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ON THE STATIONARITY OF
DYNAMIC CONDITIONAL
CORRELATION MODELS
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We provide conditions for the existence and the uniqueness of strictly stationary
solutions of the usual Dynamic Conditional Correlation GARCH models (DCC-
GARCH). The proof is based on Tweedie’s (1988) criteria, after having rewritten
DCC-GARCH models as nonlinear Markov chains. We also study the existence of
their moments and discuss the tightness of our sufficient conditions.

1. INTRODUCTION

1.1. The problem

In multivariate extensions of GARCH models, modelers are faced with the
problem of correlations (between asset returns, in most applications). The
simplest idea is to assume that these correlations are constant in time, and
constitute only an additional matrix of parameters. This has provided the class of
Constant Conditional Correlations models (CCC), first introduced by Bollerslev
(1990). Since CCC models can be seen as the components of first-order Markov
processes, once such models are rewritten in an extended vector space, it is
relatively easy to prove the existence of strictly stationary and explicit solutions,
even if the latter are analytically complex: see classical textbooks, for instance,
Francq and Zakoı̈an (2010).

It rapidly became apparent that the assumption of constant correlations is too
strong. It does not correspond to economic intuition or many empirical features:
see the recent paper by Otranto and Bauwens (2013) and the numerous references
therein, for instance. Therefore, Engle (2002) proposed extending CCC specifica-
tions by adding particular dynamics on the (conditional) correlation matrices of
returns, denoted here by (Rt ). To ensure modelers are dealing with true correlation
matrices, he introduced a nonlinear transform: there exists a sequence of variance-
covariance matrices (Qt ) such that Rt = diag(Qt )

−1/2 Qt diag(Qt )
−1/2, and
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(Qt )-dynamics are specified instead of (Rt )-dynamics directly, contrary to other
authors (Tse and Tsui, 2002 or Pelletier, 2006, for instance). This nonlinear trans-
form ensures that Rt is always a correlation matrix, i.e., positive semidefinite with
ones on its main diagonal. Nonetheless, it considerably complicates the work of
stating DCC model stationarity conditions. Indeed, analytically tractable solutions
to such processes no longer exist. This explains why the existence and uniqueness
of DCC model stationarity solutions have not yet been established in the literature,
nor have the finiteness of their moments. Particularly, this implies that theoreti-
cally sound statistical inference procedures do not yet exist, as noted in Caporin
and McAleer (2013).

Despite their theoretical shortcomings, DCC models have been used inten-
sively among academics and practitioners. Besides numerous applied works,
several extensions of the baseline DCC representation have been proposed in
the literature: inclusion of asymmetries (Cappiello, Engle, and Sheppard, 2006),
volatility thresholds (Kasch and Caporin, 2013), macro-variables (Otranto and
Bauwens, 2013), univariate switching regime probabilities (Pelletier, 2006, Billio
and Caporin, 2005, Fermanian and Malongo, 2013), among others. Other authors
have revisited the DCC parameterization itself: Billio, Caporin, and Gobbo
(2006), Franses and Hafner (2009), etc. Therefore, there is an urgent need for
new theoretical results concerning the seminal DCC model itself.

Usually in econometrics, proving the existence of stationary solutions is the
first step towards developing a full asymptotic theory (consistency/asymptotic
normality of QML estimates typically, as in Comte and Lieberman (2003) in the
case of multivariate GARCH models), because laws of large numbers and some
CLTs are easily obtained in this case. In the GARCH literature, this essential task
has been fulfilled by Bougerol and Picard (1992) for univariate GARCH models,
by Ling and McAleer (2003) for multivariate ARMA-GARCH models, and by
Boussama et al. (2011) for BEKK models. In the case of DCC models, a key-
stone is missing: a theory for inference has been proposed by Engle and Sheppard
(2001), but their two stage estimation procedure is contingent on the underlying
DCC process being strictly stationary and ergodic (see their Assumption A.2).
The goal of this paper is to fill this gap.

After introducing some notations, we define DCC models at the beginning of
Section 2. They will be rewritten as “almost linear” Markov chains in Subsec-
tion 2.2. The existence of strong and weak stationary solutions is stated in Subsec-
tion 3.1. Subsection 3.2 exhibits sufficient conditions to get their uniqueness. We
discuss the tightness of our technical conditions from a qualitative standpoint in
Section 4. Proof of the propositions and theorems are detailed in the appendices.

1.2. Notations

Consider an (n,m) matrix M = [mi j ]1≤i≤n,1≤ j≤m .

• M ≥ 0 (resp. M > 0) means that all elements of M are nonnegative (resp.
strictly positive), and |M | = [|mi j |]1≤i≤n,1≤ j≤m .
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• If n = m, let the diagonal matrix diag(M) = [mi j 1(i = j)]1≤i≤m,1≤ j≤m

and the vector V ecd(M) = [mii ]1≤i≤m in Rm .

• If n = m and M is symmetric, V ech(M) denotes the m(m + 1)/2 =: m∗
column vector whose components are read from M column-wise and with-
out redundancy. To be formal, V ech(M) = [m̃k]1≤k≤m∗ , where m̃k = mi j

for the unique couple of indices (i, j) in {1, . . . ,m}2, i ≥ j such that
[m + (m − 1)+ . . .+ (m − j + 2)]+ + (i − j + 1) = k. This defines a one-
to-one mapping φ between the indices k ∈ {1, . . . ,m∗} and the pairs (i, j),
i ≥ j , 1 ≤ i, j ≤ m, i.e., (i, j) = (φ1(k),φ2(k)) =: φ(k).

• ⊗ denotes the usual Kronecker product, and M⊗ p = M ⊗ . . .⊗ M (p times).
� denotes the element-by-element product. If v is a vector in Rn , then
v � M = [vi mi j ]1≤i≤n,1≤ j≤m .

• We will consider several matrix norms, particularly

‖M‖max = max
1≤i≤n,1≤ j≤m

|mi j |,

and the spectral norm, defined for any squared matrix by

‖M‖s = sup
{√

λ | λ is an eigenvalue of M ′M
}

= sup
x

‖Mx‖2

‖x‖2
·

Besides, we will consider any norm N for vectors, that is not the Euclid-
ian norm ‖ · ‖2. Then, we can define the norm ‖ · ‖N for matrices by set-
ting ‖M‖N = supxN (Mx)/N (x). Note that ‖M‖∞ = maxi

∑
j |mi j | when

N (x) = ‖x‖∞ = maxi |xi |.
• ρ(M) denotes the spectral radius of the squared matrix M , i.e., the largest of

the modulus of M’s eigenvalues. If M is positive semidefinite, then ρ(M) =
‖M‖s and its smallest eigenvalue is denoted by λ1(M).

• For any column vector zt ∈ Rm , we denote zt = (z1,t , . . . , zm,t )
′ and zt :=(

z2
1,t , . . . , z2

m,t

)′.
• e denotes a vector of ones, the dimension of which will be implicit. 0m

(resp. Im) denotes the m ×m matrix of zeros (resp. identity matrix). When
the dimension of an identity matrix is not specified, it will be denoted by I d.

• If M depends on x ∈ A, then supx∈A M(x) is the matrix [supx∈A mi j (x)].

2. DYNAMIC CONDITIONAL CORRELATION MODELS

2.1. The classical DCC specification

Let us reiterate here the standard DCC model, as introduced in Engle (2002).
Consider a stochastic process (yt )t∈Z in Rm , typically a vector of m asset returns.
The sigma field generated by the past information of this process until up to and
including time t −1 is denoted by It−1.
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Modeling the expected returns of financial series is a problem per se, that has
generated a huge amount of literature. In this paper, our focus will be on the
dynamics of the conditional variance-covariance of yt instead. Therefore, follow-
ing current practice, we will assume we can remove the conditional means of our
returns. Let μt (θ) = E[yt |It−1] =: Et−1[yt ] be the conditional mean vector of
yt . It depends on a vector of parameters θ ∈ �. We define a “detrended” series
(zt )t∈Z by

yt = μt (θ)+ zt , Et−1[zt ] = 0.

For convenience, the conditional mean μt (θ) is assumed to be measurable with
respect to σ(zt−1, zt−2, . . .). Therefore, It = σ(yt , yt−1, . . .) = σ(zt , zt−1, . . .).

Let us denote by Ht the variance-covariance matrix of the t-observations, con-
ditionally on It−1: V ar(yt |It−1) = V ar(zt |It−1) := Ht . As usual with DCC-type
models, we split the variance-covariance matrix Ht between volatility terms on
one side (in Dt ), and correlation coefficients on the other side (in Rt ):

Ht = D1/2
t Rt D1/2

t , Dt = diag(h1,t , . . . ,hm,t ), (1)

where hk,t denotes the “instantaneous variance” of the return yk,t (or zk,t , equiva-
lently), conditionally on It−1. We assume GARCH-type models on every margin,
but with potential cross-effects between all these volatilities:

V ecd(Dt ) = V0 +
r∑

i=1

Ai .V ecd(Dt−i )+
s∑

j=1

Bj .zt− j , (2)

for some deterministic nonnegative matrices (Ai )i=1,...,r and (Bj )j=1,...,s , and for

a positive vector V0 in Rm . We will set Ai := [a(i)
k,l ]1≤k,l≤m , i = 1, . . . ,r , and

Bj := [b( j)
k,l ]1≤k,l≤m , j = 1, . . . ,s.

Let us introduce the vector of so-called “standardized residuals” εt := D−1/2
t zt .

Obviously, Et−1[εt ] = 0 and Et−1[εtε
′
t ] = Rt . We impose that M1/2 is positive

definite for any positive definite matrix M . In this case, the square root of Rt

is uniquely defined: see Serre (2010), Theorem 6.1. This will be our convention
throughout the article.

The dynamics of correlations are given by the traditional Dynamic Conditional
Correlation specification:

Rt = diag(Qt )
− 1

2 Qt diag(Qt )
− 1

2 , (3)

where the sequence of matrices (Qt )t∈Z satisfies

Qt = W0 +
ν∑

k=1

Mk Qt−k M ′
k +

μ∑
l=1

Nlεt−lε
′
t−l N ′

l , (4)

for some deterministic matrices (Mk)k=1,...,ν and (Nl)l=1,...,μ, and for a posi-
tive definite constant matrix W0. Obviously, when such a sequence (Qt )t≥−ν is
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initialized with ν nonnegative definite (possibly null) matrices, every Qt , t ≥ 0,
will be definite positive. In Theorem 1, we prove that a “doubly infinite” station-
ary sequence (Qt )t∈Z of definite positive matrices exists and which satisfies (4).

We will set Mk := [m(k)
p,q ]1≤p,q≤m , k = 1, . . . ,ν, and Nl := [n(l)

p,q ]1≤p,q≤m ,
l = 1, . . . ,μ. In practice, the positive matrix W0 (or the constant vector V ech(W0)
in Rm∗

equivalently) is a parameter that has to be estimated, most often during the
first stage.

Aielli (2013) noticed that the estimation of the unknown matrix W0 is not
straightforward, because it cannot be deduced trivially from the unconditional
correlation between the standardized residuals εt . Therefore, he introduced a new
variety of DCC-GARCH models (called cDCC), where (4) is replaced by

Qt = W0 +
ν∑

k=1

Mk Qt−k M ′
k

+
μ∑

l=1

Nldiag(Qt−l)
−1/2εt−lε

′
t−ldiag(Qt−l)

−1/2 N ′
l . (5)

Under this new assumption, cDCC can be seen as a particular BEKK model
(Engle and Kroner, 1995). Therefore, Aielli obtained the existence of strictly
and/or weakly stationary solutions, applying the conditions of Boussama, Fuchs,
and Stelzer (2011) on BEKK processes. Actually, Aielli’s model (5) is a smart
but not intuitive “adhoc” specification. Its main justification appears as essen-
tially technical, to avoid the nonlinear feature of Engle’s original DCC model (4).
Under the standard latter specification, DCC models can no longer be rewritten
as BEKK models and other techniques have to be found. In this paper, we obtain
similar results to Aielli (2013), but by keeping the original specification of DCC
models and without relying on another surrounding family of processes.

2.2. DCC as Markov chains

Actually, it is possible to rewrite the previous DCC model as a Markov chain,
that looks like an AR(1) process. This rewrite will become a crucial tool when
studying stationary solutions hereafter. Set

Xt := (X (1)
t , X (2)

t , X (3)
t , X (4)

t )′, (6)

where

X (1)
t := (V ecd(Dt ), . . . ,V ecd(Dt−r+1))

′,
X (2)

t := (zt , . . . ,zt−s+1)
′,

X (3)
t := (V ech(Qt ), . . . ,V ech(Qt−ν+1))

′, and

X (4)
t := (V ech(εtε

′
t ), . . . ,V ech(εt−μ+1ε

′
t−μ+1))

′.
The dimensions of the four previous random vectors are rm, sm, νm∗, and μm∗,
respectively. Their sum, the dimension of Xt , is denoted by d. With simple block
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matrix calculations, random matrices (Tt ) and a vector process (ζt ) exist, such
that the dynamics of Xt , any solution of the DCC model, may be rewritten as

Xt = Tt .Xt−1 + ζt , (7)

for any t . We will write the block matrix Tt := [Ti j,t ]1≤i, j≤4 with convenient
random matrices Ti j,t .

Knowing (7), the underlying process (Xt ) can be seen as a vectorial autore-
gressive of order one, but with random matrixcoefficients (Tt ). Let us detail the
AR(1) form of (7):

• set T1k,t = 0 when k = 3,4,

T11,t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 A2 · · · · · · Ar

Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...
0m · · · 0m Im 0m

⎤
⎥⎥⎥⎥⎥⎥⎦

, and T12,t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 B2 · · · · · · Bs

0m · · · · · · · · · 0m
...

...
...

...
0m · · · · · · · · · 0m

⎤
⎥⎥⎥⎥⎥⎥⎦

.

• We deduce from Equation (2) that

Dt εt = εt � V ecd(Dt ) = zt = εt � V0

+
r∑

i=1

εt � Ai .V ecd(Dt−i )+
s∑

j=1

εt � Bj .zt− j . (8)

Let us set T23,t = T24,t = 0,

T21,t :=

⎡
⎢⎢⎢⎣

εt � A1 εt � A2 · · · · · · εt � Ar

0m · · · · · · · · · 0m
...

...
0m · · · · · · · · · 0m

⎤
⎥⎥⎥⎦ , and

T22,t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

εt � B1 εt � B2 · · · · · · εt � Bs

Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...
0m · · · 0m Im 0m

⎤
⎥⎥⎥⎥⎥⎥⎦

.

• Clearly, matrices M̃k , k = 1, . . . ,ν, exist such that

V ech(Mk Qt−k M ′
k) = M̃k .V ech(Qt−k).

Similarly, matrices Ñl , l = 1, . . . ,μ, exist such that

V ech(Nlεt−lε
′
t−l N ′

l ) = Ñl .V ech(εt−l .ε
′
t−l).
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It is possible to explicitly write the previous matrices M̃k and Ñl .s Indeed,
with the notations of Subsection 1.2, M̃k = [m̃(k)

u,v ]1≤u,v≤m∗ where

m̃(k)
u,v = m(k)

φ1(u),φ1(v)m
(k)
φ2(u),φ2(v).

Similarly, Ñl = [ñ(l)
u,v ]1≤u,v≤m∗ and ñ(l)

u,v = n(l)
φ1(u),φ1(v)m

(l)
φ2(u),φ2(v). Then,

set T31,t = T32,t = 0,

T33,t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

M̃1 M̃2 · · · · · · M̃ν

Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...
0m∗ · · · 0m∗ Im∗ 0m∗

⎤
⎥⎥⎥⎥⎥⎥⎦

, and T34,t :=

⎡
⎢⎢⎢⎣

Ñ1 Ñ2 · · · · · · Ñμ

0m∗ · · · · · · · · · 0m∗
...

...
0m∗ · · · · · · · · · 0m∗

⎤
⎥⎥⎥⎦ .

• T4k,t = 0, k = 1,2,3, and define the μm∗ ×μm∗ matrix

T44,t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0m∗ 0m∗ · · · · · · 0m∗
Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...
0m∗ · · · 0m∗ Im∗ 0m∗

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Moreover, rewrite ζt = (ζ
(1)
t ,ζ

(2)
t ,ζ

(3)
t ,ζ

(4)
t ), where, with obvious sizes, these

vectors are

ζ
(1)
t = (V0,0m, . . . ,0m)′, ζ

(2)
t = (εt � V0,0m, . . . ,0m)′,

ζ
(3)
t = (V ech(W0),0m∗ , . . . ,0m∗)′, and ζ

(4)
t = (V ech(εtε

′
t ),0m∗ , . . . ,0m∗)′.

Since Dt , Qt , and Rt are It−1-measurable, it is easy to see that the filtration
induced by the observations is the natural filtration of (Xt ): σ(Xt , Xt−1, . . .) = It

for all t . From now on, we consider (It ) as the filtration that is generated by (Xt ).
This means that Et−1[Z ] = E[Z |It−1] = E[Z |Xt−1, Xt−2, . . .], for any random
vector Z . And a process (Zt ) is said to be (one-order, implicitly) I-Markov if the
law of Zt given It−1 is the law of Zt given Xt−1.

Intuitively, the sequence (Xt ) is I-Markov because it is the case for the pro-
cesses (ζt ) and (Tt ) themselves. To prove this formally, we need an assumption
concerning the data generating process (DGP) of (zt ).

Let us define the t-vector of innovations by

ηt := R−1/2
t εt = R−1/2

t D−1/2
t zt . (9)

Note that Et−1[ηt ] = 0 and Et−1[ηtη
′
t ] = Im by construction. The definition of

these innovations implies that, for every t , σ(ηj , j ≤ t) ⊂ σ(εj , j ≤ t) ⊂ It .
Nonetheless, we will not establish whether there are equalities between the latter
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filtrations. Technically speaking, this would be equivalent to stating the invertibil-
ity of the underlying process.

Assumption A0. (ηt )t∈Z possesses the Markov property with respect to the
filtration I. In particular, E[ηt |It−1] = E[ηt |Xt−1] for every t .

Obviously, the latter assumption is satisfied if (ηt )t∈Z is a sequence of identi-
cally distributed and mutually independent random vectors, with E[ηt ] = 0 and
E[ηtη

′
t ] = Im . For instance, if the random vectors ηt are standardized Gaussian

and mutually independent, the process (zt )t∈Z is conditionally Gaussian, a stan-
dard case in practice.

PROPOSITION 1. Under A0, the process (Xt ) is Markov of order one with
respect to its natural filtration.

See the proof in the appendix.

Remark 1. It would be possible to define a slightly different DGP for the DCC
model above: consider a I-martingale difference (i.i.d., for instance) sequence
(et )t∈Z and set zt = H1/2

t et , Et−1[et ] = 0, Et−1[et e′
t ] = Im . In the latter case, the

process (ηt ) above would be defined by ηt = R−1/2
t D−1/2

t H1/2
t et . Then, it is easy

to check that (ηt ) is I-Markov and is a martingale difference. In other words,
A0 would apply in such circumstances.

3. STATIONARITY OF DCC MODELS

3.1. Existence of stationary DCC solutions

The AR dynamics of Xt were defined above thanks to Tt and ζt , which will
be stochastic only through εt , i.e., through the t-innovation ηt and the It−1-
measurable matrix Rt . This creates a major difficulty in proving the existence
of stationary solutions. In particular, this means that Tt depends on some com-
ponents of Xt . Therefore, it will be difficult to find explicit expressions like
Xt = f (ηt ,ηt−1, . . .) for some deterministic and measurable function f , because
the link between Tt and the past innovations (or observations) is highly nonlinear.

To obtain the existence of stationary solutions in the previous DCC model, we
will invoke Tweedie’s (1988) criterion. The latter result will provide the existence
of an invariant probability measure for the Markov chain defined by (7). This
technique has already been used in several papers in econometrics, notably Ling
and McAleer (2003) or Ling (1999).

To get the stationarity conditions of (zt ), we have to control the magnitude of
the random matrix Tt , which depends on the random variables ε2

kt , k = 1, . . . ,m.
The mean of the latter variables is one, but they are not independent. This is in
contrast with Ling and McAleer (2003). Moreover, unfortunately, the joint law of
εt is a function of Rt , i.e., a function of Xt−1. That is why we need the following
conditions:
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Assumption E1. For some p ≥ 1, E[‖ηt‖2p] < ∞ and ρ (T ∗) < 1, where

T ∗ := sup
x∈Rd

E[|T ⊗ p
t | | Xt−1 = x].

We reiterate that Tt depends on εt , that εt = R1/2
t ηt , and that the components

of ηt are uncorrelated. As such, the coefficients of T ∗ are finite because all of the
coefficients of Rt are less than one (in absolute values). When there are no corre-
lation dynamics, the matrices Mk and Nl are zero and we recover CCC models. In
the latter case, our Assumption E1 is reduced to the main assumption of Ling and
McAleer (Theorem 2.2) that was stated for vectorial ARMA-GARCH models.

Assumption E2. The law of ηt given that Xt−1 = x is absolutely continuous
with respect to the Lebesgue measure, and its density is denoted by fηt (·|x), for
every x ∈ Rd and t . The function x �→ fηt (η|x) is continuous for every η ∈ Rm

and t . There exists an integrable function H s.t. supt supx∈Rd fηt (η|x) ≤ H(η) for
every η ∈ Rm . Moreover, supt E[‖ηt‖2p |Xt−1 = x] ≤ h̄(‖x‖), for some function
h̄ that satisfies limv→+∞ h̄(v)/vγ = 0 for every γ > 0.

The latter technical assumption is trivially satisfied when (ηt ) is an i.i.d.
sequence of random vectors s.t. E[‖ηt‖2p] < +∞. Otherwise, E2 provides some
constraints insofar as the law of ηt depends on the past values of the DCC process.
Similar conditions may appear in the literature about the nonparametric estima-
tion of conditional expectations. However, most of them relate to the boundedness
of h̄ and/or its derivatives (as in Assumption 3 in Newey 1997, for instance), or to
the moments of h̄ (as Assumption 1 in Donald et al. 2003, for instance). Clearly,
E2 is weaker than such assumptions.

THEOREM 1. Under the assumptions A0, E1, and E2, the process (zt , Dt , Rt )
as defined by Equations (1), (2), (3), and (4), possesses a strictly stationary solu-
tion. The latter process is measurable with respect to the σ -field I induced by the
observations. Moreover, the 2p-th moments of a solution (zt ) are finite.

Example 1
In practice and for the sake of parsimony, it is usual to assume diagonal-type
DCC models, where all the parameter matrices are diagonal, assuming no “cross-
effects” in terms of volatilities and/or correlations. This means the nonnegative
real numbers a(i)

u , b( j)
u , m(k)

u , and n(l)
u , u = 1, . . . ,m, exist such that

Ai = diag
(

a(i)
1 , . . . ,a(i)

m

)
, i = 1, . . . ,r, Bj = diag

(
b( j)

1 , . . . ,b( j)
m

)
, j = 1, . . . ,s,

Mk = diag
(

m(k)
1 , . . . ,m(k)

m∗
)
, k = 1, . . . ,ν, Nl = diag

(
n(l)

1 , . . . ,n(l)
m∗

)
, l = 1, . . . ,μ.

The associated matrices M̃k and Ñl are also diagonal. Set M̃k =
diag

(
m̃(k)

l

)
1≤l≤m∗ , and check that m̃(k)

l = m(k)
φ1(l)

m(k)
φ2(l)

. Now, let us specify the
previous Assumption E1 when p = 1.

Since E[εkt | Xt−1 = x] = 1 for every index k, T ∗ is simply |Tt |,
replacing εt by one. Denote by P∗ the characteristic polynomial of T ∗,
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i.e., P∗(λ) = Det(T ∗ −λI d). It can be seen easily that two polynomials P∗
1

and P∗
2 s.t. P∗(λ) = P∗

1 (λ)P∗
2 (λ) exist. Here, P∗

1 denotes the characteristic
polynomial of the block-matrix [|Ti j,t |]1,≤i, j≤2, replacing εt by one. P∗

2 is the
characteristic polynomial of the previous matrix |T33,t |. Tedious, but relatively
uncomplicated, algebraic calculations provide

P∗
1 (λ) = ±λπ1

m∏
k=1

⎛
⎝ r∑

i=1

a(i)
k λr+s−i +

s∑
j=1

b( j)
k λr+s− j −λr+s

⎞
⎠ ,

P∗
2 (λ) = ±λπ2

m∗∏
l=1

(
ν∑

k=1

m̃(k)
l λν−k −λν

)
,

for some integers π1 and π2. Let λ0 be a nonzero root of P∗. If λ0 is a root
of P∗

1 then there exists an index k ∈ {1, . . . ,m} such that
∑r

i=1 a(i)
k λr+s−i

0 +∑s
j=1 b( j)

k λ
r+s− j
0 = λr+s

0 . If |λ0| ≥ 1, this implies 1 ≤ ∑r
i=1 a(i)

k +∑s
j=1 b( j)

k .
On the other side and similarly, if λ0 is a root of P∗

2 and if |λ0| ≥ 1, then there
exists l ∈ {1, . . . ,m∗} s.t. 1 ≤ ∑ν

k=1 |m̃(k)
l |. In other words, a sufficient condition

to fulfill Assumption E1 is

sup
k=1,...,m

r∑
i=1

a(i)
k +

s∑
j=1

b( j)
k < 1, and sup

l=1,...,m∗

ν∑
k=1

|m̃(k)
l | < 1. (10)

Nonetheless, to apply Theorem 1 in the general case, it may be hard to check
the condition on the spectral radius of T ∗. This is due to the analytical complexity
of T ⊗ p

t , p > 1, or to the calculation of its eigenvalues, even when p = 1. In the
next theorem, we provide more explicit conditions in the case p = 1, i.e., so that
the second-order moments of (zt ) are finite. These conditions ensure that E1 will
be satisfied. In other words, the conditions will be stronger than E1, but they
may be more practical. Indeed, it is often important to obtain sufficient conditions
that can be written explicitly in terms of the model parameters, for instance, for
inference purposes (e.g., the optimization stage to get QML estimates).

Let us considerN (resp.N ∗) an arbitrary norm for vectors in Rm
(
resp. Rm∗)

.
Denote by ‖ · ‖N and ‖ · ‖N ∗ the associated norms for matrices.

THEOREM 2. If
r∑

i=1

‖Ai‖N +
s∑

j=1

‖Bj‖N < 1, and (11)

ν∑
k=1

‖M̃k‖N ∗ < 1, (12)

then Assumption E1 is satisfied with p = 1.

Note that the conditions of Theorem 2 do not depend on the matrices
Nl , l = 1, . . . ,μ, which is a relatively unexpected result. Once they are satisfied,
and under A0 and E2, Theorem 1 applies.
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By choosing N as the maximum norm for vectors, it can easily be checked
that ‖Ai‖N = supp=1,...,m

∑m
q=1 a(i)

p,q , and similarly with the matrices Bj . Alter-
natively, we can choose N (x) = ‖x‖2, that induces the spectral norm ‖Ai‖N =
‖Ai‖s . Obviously, we can choose these norms for N ∗ and the matrices M̃k .

It is often of value to assume that the Markov chain is initialized at t = 0
by drawing X0 following its stationary law. Introducing the filtration I∗

t :=
σ(X0, z1, . . . , zt ), we can easily see that the DCC solution is now measurable
with respect to the σ -field induced by the innovations and the initial value,
because, whenever t > 0,

σ(X0, z1, . . . , zt ) = σ(X0,ε1, . . . ,εt ) = σ(X0,η1, . . . ,ηt ).

Example 1 (Continued)
Consider a diagonal-type DCC model and maximum norms for vectors. In this
case, the condition (11) becomes

r∑
i=1

sup
l=1,...,m

a(i)
l +

s∑
j=1

sup
l=1,...,m

b( j)
l < 1,

and the condition (12) is
∑ν

k=1 supl=1,...,m∗ |m̃(k)
l | < 1. These two conditions are

stronger than (10), as expected.

Example 2
To reduce the number of free parameters even further, scalar-DCC models are
often introduced. In this case, all the unknown matrices are simply products of a
scalar and an identity matrix:

Ai = a(i) Im, i = 1, . . . ,r, Bj = b( j) Im, j = 1, . . . ,s,

Mk = m(k) Im, k = 1, . . . ,ν, Nl = n(l) Im, l = 1, . . . ,μ.

Such models are very popular, because they allow the number of free parameters
to be drastically reduced. With obvious notations, the conditions of Theorem 1
and 2 are the same as above:

r∑
i=1

a(i) +
s∑

j=1

b( j) < 1, and
ν∑

k=1

|m(k)|2 < 1. (13)

In passing, we recover the usual (second-order and strict) conditions of stationar-
ity for GARCH-type models:

0 ≤ a(i),b( j) ≤ 1, and
r∑

i=1

a(i) +
s∑

j=1

b( j) < 1.

3.2. Uniqueness of stationary DCC solutions

Even if stationary solutions of the DCC model do exist, we are not initially sure
a priori that they are unique. Besides its theoretical interest, this problem has
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practical implications. For instance, for any process, the convergence of simu-
lated trajectories towards the same stationary law, independently of the initializa-
tion stage, is a desirable feature. Moreover, the uniqueness of invariant measures
of a Markov process implies the ergodicity of the stationary solution (see Douc
et al. 2014, Corollary 7.17). This is particularly important for inference purposes.
Indeed, the estimation of DCC models is typically based on M-estimates (Quasi
Maximum Likelihood, for instance). These techniques rely heavily on uniform
Laws of Large Numbers, that are most often deduced from the ergodicity of the
process. The conditions for identifiability and consistency rely on some expec-
tations with respect to the underlying invariant measure of the given stationary
process. If, for a given set of parameters, several invariant measures exist, then
it becomes difficult to check such conditions. Finally, with several underlying
invariant measures, we cannot exclude the possibility of switches from one sta-
tionary trajectory to another, disturbing the econometric analysis (stationarity
tests, statistical uncertainty around estimates, etc.).

Unfortunately, this uniqueness is not given “for free” by Tweedie’s Lemma A.1.
Moreover, the usual arguments concerning the uniqueness of stationary GARCH-
type solutions do not apply here. Indeed, under the Markov-chain specification
given by Equation (7), the matrix Tt is itself a function of the random vector Xt

through the εt factors. This is a major difference with the CCC case, and we need
to find another strategy. In this section, we provide some uniqueness results under
some more or less restrictive assumptions.

Now, we will consider only stationary solutions of the DCC model, as given in
Section 3.1. We know that such solutions exist under the (sufficient) conditions of
Theorem 1 or 2, but it is not necessary to impose such conditions from the outset.
Obviously, we will need other technical assumptions.

Assumption U0. The sequence of innovations (ηt )t∈Z is highly stationary and
ergodic.

Assumption U1. ‖T33‖s < 1.

The matrix T33 has been introduced in Subsection 2.2, under the name T33,t .
Since T33,t does not depend on time, we have removed the index t here.

Thanks to the latter assumptions, we will be able to bound ‖Qt‖max from above
by a stationary process (qt ), and from below by a constant. Moreover, λ1(Qt ) will
be bounded from below. These tools will be crucial in proving the uniqueness of
stationary DCC solutions. To do so, let us introduce some intermediate quantities.

• The process (qt ), defined by

qt := ‖V ech(W0)‖2

1−‖T33‖s
+
√

m3(m +1)

2

μ∑
l=1

‖Ñl‖sξt−l ,

where ξt := ∑+∞
k=0 ‖T33‖k

s ‖ηt−k‖2
2.
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• The constants Cλ := λ1(W0) and Cq := mini=1,...,m(W0)i i .

• The constants

C∗
λ := λ1(W0)

1−∑ν
k=1(m

(k))2
, and C∗

q := mini=1,...,m(W0)i i

1−∑ν
k=1(m

(k))2
·

• κ = max(ν,μ) and, for every j = 1, . . . ,κ , set

βj,t := 1( j ≤ ν)‖Mj‖2
s +1( j ≤ μ)‖Nj‖2

s
4(2m +1)m1/2

√
CλCq

‖ηt‖2
2
√

qt .

Let N∗
t be the (κ,κ)-squared random matrix

N∗
t :=

⎡
⎢⎢⎢⎢⎢⎢⎣

β1,t β2,t · · · · · · βκ,t

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that the sequences (ξt ), (qt ), and (N∗
t ) are stationary and ergodic because

any ξt , qt , or N∗
t is a measurable function of the innovations (ηt ) that are station-

ary and ergodic under Assumption U0.

Assumption U2. E[ln+ ‖N∗
t ‖] < ∞ and the top Lyapunov exponent of the

sequence (N∗
t ), defined by γN := limt→+∞ t−1 E[ln(‖N∗

1 N∗
2 . . . N∗

t ‖)], is strictly
negative.

Such conditions are standard in the GARCH literature (see Francq and Zakoı̈an,
2010, Section 2.2.2, for instance). Note that γN ≤ E[ln‖N∗

1 ‖] for any norm ‖ · ‖.
Actually, the technical assumptions U1 and U2 above will ensure the unique-

ness of (εt ), (Qt ), and (Rt ) only. To get the uniqueness of (Dt ) and then of (zt )
itself, we need a last assumption: with the notations of Subsection 2.2, set

T̄t :=
[

T11,t T12,t

T21,t T22,t

]
, and T̄ ∗ = E[T̄t ].

Note that T̄ ∗ does not depend on any particular sequence (εt ) nor t , because
E[ε2

kt ] = 1 for every k.

Assumption U3. ρ(T̄ ∗) < 1

THEOREM 3. Under A0 and U0–U3, a strictly stationary solution of the DCC
model is unique and ergodic, given a sequence (ηt ).

The latter result can be strengthened in the following particular case, which is
commonly encountered in the literature.
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Assumption U4. The underlying DCC model is “partially” scalar, i.e., scalars
m(k) exist such that Mk = m(k) Im for all k = 1, . . . ,ν. Moreover, ρ(M∗) < 1 by
setting

M∗ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
m(1)

)2 (
m(2)

)2 · · · · · · (
m(ν)

)2

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Obviously, U4 is not mandatory to get our uniqueness result, even if it allows
the technical condition U2 to be weakened most often, by lowering the βj,t terms.
In every case, this “partially” scalar case encompasses the common practice of
scalar DCC (or scalar multivariate GARCH) models.

COROLLARY 1. Under A0 and U0–U4, a strictly stationary solution of the
DCC model is unique and ergodic, given a sequence (ηt ), replacing Cλ (resp. Cq)
by C∗

λ (resp. C∗
q ) in U2.

Example 2 (Continued)
In the case of scalar DCC models of order one, it is easy to specify the conditions
above. Here, r = s = ν = μ = 1,

A1 = a(1) Im, B1 = b(1) Im, M1 = m(1) Im, N1 = n(1) Im .

Assumptions U1 and U4 are equivalent and mean |m(1)| < 1. Assumption U4 is
fulfilled if E[ln‖N∗

1 ‖max] < 0, or if

E

[
ln

(
(m(1))2 + (n(1))2 4(2m +1)m1/2

√
CλCq

‖ηt‖2
2
√

qt

)]
< 0. (14)

This expectation could be easily evaluated by simulation, by noting that ηt and qt

are independent. Finally,

T̄ ∗ =
[

a(1) b(1)

a(1) b(1)

]
⊗ Im .

Through elementary algebra, it can checked that the characteristic function of
T̄ ∗ is the function x �→ (−x)m(a(1) + b(1) − x)m . Then Assumption U3 means
a(1)+b(1) < 1. Therefore, as expected, the conditions required for stationary DCC
solutions to be unique are more demanding than for them to simply exist, due to
U2. Generally, the latter condition will be fulfilled more easily if supl ‖Nl‖s is
“a lot smaller” than one, if m is not “too large”, and if the tails of ηt are not
“too heavy”.
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4. DISCUSSION AND PRACTICAL CONSIDERATIONS

Now, let us discuss the sufficient conditions to obtain the existence of stationary
DCC solutions, as given in Theorems 1 and 2. The most explicit ones are (11)
and (12). Since scalar DCC models are by far the most commonly used models
in the literature, we focus on the conditions of the previous examples 1 and 2
above, particularly (13). In the latter case, the conditions on the coefficients of the
volatility process are those generally applied in the univariate GARCH literature.
It can be proved they are necessary and sufficient for the existence of second-
order and strictly stationary GARCH solutions (see Francq and Zakoı̈an, 2010,
Theorem 2.6 and Remark 2.6). More interestingly, we can check empirically how
tight the (now) new conditions on the coefficients of the (Qt ) process are. In
other words, in Example 2, is the constraint

∑ν
k=1 |m(k)|2 < 1 close to a necessary

and sufficient condition for generating stationary trajectories of (zt ), (Rt ) and/or
(Qt )s?

For illustrative purposes, we have considered a very simple bivariate scalar
DCC model of order one, given by

hk,t = v0 +a hk,t−1 +bε2
k,t , k = 1,2,

v0 = 1/4, a = 0.8, b = 0.1,

Qt = W0 + (m(1))2 Qt−1 + (n(1))2εt−1ε
′
t−1,

W0 = I2/2+ ee′/2, e = [1,1]′,

with our notations. The latter process is generated by i.i.d. innovations (ηt ) that
are independent standard bivariate Gaussian vectors. We initialize the process at
t = 0 with Q0 = R0 = I2 and hk,0 = 1/2, k = 1,2.

In the paper, we have stated theoretically that the values of the coefficients
of the matrices Nl , l = 1, . . . ,μ (or the coefficients n(l) in the scalar case) do
not matter to obtain the existence of stationary DCC solutions. We have verified
this fairly counter-intuitive fact empirically: with the model above, different co-
efficients n(1) do not seem to modify the shape of the trajectories we generate,
independently of the other parameters. Therefore, our experiments will lead with
a fixed value n(1) = √

3. Note that this value is larger than one and this could be
seen “naively” as a source of nonstationarity.

As expected, the value one is key for m(1). When the latter is very close to
one but less than one ((m(1))2 = 0.999 in our case), we check that the simulated
trajectories of (zt ), (Qt ), and (Rt ) look stationary, once the influences of the
starting values have been forgotten (broadly speaking when t ≥ 4000): see
Figure 1 (solid lines). On the other side, when this auto-regressive parameter is
larger than one, even by a small amount ((m(1))2 = 1.001 in our case), we observe
that the (Qt ) trajectories explode: see Figure 1 (dashed lines). Apparently, this
is not the case for the (Rt ) correlation coefficients. They tend towards some
constant levels (Figure 2), but differ from one experiment to another one. This
phenomenon is a consequence of the normalization stage (3), but it seems difficult
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FIGURE 1. Some simulated trajectories of Qt [1,1] (top) and Qt [1,2] (bottom) when
m(1) = √

0.999 (solid line, left axis) or m(1) = √
1.001 (dashed line, right axis).

to maintain that feature will happen for almost every trajectory and any DCC
model. Indeed, by managing increasingly (very) high numbers with the (Qt )
process, we cannot exclude the possibility of spurious unexpected (Rt ) behaviors.
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FIGURE 2. Some simulated trajectories of Rt [1,2] when m(1) = √
0.999 (solid line) or

m(1) = √
1.001 (dashed line).

Moreover, we have checked that the (zt ) trajectories that we generated in this case
do not seem to exhibit nonstationary patterns visually. This is logical because our
DCC model tends towards a CCC model in such situations. Therefore, it is likely
that modelers will be able to manage (i.e., evaluate and simulate numerically)
DCC trajectories in practice, even if (12) or its generalizations are not satisfied.
Actually, this task remains feasible as long as the numerical values of (Qt ) are
manageable (i.e., not too large) by our software. This is the case when the number
of dates is not too large.

We have replaced Gaussian innovations (ηt ) by fat-tailed random vectors, to
check to what extent this may be a source of instability. The ηkt components,
k = 1,2 and t = 0, . . . ,T , have been drawn following mutually independent stan-
dardized Student laws with ν degrees of freedom, ν > 0. We reiterate here that the
ηt -moments of order ν or higher do not exist. As long as ν ≥ 2 and m(1) < 1, we
do not observe explosive patterns for (zt ). The components of Rt appear to be-
come stationary, even if the decrease in initial value effects is very slow when ν is
close to two. On the contrary, when ν < 2, the processes (Qt ) and (Rt ) are highly
unstable. The former exhibit very spiky trajectories, while the latter often tend
to be attracted by the 1 or (−1) area. Besides, some (zt ) trajectories reach very
high and unrealistic values (1080, for instance). In every case, when m(1) ≥ 1, the
(Qt ) trajectories explode and the (Rt ) ones tend to constant values that depend on
each experiment. In such cases, the return process (zt ) may reach huge values, but
only when ν ≤ 2, apparently. This analysis illustrates the necessity of consider-
ing innovations with finite second-order moments, and the fact that higher-order
moments are not mandatory to obtain stationary solutions.
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Concerning the sufficient conditions that guarantee that stationary DCC solu-
tions are unique, it is more difficult to evaluate their tightness because they are
more intricate and involve too many model characteristics. Nonetheless, with the
simple scalar DCC model used in Example 2, we observe that the key condi-
tion (14) will be more demanding when the number m of underlyings increases.
On the contrary, smaller values |n(1)| would help. And the partially scalar case in-
duces significantly less demanding conditions than the general case, because the
values of the constants C∗

λ and C∗
q in the denominator are a lot higher than Cλ and

Cq , respectively. The effect of |m(1)| is ambiguous because it appears in several
quantities, especially T33 and C∗

λ .
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APPENDIX A. Technical lemmas

We recall Tweedie’s criterion, a key tool to prove the existence of an invariant probability
measure for a Markov chain. This result has a remarkable advantage: contrary to more
commonly used techniques (based on some Lyapunov–Foster conditions, for example), it
is not necessary to state the irreducibility of the underlying Markov chain, to obtain the
existence of stationary solutions. Technically speaking, proving the irreducibility of such a
nonlinear Markov chain is a very challenging task in general.

Let (Xt )t=1,2,... be a temporally homogeneous Markov chain with a locally com-
pact separable metric state space (S,B). The transition probability is P(x, A) = P(Xt ∈
A| Xt−1 = x), where x ∈ S and A ∈ B. Tweedie’s (1988) Theorem 2 provides:

LEMMA A.1. Suppose that (Xt ) is a Feller chain, i.e., for each bounded continuous
function h on S, the function of x given by E[h(Xt ) | Xt−1 = x] is also continuous.

1. If there exists, for some compact set A ∈ B, a nonnegative function g and ε > 0
satisfying∫

Ac
P(x,dy)g(y) ≤ g(x)− ε, x ∈ Ac, (A.1)

then there exists a σ -finite invariant measure μ for P with 0 < μ(A) < ∞.
2. Furthermore, if∫

A
μ(dx)

[∫
Ac

P(x,dy)g(y)

]
< ∞, (A.2)

then μ is finite and hence π = μ/μ(S) is an invariant probability measure.
3. Furthermore, if∫

Ac
P(x,dy)g(y) ≤ g(x)− f (x), x ∈ Ac, (A.3)

then μ admits a finite f -moment; that is,
∫

S μ(dy) f (y) < ∞.

The following Lemma is our version of Lemma A.2 in Ling and McAleer (2003).
Therefore, its proof is omitted.
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LEMMA A.2. For a given squared matrix T , if ρ(|T |) < 1, then there exists a vector
M > 0 such that (I d −|T |′)M > 0.

APPENDIX B. Proof of Proposition 1

Note that εt (or εt , or even V ech(εtε
′
t )) is a function of the couple (Rt ,ηt ) only. Due

to (3) and (4), Rt is a deterministic function of Xt−1. Since ηt is Markov with respect to
I, the law of εt knowing It−1 is the law of εt knowing Xt−1 merely. The same assertion
applies with Tt , ζt , or Xt itself, instead of εt .

In other words, the nonlinearity of the DCC model comes mainly from εt in Tt . But
there exist constant matrices (of zeros and ones) F and G such that (7) can be rewritten

Xt = (F · ε∗
t )� To Xt−1 + (G · V ech(εtε

′
t )

∗)� ζo, (B.1)

where To (resp. ζo) is the Tt matrix (resp. ζt vector) when εt = 1, ε∗
t := [ε ′

t ,1]′ and

V ech(εtε
′
t )

∗ := [V ech(εtε
′
t )

′,1]′. Since εt = R1/2
t ηt and since Rt is a measurable func-

tion of Xt−1, then Xt is clearly a function of Xt−1 and of the innovation ηt only, that are
Markov. These arguments prove the Markovian structure of the (Xt ) process under A0. �

APPENDIX C. Proof of Theorem 1

First, let us check that (Xt ) is a Feller chain in a convenient space, to be able to apply
Lemma A.1 afterwards. Let h be a bounded and continuous function on Rd . Clearly,

E[h(Xt ) | Xt−1 = x] = E[h(Tt x+ ζt ) | Xt−1 = x]

= E[h(ψ1(εtε
′
t )x+ψ2(εtε

′
t )) | Xt−1 = x],

for some continuous transforms ψ1 and ψ2. Note that εt = R1/2
t ηt and that R1/2

t is a

continuous function of Xt−1. Indeed, Rt �→ R1/2
t is continuous (see, e.g., Proposition 6.3

in Serre (2010)), and Xt−1 �→ Rt is continuous by construction. Then,

E
[
h(Xt ) | Xt−1 = x

] = E
[
h ◦ ψ̃(x,ηt ) | Xt−1 = x

]
=

∫
h ◦ ψ̃(x,η) fηt (η|x)dη,

for some continuous transform ψ̃ . Now, consider a sequence of vectors (xn) that tends to
x when n → ∞. Since h is bounded and since the sequence (h ◦ ψ̃(xn,η) fηt (η|xn))n is
convergent for every η, we can apply the dominated convergence theorem under E2. We
deduce that x �→ E[h(Xt ) | Xt−1 = x] is continuous and then (Xt ) is Feller.

Note that the vector Xt belongs to the metric spaceRd , endowed with the usual topology.
Since we impose that the matrices Qt will be positive definite, Xt will live in a subspace

of Rd , where X (3)
t will gather only the components of definite positive matrices. It is easy

to check that this subspace is separable and locally compact. Therefore, the assumptions
of Lemma A.1 are satisfied.

Second, set g(x) = 1+|x⊗ p|′M , for an arbitrary positive vector M , that will be chosen
after. Let us check that the latter function can be invoked as in Lemma A.1. Clearly,

E[g(Xt ) | Xt−1 = x] = 1+ E
[|(Tt x+ ζt )

⊗ p|′ | Xt−1 = x
]

M.

https://doi.org/10.1017/S0266466616000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000116


656 JEAN-DAVID FERMANIAN AND HASSAN MALONGO

By expanding the Kronecker products, we can check that (Tt x+ζt )
⊗ p = (Tt x)⊗ p + R(x),

with

‖R(x)‖ ≤ C0

(
‖ζt‖.‖(Tt x)⊗(p−1)‖+ . . .+‖ζt‖p−1.‖(Tt x)‖+‖ζt‖p

)
,

for some positive constant C0 and any multiplicative matrix norm ‖ · ‖.
Note that (Tt x)⊗k = T ⊗k

t .x⊗k . Recall that Tt is a function of εt , i.e., of εt . Then, its
conditional law depends on Rt , i.e., it is a function of Xt−1. We deduce

E
[|(Tt x)⊗ p| | Xt−1 = x

]′
M ≤ |x⊗ p|′E

[
|T ⊗ p

t |′ | Xt−1 = x
]

M

≤ |x⊗ p|′
(

sup
x∈Rd

E
[
|T ⊗ p

t |′ | Xt−1 = x
])

M

≤ |x⊗ p|′(T ∗)′M.

Now, choose M as provided by Lemma A.2, when the matrix T in this lemma is replaced
by T ∗.

Moreover, εt = R1/2
t ηt , and the (positive definite) matrix R1/2

t can be chosen so that
all its coefficients are less than m1/2 (diagonalize this matrix on an orthonormal basis
and invoke Cauchy–Schwartz inequality). This implies that constants αk exist such that
‖V ech(εtε

′
t )

⊗k‖ ≤ αk‖V ech(ηtη
′
t )

⊗k‖ when k ≤ p. Since E[‖ηt‖2p|Xt−1 = x] < h̄(‖x‖)
by assumption, some constants ck,l such that Et−1[‖ζt‖k .‖εt‖l ] < ck,l h̄(‖x‖)(k+l)/p

for any couple (k, l), k + l ≤ p exist. We deduce the boundedness of E[T ⊗k
t |Xt−1 = x],

k ≤ p, and

E[‖R(x)‖| Xt−1 = x] ≤ C1

(
h̄(‖x‖)1/p‖x⊗(p−1)‖+·· ·+ h̄(‖x‖)(p−1)/p‖x‖+ h̄(‖x‖)p

)
,

for some positive constant C1. Applying E2, we have obtained

E[g(Xt ) | Xt−1 = x] ≤ 1+|x⊗ p|′(T ∗)′M + O

⎛
⎝p−1∑

k=0

‖x⊗k‖ · ‖x‖a

⎞
⎠

≤ g(x)−|x⊗ p|′ (I d − (T ∗)′
)

M + O

⎛
⎝p−1∑

k=0

‖x⊗k‖ · ‖x‖a

⎞
⎠ , (C.1)

for every constant a > 0. By Lemma A.2, (I d − (T ∗)′)M is strictly positive. Then,
a positive constant c0 exists such that

|x⊗ p|′ (I d − (T ∗)′
)

M ≥ c0

d∑
j=1

|xj |p,

for every d-dimensional vector x. Set N (x) := ∑d
j=1 |xj |p . By a similar reasoning,

a positive constant c1 exists such that g(x) ≥ c1 N (x) for every x ∈ Rd . Moreover, by
applying Hölder’s inequality, we have

∑
i1,...,ik

|xi1 · · · xik | =
⎛
⎝ d∑

i=1

|xi |
⎞
⎠

k

≤
⎛
⎝ d∑

i=1

|xi |p

⎞
⎠

k/p

dk ,
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for every k ≤ p. Then, a positive constant c2 exists such that

• g(x) ≤ 1+‖M‖∑i1,...,ip
|xi1 · · · xip | ≤ 1+ c2 N (x), and

• every “residual” term ‖x⊗k‖ is bounded above by (a scalar times) N (x)k/p , when
k < p.

Therefore, this provides

E[g(Xt ) | Xt−1 = x] ≤ g(x)

[
1− c0

N (x)

g(x)
+ O

(
sup

k=0,...,p−1

N (x)(k+a)/p

g(x)

)]

≤ g(x)

[
1− c0 N (x)

1+ c2 N (x)
+ O

(
sup

k=0,...,p−1

N (x)(k+a)/p

c1 N (x)

)]
.

Let us define the set A := {x ∈ Rd | N (x) ≤ �}, for some � > 1. When � is sufficiently
large, we obtain, for any x �∈ A and a power a s.t. 0 < a < 1/p,

0 ≤ E[g(Xt ) | Xt−1 = x] ≤ g(x)

[
1− c0

2c2
+ O

(
�a−1/p

c1

)]
< g(x)

[
1− c0

3c2

]
. (C.2)

Since g(x) ≥ 1, it follows that E[g(Xt ) | Xt−1 = x] ≤ g(x)−ε for some ε > 0. This proves
Equation (A.1) in Lemma A.1. Therefore, there exists a σ -finite invariant measure μ for
the Markov chain (Xt ), and 0 < μ(A) < ∞.

For any x ∈ A, Equation (C.1) provides

E[g(Xt ) | Xt−1 = x] ≤ g(x)+ O

⎛
⎝p−1∑

k=0

‖x⊗k‖ · ‖x‖a

⎞
⎠ ≤ c3�(1+a/p)

for some constant c3 that does not depend on x. Then,∫
A

μ(dx)

[∫
Ac

P(x,dy)g(y)

]
≤

∫
A

μ(dx)E[g(Xt ) | Xt−1 = x] ≤ C�1+a/pμ(A) < ∞.

We deduce that μ is finite and hence π = μ/μ(Rd ) is an invariant probability measure
of (Xt ). This implies that a strictly stationary solution satisfying (7) exists, still denoted
by (Xt ).

Third, by invoking Equation (C.2), we get (A.3) in Lemma A.1 with f (x) = βg(x), for
some β ∈ (0,1). Since g(x) ≥ c1 N (x), we obtain

Eπ [N (Xt )] < ∞. (C.3)

In particular, invoking Hölder’s inequality, this implies that Eπ [z2k
i t ] < ∞, for every

i = 1, . . . ,m and every k ≤ p. �

Remark C.1. Equation (C.3) provides a lot more than only the finiteness of z’s
moments. Overall, it means that

Eπ

⎡
⎣ m∑

i=1

h p
it

⎤
⎦ < ∞, Eπ

⎡
⎣ m∑

i=1

z2p
it

⎤
⎦ < ∞,

Eπ

⎡
⎣ m∑

i, j=1

|Qi j,t |p

⎤
⎦ < ∞, and Eπ

⎡
⎣ m∑

i=1

|εi t |2p

⎤
⎦ < ∞.
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APPENDIX D. Proof of Theorem 2

Let us consider λ, a nonzero eigenvalue of T ∗, when p = 1. We can easily check that this
matrix is simply Tt , by replacing εt by one, and replacing the coefficients of the matrices
M̃k and Ñl by their absolute values (remember that the matrices Ai and Bj are already

nonnegative). Let v = (
v(1),v(2),v(3),v(4)

)
be the associated eigenvector, where the di-

mensions of the subvectors v(k), k = 1, . . . ,4 are consistent with those of Xt in (6). We can
further split the latter subvectors, so that they comply with the matrices Ai , Bj , M̃k , and Ñl .

With obvious vector sizes, we will denote v(1) = (
v(1)

1 , . . . ,v(1)
r

)
, v(2) = (

v(2)
1 , . . . ,v(2)

s
)
,

v(3) = (
v(3)

1 , . . . ,v(3)
ν

)
and v(4) = (

v(4)
1 , . . . ,v(4)

μ
)
.

By simple block-matrix calculations, the relation T ∗v = λv implies

v(1)
1 = v(2)

1 =
r∑

i=1

Ai v(1)
1

λi
+

s∑
j=1

Bj v(2)
1

λ j
,

v(3)
1 =

ν∑
k=1

M̃kv(3)
1

λk
+

μ∑
l=1

Ñlv
(4)
1

λl
, and v(4)

1 = 0.

Note that v(1)
i = v(1)

1 /λi and v(2)
j = v(2)

1 /λ j for every i and j . Moreover, v(3)
k = v(3)

1 /λk

and v(4)
l = 0 for every k and l.

If λ ≥ 1, then

N
(

v(1)
1

)
≤

r∑
i=1

‖Ai ‖N
N

(
v(1)

1

)
|λ|i +

s∑
j=1

‖Bj ‖N
N

(
v(1)

1

)
|λ| j

≤N
(

v(1)
1

)⎛⎝ r∑
i=1

‖Ai ‖N +
s∑

j=1

‖Bj ‖N
⎞
⎠ .

Similarly,

N ∗ (v(3)
1

)
≤

ν∑
k=1

‖M̃k‖N ∗
N ∗ (v(3)

1

)
|λ|k ≤N ∗(v(3)

1 )

ν∑
k=1

‖M̃k‖N ∗ .

Since v �= 0, we obtain

1 ≤
r∑

i=1

‖Ai ‖N +
s∑

j=1

‖Bj ‖N , or 1 ≤
ν∑

k=1

‖M̃k‖N ∗ .

This proves the result. �

APPENDIX E. Proof of Theorem 3

Suppose that two strongly stationary solutions (Xt ) and (X̃t ) exist. Since both satisfy
Equation (7), with obvious notations, we can write for every t

Xt = Tt .Xt−1 + ζt , and X̃t = T̃t .X̃t−1 + ζ̃t .
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Note that the difference between Tt and T̃t is only due to the (a priori different) factors εt
and ε̃t . We want to prove that, for every t , almost certainly Xt = X̃t .

The problem will be solved if we prove the uniqueness of the process (X (3)
t , X (4)

t ), given
by subvectors of (Xt ). For the moment, assume it has been proved. Recall that

X (3)
t := (V ech(Qt ), . . . ,V ech(Qt−ν+1))′, and

X (4)
t := (V ech(εtε

′
t ), . . . ,V ech(εt−μ+1ε′

t−μ+1))′.

(Rt ) is therefore unique, due to (3). Moreover, the sequence of random matrices (Tt ) and
of noises (ζt ) are also unique, similarly to the CCC case. Now, let us prove the uniqueness

of Yt := (X (1)
t , X (2)

t ), knowing (ηt ). This would imply the uniqueness of the instantaneous
volatility process (Dt ) and of the return process (zt ) themselves. With our notations, we
have

Yt = T̄t Yt−1 + ζ̄t , and Ỹt = T̄t Ỹt−1 + ζ̄t ,

for every t , by setting ζ̄t = (ζ
(1)
t ,ζ

(2)
t ). The arguments are then standard: for instance, see

Theorem 2.4’s proof in Francq and Zakoı̈an (2010).

We recall the reasoning briefly, to get the uniqueness of (Yt ). Note that

Yt − Ỹt = T̄t T̄t−1 · · · T̄t−p · (Yt−p−1 − Ỹt−p−1),

whenever p > 1. Since the sequences (Yt ) and (Ỹt ) are stationary, it is sufficient to prove
that ‖T̄t T̄t−1 · · · T̄t−p‖ tends to zero a.e. when p tends to the infinity, for any matrix norm.
This is the case under Assumption U3 because, for every sequence (εt ),

E[ln‖T̄t T̄t−1 . . . T̄1‖1] ≤ ln E[‖T̄t T̄t−1 . . . T̄1‖1] = ln‖(T̄ ∗
t
)t ‖1,

by invoking Jensen’s inequality, the stationarity of (T̄t ), and by noting that all the coeffi-
cients of the matrices T̄t are nonnegative. It is wellknown that limt→∞ t−1 ln(‖At‖) =
lnρ(A), for any squared matrix A. Apply this result with A = T̄ ∗

t . Therefore γT =
limt→∞ t−1 E[ln‖T̄t T̄t−1 . . . T̄1‖1], the top Lyapunov exponent of the sequence of random
matrices (T̄t ), is strictly negative under Assumption U3. Since the sequence of matrices
(T̄t ) is strictly stationary under U0, we get limp→+∞ ‖T̄t T̄t−1 · · · T̄t−p‖1 = 0 with proba-
bility one (Theorem 2.3 in Francq and Zakoı̈an, 2010). This provides the uniqueness of the
processes (Dt ) and (zt ), once we assume the uniqueness of the processes (Qt ) and (εt ).

Now, let us prove the uniqueness of (X (3)
t , X (4)

t ) or, in other terms, of (Qt ,εt ). This
task is clearly more tricky, because we will have to deal with the nonlinear feature of
the DCC specification. Here, the convenient matrix norm will be the spectral norm ‖ · ‖s .
Consider two stationary solutions (Qt ,εt ) and (Q̃t , ε̃t ). Since the spectral norm is sub-
multiplicative, we deduce from (4) that

‖Qt − Q̃t‖s ≤
ν∑

k=1

‖Mk‖2
s ‖Qt−k − Q̃t−k‖s

+
μ∑

l=1

‖Nl‖2
s ‖εt−lε

′
t−l − ε̃t−l ε̃

′
t−l‖s . (E.1)
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The key point will be to bound from above the terms ‖εt−lε
′
t−l − ε̃t−l ε̃

′
t−l‖s by a function

of ‖Qt−l − Q̃t−l‖s . To lighten the indices, we assume l = 0. Clearly, we have∥∥εtε
′
t − ε̃t ε̃

′
t
∥∥

s =
∥∥∥R1/2

t ηtη
′
t R1/2

t − R̃1/2
t ηtη

′
t R̃1/2

t

∥∥∥
s

≤
∥∥∥(R1/2

t − R̃1/2
t

)
ηtη

′
t R1/2

t

∥∥∥
s
+
∥∥∥R̃1/2

t ηtη
′
t

(
R1/2

t − R̃1/2
t

)∥∥∥
s

≤
∥∥∥R1/2

t − R̃1/2
t

∥∥∥
s

∥∥ηtη
′
t
∥∥

s

∥∥∥R1/2
t

∥∥∥
s
+
∥∥∥R̃1/2

t

∥∥∥
s

∥∥ηtη
′
t
∥∥

s

∥∥∥R1/2
t − R̃1/2

t

∥∥∥
s
.

Since the rank of ηtη
′
t is one, ‖ηtη

′
t‖s = T r(ηtη

′
t ) = ‖ηt‖2

2. Moreover,∥∥∥R1/2
t

∥∥∥
s
= ρ(Rt )

1/2 ≤ T r(Rt )
1/2 = √

m.

We deduce∥∥εtε
′
t − ε̃t ε̃

′
t
∥∥

s ≤ 2m1/2‖ηt‖2
2.
∥∥∥R1/2

t − R̃1/2
t

∥∥∥
s
. (E.2)

Since the spectral norm is unitarily invariant, Theorem 6.2 in Hingham (2008) provides∥∥∥R1/2
t − R̃1/2

t

∥∥∥
s
≤ 1

λ1(Rt )1/2 +λ1(R̃t )1/2

∥∥Rt − R̃t
∥∥

s . (E.3)

Note that, for any t ,

λ1(Rt ) = min
x

x′ Rt x
x′x = min

x

x′diag(Qt )
−1/2 Qt diag(Qt )

−1/2x
x′x

≥ min
y

y′Qt y
y′y min

x

∥∥∥diag(Qt )
−1/2x

∥∥∥2

2

‖x‖2
2

≥ λ1(Qt )min
i

1

qii,t
≥ Cλ

‖Qt‖max
,

invoking Lemma E.2. Since the same inequality applies with λ1(R̃t ), we get

1

λ1(Rt )1/2 +λ1(R̃t )1/2
≤ ‖Qt‖1/2

max +‖Q̃t‖1/2
max√

Cλ
· (E.4)

Moreover,

Rt − R̃t =
(

diag(Qt )
−1/2 −diag(Q̃t )

−1/2
)

Qt diag(Qt )
−1/2

+diag(Q̃t )
−1/2(Qt − Q̃t )diag(Qt )

−1/2

+diag(Q̃t )
−1/2 Q̃t

(
diag(Qt )

−1/2 −diag(Q̃t )
−1/2

)
:=R1 +R2 +R3.

Note that R1 =
[
(qii,t − q̃i i,t )qi j,t q

−1/2
j j,t q−1/2

i i,t q̃−1/2
i i,t /

(
q1/2

i i,t + q̃1/2
i i,t

)]
1≤i, j≤m

and

|qi j,t | ≤ √
qii,t

√qj j,t (Cauchy–Schwartz). Since ‖A‖max ≤ ‖A‖s ≤ m‖A‖max, we get

‖R1‖max ≤ C−1
q ‖diag(qii,t − q̃i i,t )‖max ≤ C−1

q ‖Qt − Q̃t‖max ≤ C−1
q ‖Qt − Q̃t‖s ,
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and ‖R1‖s ≤ mC−1
q ‖Qt − Q̃t‖s . Similarly, ‖R3‖s ≤ mC−1

q ‖Qt − Q̃t‖s . By Lemma E.2,
we obtain

‖R2‖s =
∥∥∥diag(Q̃t )

−1/2(Qt − Q̃t )diag(Qt )
−1/2

∥∥∥
s

≤
∥∥∥diag(Q̃t )

−1/2
∥∥∥

s

∥∥∥diag(Qt )
−1/2

∥∥∥
s

∥∥Qt − Q̃t
∥∥

s

≤ 1√
mini qii,t

1√
mini q̃i i,t

∥∥Qt − Q̃t
∥∥

s ≤ 1

Cq

∥∥Qt − Q̃t
∥∥

s .

Globally, we get

∥∥Rt − R̃t
∥∥

s ≤ 2m +1

Cq

∥∥Qt − Q̃t
∥∥

s (E.5)

everywhere. Recalling (E.2)–(E.5), we deduce

∥∥εtε
′
t − ε̃t ε̃

′
t
∥∥

s ≤ 2m1/2‖ηt‖2
2√

Cλ
· 2m +1

Cq

(
‖Qt‖1/2

max +‖Q̃t‖1/2
max

)∥∥Qt − Q̃t
∥∥

s . (E.6)

Set vt := ‖Qt − Q̃t‖s . By using the previous inequality and the notation of Lemma E.1,
we obtain

vt ≤
ν∑

k=1

‖Mk‖2
s vt−k +

μ∑
l=1

‖Nl‖2
s

4m1/2(2m +1)√
CλCq

‖ηt−l‖2
2
√

qtvt−l :=
κ∑

j=1

βj,tvt− j , (E.7)

for all t and with our notations.
Setting vt := [vt ,vt−1, . . . ,vt−κ+1]′, we get

0 ≤ vt ≤ N∗
t vt−1 ≤ . . . ≤ N∗

t N∗
t−1 · · · N∗

t−p vt−p−1,

for any positive integer p. By the stationarity of the (Qt ) and (Q̃t ) trajectories, the norm of
vt is bounded by a constant that is independent of t . Moreover, under the assumptions U0
and U2, ‖N∗

t N∗
t−1 · · · N∗

t−p‖s tends to zero a.e. when p → +∞ and for any fixed t (see
Francq and Zakoı̈an 2010, Theorem 2.3). We deduce vt → 0 a.e. when t → ∞, because
(vt ) can be initialized arbitrarily far in the past. This implies that Qt = Q̃t a.e. There-
fore, Rt = R̃t a.e. and εt = ε̃t a.e., knowing (ηt ). This concludes the proof of uniqueness.
The ergodicity of the (now unique) DCC solution is a consequence of Corollary 7.17 in
Douc et al. (2014). �

LEMMA E.1. Under assumptions U0 and U1, for almost every trajectory of a solution
(Qt ) of the DCC model, we have

‖Qt‖max ≤ ‖V ech(W0)‖2

1−‖T33‖s
+
√

m3(m +1)

2

μ∑
l=1

∥∥Ñl
∥∥

sξt−l := qt ,

where ξt := ∑+∞
k=0 ‖T33‖k

s ‖ηt−k‖2
2.
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If these innovations |ηt | are bounded from above by a positive constant Cη a.e., then the
latter inequality is simply

‖Qt‖max ≤ ‖V ech(W0)‖2 +
√

m3(m+1)
2

∑μ
l=1

∥∥Ñl
∥∥

sC2
η

1−‖T33‖s
.

Proof of Lemma E.1. For any t ,
∥∥V ech

(
εtε

′
t
)∥∥

s = ∥∥V ech
(
εtε

′
t
)∥∥

2 ≤√
m(m +1)‖εt‖2∞/

√
2. Moreover, since ‖x‖s = ‖x‖2 for any vector x and ‖A‖max ≤ ‖A‖s

for any matrix A (Lütkepohl, 1996, p. 111), we get

‖εt‖∞ ≤ ‖εt‖s ≤
∥∥∥R1/2

t ηt

∥∥∥
s
≤

∥∥∥R1/2
t

∥∥∥
s
.‖ηt‖s

≤ ‖Rt‖1/2
s ‖ηt‖2 ≤ √

m‖ηt‖2.

This proves the inequality
∥∥V ech

(
εt−lε

′
t−l

)∥∥
s ≤

√
m3(m +1)‖ηt−l‖2

2/
√

2, for every
t and l.

With the notations of Subsection 2.2, consider the dynamics of the random vector

X (3)
t := (V ech(Qt ), . . . ,V ech(Qt−ν+1))′. Clearly, X (3)

t = T33 X (3)
t−1 +πt , where

πt := V ech(W0)+
μ∑

l=1

Ñl V ech
(
εt−lε

′
t−l

)
.

We deduce from U1 that

‖Qt‖max ≤
∥∥∥X (3)

t

∥∥∥
max

≤
∥∥∥X (3)

t

∥∥∥
s
≤

+∞∑
k=0

‖T33‖k
s ‖πt−k‖s

≤
+∞∑
k=0

‖T33‖k
s

⎧⎨
⎩‖V ech(W0)‖s +

μ∑
l=1

∥∥Ñl
∥∥

s .
∥∥V ech

(
εt−k−lε

′
t−l

)∥∥
s

⎫⎬
⎭

≤ ‖V ech(W0)‖s

1−‖T33‖s
+

+∞∑
k=0

‖T33‖k
s

μ∑
l=1

∥∥Ñl
∥∥

s .

√
m3(m +1)

2
‖ηt−k−l‖2

2

≤ ‖V ech(W0)‖s

1−‖T33‖s
+
√

m3(m +1)

2

μ∑
l=1

∥∥Ñl
∥∥

sξt−l := qt .

Since the spectral norm of V ech(W0) is its Euclidian norm, as for any vector, we obtain
the result. n

LEMMA E.2. Under Assumption U1, for almost every trajectory of a solution (Qt ) of
the DCC model, we have λ1(Qt ) ≥ Cλ and mini=1,...,m qii,t ≥ Cq , where Cλ = λ1(W0)
and Cq := mini=1,...,m(W0)i i . In addition, if we assume U4, then λ1(Qt ) ≥ C∗

λ and
mini=1,...,m qii,t ≥ C∗

q , with

C∗
λ := λ1(W0)

1−∑ν
k=1

(
m(k)

)2
and C∗

q := mini=1,...,m(W0)i i

1−∑ν
k=1

(
m(k)

)2
·

Proof of Lemma E.2. Is it known that, for any two positive definite matrices A and B,
λ1(A + B) ≥ λ1(A)+λ1(B) (Weyl’s Theorem. See Lütkepohl, 1996, p. 75). In our case,
we deduce that λ1(Qt ) ≥ λ1(W0) everywhere, due to Equation (4).
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We can improve this lower bound in the particular case of “partially” scalar DCC models.
Indeed, in this case, we have

λ1(Qt ) ≥ λ1(W0)+
ν∑

k=1

λ1

((
m(k)

)2
Qt−k

)
≥ λ1(W0)+

ν∑
k=1

(
m(k)

)2
λ1(Qt−k). (E.8)

Introduce the random vector λt := (λ1(Qt ), . . . ,λ1(Qt−ν+1))′ and λW :=
(λ1(W0),0, . . . ,0)′. Because of (E.8), we have λt ≥ M∗λt−1 + λW for every t . Un-
der Assumption U4, it is easy to check that

∑+∞
k=0(M∗)k is absolutely convergent and

that

λt ≥
+∞∑
k=0

(
M∗)k λW := λ∞,

for every t . Obviously, M∗λ∞ + λW = λ∞. Due to the definition of M∗, this implies
that all the components of λ∞ are the same, i.e., a real number λ∞ exists such that
λ∞ = λ∞e, e ∈Rν . Taking the first component of the vectorial equation λ∞M∗e+λW =
λ∞e provides λ∞

∑ν
k=1(m(k))2 +λ1(W0) = λ∞. This states the lower bound of λ1(Qt )

under U4.
Consider a fixed index i = 1, . . . ,m. The reasoning for the sequence (qii,t )t is similar,

because

qii,t ≥ (W0)i i +
ν∑

k=1

(m(k))2qii,t−k ,

for all t , as this inequality is playing the same role as (E.8). This implies the desired
result. n
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