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SECOND VARIATION 
OF THE "TOTAL SCALAR CURVATURE" 

ON CONTACT MANIFOLDS 

D. E. BLAIR AND D. PERRONE 

ABSTRACT Let M2n+l be a compact contact manifold and !A the set of associated 
metrics. Using the scalar curvature R and the *-scalar curvature /?*, in [5] we defined 
the "total scalar curvature", by 1(g) = JM \(R + R* + 4n(n + \))dV and showed that 
the critical points of 1(g) on A are the AT-contact metrics, i.e. metrics for which the 
characteristic vector field is Killing. In this paper we compute the second variation of 
1(g) and prove that the index of 1(g) and of —1(g) are both positive at each critical point. 
As an application we show that the classical total scalar curvature A(g) = JM R dVg 

restricted to J2 cannot have a local minimum at any Sasakian metric. 

1. Introduction. Let M be a compact contact (2n +1 )-manifold with global contact 
form r] and characteristic vector field £. For an associated metric g, let R and R* denote 
the scalar and *-scalar curvatures respectively. In [5] we considered the integral 1(g) = 
JM \ (R + R* + 4n(n + 1)) dV as a functional on the set JÏ of all associated metrics of the 
given contact form on M. We call the integral JM ^(jR + R* + 4n(n + \))dV the "total 
scalar curvature". One of the main results of [5] is that the critical points of 1(g) are 
those metrics for which £ generates a 1-parameter group of isometries, i.e. AT-contact 
metrics. The constant 4n(n + 1) is included only to give W = UR + R* + 4n(n + 1)) as a 
natural generalization of the Webster scalar curvature of a CR-structure as introduced in 
dimension 3 by Chern and Hamilton [6]. 

For the classical integral functional, A(g) = JMRdVg, on the set of all Riemannian 
metrics with the same total volume, a critical point is an Einstein metric. In [7] Y. Muto 
proved the following result. 

THEOREM (MUTO). The index ofA(g) and the index of —A(g) are both positive at 
each critical point. 

In this paper we compute the second variation of 1(g) and prove the following. 

THEOREM 1. The index of 1(g) and the index of —1(g) are both positive at each 
critical point. 

In dimension 3, 1(g) agrees with the functional Ew(g) — SM WdVg of Chern and 
Hamilton in [6] and hence we have the following corollary. 
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COROLLARY. The index ofEw(g) and the index of-Ew(g) are both positive at each 
critical point. 

In [4] the classical integral A(g) — JMRdVg was considered as a functional on Si. 
Since Si is a smaller set of metrics, one would expect a weaker critical point condition 
than the Einstein condition; indeed the critical point condition is that the Ricci operator 
Q and the fundamental collineation </> of the contact metric structure commute when 
restricted to the contact subbundle [4]. The 3-dimensional case was studied in [9]. Since 
Q(f> — (j)Q = 0 on a Sasakian manifold (see e.g. [1, p. 76]), Sasakian metrics, when they 
exist, are critical points. As a application of Theorem 1 we will also prove the following. 

THEOREM 2. The functional A(g) restricted to A cannot have a local minimum at 
any Sasakian metric. 

The "total scalar curvature" is also of interest in symplectic geometry as well. It was 
shown in [3] that JMR + R* dV is a symplectic invariant and to within a constant is the 
cup product 

(ci(Ai)U[a]n-iy[M]) 

where c\(M) is the first Chern class of M. 

2. Preliminaries. By a contact manifold we mean a (2n +1 )-dimensional C°° man­
ifold M together with a global 1-form 77 such that 77 A (drff ^ 0. Given a contact form 77, 
it is well known that there exists a unique vector field £, called the characteristic vector 
field, such that drj(£,X) = 0 and normalized by 7/(0 = 1. 

A Riemannian metric g is an associated metric for a contact form 77, if there exists a 
tensor field </> of type (1,1) such that c/>2 = - / + 77 <g> £, rj(X) = g(£,X) and dr](X, Y) = 
g(X, (j)Y). We refer to (77, g) or (</>, £, 77, g) as a contact metric structure. For a given contact 
form 77, the set Si of all associated metrics is infinite dimensional. Moreover all associated 
metrics have the same volume element, dV = ^rrj A (̂ 77)". 

Given a contact metric structure (</>, £, 77, g) define a tensor field hbyh= jL^</>, where 
L denotes Lie differentiation. The operator h enjoys many interesting properties, h is a 
symmetric operator, h anti-commutes with <f>, h^ = 0 and h vanishes if and only if £ is 
Killing, i.e. £ generates a 1-parameter group of isometries. When £ is Killing, the contact 
metric structure is said to be K-contact. Moreover h is related to the covariant derivative 
of£by 

(2.1) Vx£ = -<j>X-(f>hX 

and h is related to the Ricci curvature in the direction £ by 

(2.2) Ric(0 = 2rc-tr/*2. 

A contact metric structure on M naturally gives rise to an almost complex structure on 
the product M x R and if this almost complex structure is integrable, the given contact 
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metric structure is Sasakian. Equivalently a contact metric structure is Sasakian if and 
only if 

(Vx<j>)Y = g(X, Y)£ - r]{Y)X 

from which 
Vxi = -<j>X. 

In particular a Sasakian manifold is always AT-contact and in dimension 3 a AT-contact 
manifold is Sasakian. For a general reference to these ideas, see e.g. [1]. 

On a contact metric manifold the *-Ricci tensor and the ^-scalar curvature are defined 
by 

/?*• - /WVA R* = R?. 
In [8] Olszak showed that 

(2. 3) R-R*- 4n2 = ~|V</>|2 + In - trh2 < 0 

with equality holding if and only if the structure is Sasakian. 
Let M be a contact manifold and g(t) a path in A. We denote by D the tangent to the 

path and we use the same letter to denote a tensor field of type (1,1) and of type (0,2). 
When differentiating 1(g) along a path and evaluating at t = 0 to obtain the critical point 
condition as in [5], we regard D as independent of t, i.e. g(t)tj — g y + tDij + t2Eij + • • •. 
When taking the second derivative of 1(g), we regard the first derivative as having been 
computed at an arbitrary point of the path and D^ = -^ and Ey — -jjf. The usage should 
be clear from the context. 

LEMMA 1. The tangent space to A at g G 9L consists of the symmetric tensor fields 
D such that 

(2.4) Di = 0, D</> + </>£> = 0. 

Now the approach to the critical point problem is to differentiate the functional 1(g) 
along a path of metrics and set If(0) = 0. So let g(t) be a path of metrics in A and set 

d&j I 
lr=o 

its tangent vector at g — g(0). We define two other tensor fields by 

D / = i(V/-A* + V I-D/-V*D / /) , 

Dkjl
h = VkD/ - VjDkl

h 

where V denotes the Levi-Civita connection of g(0) and we note that 

D<> - * 

Dh = ~-^ 
" dt 

ar?, i „ _ av 
D, 'kji 

r=0 IM> *•" dt 

where T^ and Rkjt denote the Christoffel symbols and curvature tensor of g(t). A key 
point in critical point problems such as this is the following lemma [4, 5]. 
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LEMMA 2. Let The a second order symmetric tensor field on M. Then JM T^Dij dV — 
Ofor all tensor fields satisfying (2.4) if and only if <\> and T commute when restricted to 
the contact subbundle. 

By the index of 1(g) (or of A(g) or other functional) at a critical point g = g(0), we 
mean the dimension, including infinity, of the space of tangents to paths through g for 
which /"(0) < 0. 

3. Proofs. To set the stage for the proof of Theorem 1 we review briefly the proof 
of the result in [5] that the critical points of 1(g) are the ^-contact metrics. Clearly it 
is enough to consider JMR + R* dV. R and R* were differentiated separately in [4], and 
hence we have 

4 [ R + R* dV I = f {-Rjl - 2ntil - Vi((j>klVk<j>ij) - R*jl}Dn dV. 
dt JM lr=o JM J 

Extensive computation using various properties of associated metrics, reduces the inte­
gral to 

(3.1). -An [ hJlDn 
JM J 

dV 
M 

Then from Lemma 2 and h£ = 0, the critical point condition becomes <\>h — h<\> — 0; but 
(f)h + h(j> = 0 and hence h = 0 as desired. 

The major effort of the proof of the present theorem is to regard the integral on the 
right hand side of (3.1) as the derivative of 1(g) at an arbitrary metric, differentiate again 
and evaluate at a critical point. 

Recall that h = \L$ or in coordinate form 

Also since Djih is the r-derivative of the Levi-Civita connection, we have 

jVi<ffk = V , - | ^ - D,M + DJ4fk, | V , e = Dji1. 

Therefore after some cancelation 

jHk = \{eVi(-I>m<j>mk) + Di'"ct>mkViZ-I>m4>miVk(i
i) 

Using the basic properties V^0 = 0 and (2.1) this becomes 

&k = -^VmtV/zym - D>k + \{himirk - D>mhm
k) 

dt 2 2 
Thus for the derivative of the integrand we have 

d (iJidSji\ _ d ( • kldgj 

^K'DjiViO" ~ \D\2 - \ = -^i4>m'DjlViD>m - \D\2 - -{D>mhml + ymlfl)Djl + 2hf'Ejh 
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Now evaluating at i = 0 we have h - 0 and the second derivative of 1(g) at t = 0 
becomes 

(3.2) /"(0) = / 2nC<j)m
lDjlViD

jm + 4rc|D|2 dV. 

Moreover when h = 0, V^D = £c£> + 2£></> or (frDV^D = <j)DL^D - 2D2. Thus from 
(3.2) we have the following proposition. 

PROPOSITION. At a critical metric 

/"(0) = 2nf tri<t>DLiD)dV. 

PROOF OF THEOREM 1. Let X\,..., X2n, £ be a local (/>-basis defined on a neighbor­
hood *Zi (/.<?. Xi , . . . ,X2n, £ is a n orthonormal basis with respect to g and X2/ = </>X2/_i) 
and note that the first vector field Xi may be any unit vector field on U orthogonal to 
£. Let / be a C°° function with compact support in 11 and define a path of metrics g(t) 
as follows. Make no change in g outside 11 and within U change g only in the planes 
spanned by Xi and X2 by the matrix 

CT a 
It is easy to check that g(t) 6 A and clearly the only non-zero components of D are 
D\2 — D21 = / . Denoting the first vector field in the </>-basis by X, we have 

cf>D(L^D)X = (tf)DX+fD[i,X\ - t&foX]. 

Similarly computing (j)D(L^D)(j)X and then taking inner products we have 

tv^DL^D) = 4/2g([£,X],</>X) = 4/2</r/(K,X],X) - -2/27?([[£,X],XJ). 

Therefore 
/ » = - 4 n / / 2 r / ( [ [ C , X ] , X ] ) ^ 

where X may be regarded as any unit vector field on U belonging to the contact sub-
bundle. Thus the proof reduces to finding unit vector fields belonging to the contact 
subbundle on Zl for which r/([[^,X],XJ) has either sign. 

To construct the desired vector fields, let (x\y\ z) be Darboux coordinates on U, i.e. 

n = \{dz - E?=1 ?<ti) on ÎZ, i = 2 | . SetX = F± + G(^ +yl | ) . ThenX belongs to 
the contact subbundle; computing r/([[^,X],XJ) we have 

,([[{.«.*]) _ - F g + 0 | . 

Thus the problem reduces to choosing F and G such that X is unit and such that G i£ —F^-
can have either sign. Now with respect to Darboux coordinates the last row (and column) 
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of the matrix of components of an associated metric g is (— j , . . . , — ̂ , 0 , . . . , 0, ^). Thus 
the requirement that X be unit becomes 

2 (y1)2 2 2 

l = g n G —G +2g\n+iFG + gn+\n+]F . 

Now choose two functions of (x\yl,z), to be denoted by 0, such that ^ is positive for 
one function and negative for the other and such that 

^ ]+2gln+l9 + gn+]n+{6
2>0. 

Let G be a solution of G2((gn - ^ ) + 2gln+{9 + gn+{n+]6
2) = 1 and set F = ÔG. Then 

X = F^r + G(^r + y11) is a unit vector field and G ^ - F ^ = G2 f can be chosen to 
have either sign. 

As an application of Theorem 1 we now prove Theorem 2. 

PROOF OF THEOREM 2. Suppose that go is a Sasakian metric and a local minimum of 
A(g) restricted to Si. Then there exists a neighborhood Zl of go £ Si on which A (go) < 
A(g). Since all associated metrics have the same volume element, JM Ro + In dV <] 
JMR + 2n dV for every g € *£/. On the other hand from Olszak's formula (2.3), 

W= -(R + R* +4rc(rc+l)) >R + 2n 

with equality if and only if the metric is Sasakian. Thus we have 

I(g0)= [ W0dV= [ R0 + 2ndV< [ R + 2ndV < [ WdV = I(g) 
JM J M JM JM 

for every g G 11, that is go is a local minimum for 1(g) contradicting Theorem 1. 

REMARK. Recently the second author in [10] considered the functional F(g) = 
JM J(R + R\)dV where R\ = R* + 2nRic(£)- For a 3-dimensional contact manifold 
F(g) = A(g). In general the critical point condition was shown in [10] to be simply 
V^h = 0. From (2.2), 

R + Ri = R + R* + 2n(2n-trh2) </? + 7?*+4rc2 

with equality if and only if h — 0. Thus as in the proof of Theorem 2, Theorem 1 yields 
the following result. 

THEOREM 3. The functional F(g) cannot have a local minimum at any K-contact 
metric. 
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