(Chernoff) tail bound: if X is Poisson(μ) and q ∈ (0, 1), then

P[X ≤ qμ] ≤ exp(−(qμ ln q + μ − qμ)) = exp(−γqμ). (6)

Then, analogously to (3), we obtain from (6) that

E|Hq| ≤
∫ ∞

0
exp(−γqλE(S ∧ t)) dt; (7)

so, by (4), we have E|Hq| < ∞, meaning that |Hq| < ∞ a.s. To see that this has to imply that Hq

is a.s. bounded, analogously to the proof of Theorem 1, one can reason in the following way.
If t ∈ Hq, then s ∈ Hq for all s ∈ (t, At), where At is the first moment after t when a customer
arrives in the system. This implies that the lengths of the intervals that constitute Hq dominate
a sequence of i.i.d. random variables with Exp(λ) distribution; in its turn, this clearly implies
that if |Hq| is finite then it has to be bounded. �
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