Noninvasive genetic census of greater one-horned rhinoceros *Rhinoceros unicornis* in Gorumara National Park, India: a pilot study for population estimation

Udayan Borthakur, Pranjal Kumar Das

Anjan Talukdar and Bibhab Kumar Talukdar

Abstract The greater one-horned rhinoceros *Rhinoceros unicornis* is a flagship species for conservation in protected areas in India and Nepal. In India the species is afforded the highest level of legal protection under Schedule I of the Wildlife (Protection) Act 1972. Although censuses of greater one-horned rhinoceros have been carried out for decades using the traditional total count method, no advanced scientific approach has been adopted for population estimation of the species in India or elsewhere. We optimized noninvasive genetic techniques for identification of greater one-horned rhinoceros from dung samples, and applied these to estimate the number of rhinoceros in Gorumara National Park, in West Bengal, India. Our results confirmed the presence of 43 individuals from 60 dung samples collected throughout the Park in 2011. We confirmed a male-to-female sex ratio of 3.8:1, based on analysis of DNA from dung samples, using a y-chromosome linked marker. Our results are in concordance with a census carried out by the West Bengal Forest Department that found 42 rhinoceros in the Park, with a male-to-female sex ratio of 3.5:1. Our study thus demonstrates the feasibility of using a noninvasive genetic approach for population estimation of greater one-horned rhinoceros in the wild.

Keywords Census, Gorumara National Park, microsatellite, molecular sexing, noninvasive genetics, *Rhinoceros unicornis*, total count

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S0030605314001161

Introduction

The greater one-horned rhinoceros *Rhinoceros unicornis* is a Schedule I species under India’s Wildlife (Protection) Act 1972, and is categorized as Vulnerable on the IUCN Red List (IUCN, 2013). The species was once distributed throughout the northern floodplains and the Himalayan foothills of the Indian subcontinent, between the Indo–Myanmar border in the east and Pakistan’s Sindhu river basin in the west (Rao, 1957; Laurie et al., 1983; Leader-Williams, 2013) but as a result of habitat destruction and poaching for its horn it is now confined to a few isolated patches in protected areas in India and Nepal (Laurie et al., 1983; Talukdar et al., 2008). The Indian population of greater one-horned rhinoceros accounts for >70% of the global population of the species (Talukdar et al., 2008) and is spread across seven protected areas: Kaziranga National Park, Orang National Park, Pobitora Wildlife Sanctuary and Manas National Park in the state of Assam, Gorumara National Park and Jaldapara National Park in the state of West Bengal, and Dudhwa National Park in the state of Uttar Pradesh.

Accurate estimation of population size is of paramount importance in the conservation and management of threatened species, to assess conservation needs and evaluate effects of conservation actions (Gese, 2001). Population monitoring of white rhinoceros *Ceratotherium simum* and black rhinoceros *Diceros bicornis* in Africa has been carried out using various techniques, including identification based on distinct body features (Conway & Goodman, 1989; Kiwia, 1989; Walpole et al., 2001; Patton et al., 2007), radio-tagging (Galli & Flamand, 1995), spoor (Alibhai et al., 2008) and camera-trapping (Stein et al., 2010), aerial counts from aircraft, using multiple observers (Brockett, 2002; Ngene et al., 2011), and counts at water holes, using photographic records (Cilliers, 1989). In Nepal, photographs of individual one-horned rhinoceros have been used to estimate the minimum population size in Chitwan National Park (Laurie, 1978; Dinerstein & Price, 1991). Rhinoceros populations have also been monitored by observers riding elephants, using a total block count method to identify individual rhinoceros based on features such as horn shape, skin folds and body marks (Subedi et al., 2013). In India the rhinoceros has been censused using a total count method, whereby rhinoceros are counted by observers riding elephants; multiple teams count the total number of individuals observed in assigned blocks, which are generally demarcated by physical boundaries such as rivers, streams or roads (Lahan & Sonowal, 1973). Unlike the block count method used in Nepal, the total count method adopted in India does not...
strictly employ individual identification based on distinct body features.

In recent years noninvasive genetic approaches have emerged as an alternative to invasive capture–mark–recapture methods, providing an opportunity to identify individuals without the need to capture, harm or disturb them (Taberlet et al., 1996, 1999; Kohl et al., 1999; Smith et al., 2006; Borthakur et al., 2013). There are a number of potential benefits to genetic tagging compared with physical tagging (Taberlet et al., 1999), including an increase in the number of records (yielding more accurate estimates), reduced stress and mortality, reduced capture bias caused by trap response, and a shorter sampling period to approximate closure better (Miller et al., 2005). The estimation of population size by means of noninvasive genetic sampling and capture–mark–recapture models is a complex multi-step process, which involves an appropriate sampling design (Lindberg & Rexstad, 2002; Boulanger et al., 2004), effective field techniques, a reliable protocol of individual identification (Paetkau, 2003), and adequate capture–mark–recapture modelling for population estimation (Mondol et al., 2009).

We conducted a genetic-tagging-based census of greater one-horned rhinoceros in Gorumara National Park. Our objective was to optimize protocols for genetic identification from dung samples so that this approach, with development of a robust sampling strategy, could be used for genetic-based estimation of the population size of the species in the wild across India.

Study area

The c. 80 km² Gorumara National Park lies in the floodplains of the Murti and Raidak rivers, in the state of West Bengal (Fig. 1). This region is part of the Eastern Himalayan submontane Terai belt and the Indo–Malayan ecozone. Gorumara was chosen as the study site because of its known small population of rhinoceros (42 individuals), with a male-to-female sex ratio of 3.5:1 (according to the March 2012 census conducted by West Bengal Forest Department using the total count method).

Methods

Technical details of the genetic analysis are provided as Supplementary Material.

Field survey and sample collection The field survey was undertaken during April 2011 by UB and PKD accompanied by the field staff of Gorumara Forest Department, to locate fresh samples of rhinoceros dung, preferably deposited no more than 24 hours prior to collection. Elephants were used throughout the survey for transportation in areas that could not be accessed by vehicles. Circa 15–20 g of dung from each sample was collected in plastic vials containing DMSO–EDTA–Tris salt saturated (DETs) buffer. The geographical coordinates of each sample were recorded using a global positioning system. We collected 60 samples of rhinoceros dung from Gorumara National Park during April 2011 (Fig. 1). We also extracted DNA from 10 reference tissue samples from dead rhinoceros, collected during 2008–2009 and preserved in 95% ethanol, for use in marker standardization. All samples were kept at a temperature of -20°C prior to DNA extraction.

DNA extraction DNA was extracted from dung samples using the guanidine isothiocyanate–silica-based protocol (Boom et al., 1990), with modifications (see Supplementary Material for full details). All DNA extractions were performed in a room dedicated for low-quality DNA work. DNA extractions from reference tissues and samples were performed using the DNeasy Blood & Tissue kit (QIAGEN, Hilden, Germany), following standard kit protocols.

Selection of polymorphic microsatellite markers and individual identification Seventeen microsatellite loci (Table 1), nine from greater one-horned rhinoceros (Zschokke et al., 2003) and eight from Sumatran rhinoceros Dicerorhinus sumatrensis (Scott et al., 2004), were first screened on 10 reference samples from greater

![Fig. 1 Sites where samples of greater one-horned rhinoceros Rinoceros unicornis dung were collected in Gorumara National Park, West Bengal.](https://doi.org/10.1017/S0030605314001161)
one-horned rhinoceros to determine the level of polymorphism. The selected polymorphic loci (Table 1) were used to genotype the samples of rhinoceros dung. We used a multiple tube approach (Taberlet et al., 1996), assigning quality indices to the genotype data, following Miquel et al. (2006) for genotyping quality control and assessment of genotyping error (see Supplementary Material for full details).

Table 1 Details of microsatellite markers screened on 10 reference samples of greater one-horned rhinoceros *Rhinoceros unicornis* to select a panel of polymorphic loci for identification of individual rhinoceros in Gorumara National Park, West Bengal (Fig. 1).

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Locus</th>
<th>No. of alleles</th>
<th>Allele range (bp)</th>
<th>% PCR success</th>
<th>Allele dropout</th>
<th>False alleles</th>
<th>Expected heterozygosity</th>
<th>Observed heterozygosity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SR54</td>
<td>1</td>
<td>184</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>2</td>
<td>SR63</td>
<td>4</td>
<td>205–219</td>
<td>100</td>
<td>0</td>
<td>0.62</td>
<td>0.5</td>
<td>0.5</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>3</td>
<td>SRIII A</td>
<td>5</td>
<td>100–116</td>
<td>100</td>
<td>0</td>
<td>0.63</td>
<td>1</td>
<td>1</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>4</td>
<td>SRIII B</td>
<td>5</td>
<td>123–131</td>
<td>100</td>
<td>0</td>
<td>0.72</td>
<td>0.8</td>
<td>0.8</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>5</td>
<td>SR191</td>
<td>1</td>
<td>178</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>6</td>
<td>SR261</td>
<td>1</td>
<td>171</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>7</td>
<td>SR74</td>
<td>2</td>
<td>150–162</td>
<td>100</td>
<td>0</td>
<td>0.46</td>
<td>0.7</td>
<td>0.7</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>8</td>
<td>SR281</td>
<td>4</td>
<td>216–236</td>
<td>100</td>
<td>0</td>
<td>0.72</td>
<td>0.8</td>
<td>0.8</td>
<td>Scott et al. (2004)</td>
</tr>
<tr>
<td>9</td>
<td>Rh1</td>
<td>3</td>
<td>148–154</td>
<td>100</td>
<td>0</td>
<td>0.65</td>
<td>0.8</td>
<td>0.8</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>10</td>
<td>Rh3</td>
<td>3</td>
<td>116–150</td>
<td>100</td>
<td>0</td>
<td>0.62</td>
<td>0.5</td>
<td>0.5</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>11</td>
<td>Rh4</td>
<td>4</td>
<td>89–101</td>
<td>100</td>
<td>0</td>
<td>0.74</td>
<td>0.7</td>
<td>0.7</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>12</td>
<td>Rh5</td>
<td>4</td>
<td>196–206</td>
<td>100</td>
<td>0</td>
<td>0.74</td>
<td>0.9</td>
<td>0.9</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>13</td>
<td>Rh6</td>
<td>2</td>
<td>120–122</td>
<td>100</td>
<td>0</td>
<td>0.38</td>
<td>0.4</td>
<td>0.4</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>14</td>
<td>Rh7</td>
<td>2</td>
<td>202–204</td>
<td>100</td>
<td>0</td>
<td>0.48</td>
<td>0.1</td>
<td>0.1</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>15</td>
<td>Rh9</td>
<td>2</td>
<td>150–174</td>
<td>100</td>
<td>0</td>
<td>0.13</td>
<td>0.1</td>
<td>0.1</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>16</td>
<td>Rh10</td>
<td>5</td>
<td>138–148</td>
<td>100</td>
<td>0</td>
<td>0.58</td>
<td>0.7</td>
<td>0.7</td>
<td>Zschokke et al. (2003)</td>
</tr>
<tr>
<td>17</td>
<td>Rh11</td>
<td>4</td>
<td>143–155</td>
<td>100</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>Zschokke et al. (2003)</td>
</tr>
</tbody>
</table>

PCD7 success rate was 100% for all loci; no allelic dropout or false alleles were observed for any of the loci in reference samples. Three of the loci, SR63 (*χ² = 13.16, df = 6, P < 0.05*), SRIII A (*χ² = 30.0, df = 10, P < 0.001*) and Rh7 (*χ² = 5.284, df = 1, P < 0.05*), were found to deviate significantly from Hardy–Weinberg equilibrium, with no linkage disequilibrium. On the basis of the three criteria described in the Methods, 12 polymorphic loci were selected for genotyping the rhinoceros dung samples. The cumulative values of probability of identity and probability of identity among siblings of these 12 loci were found to be as low as 2.8 · 10⁻⁸ and 4.2 · 10⁻¹⁸, respectively, which indicates the high resolving power of these loci in the identification of individual rhinoceros. Figure 2 is a graphical representation of the cumulative values of probability of identity and probability of identity among siblings for all 17 loci, in increasing order of single locus value, for the 10 reference samples.

In accordance with quality index criteria, genotype data for 56 dung samples were retained for identification of unique multilocus genotypes and determination of the number of individual rhinoceros. The number of alleles, allele size range, percentage PCR success, allelic dropout, false alleles, and expected and observed heterozygosity for the 12 microsatellite loci in the 56 samples are presented in Table 2. Locus Rh1 was found to be monomorphic in the Gorumara population. The observed heterozygosity was 0–0.66 across the 12 loci, and mean expected and observed values were 0.35 and 0.36, respectively. PCR success was 72–90% across the 12 loci, and an overall genotyping error rate of 2% was observed. The cumulative probability of identity and probability of identity among siblings were 1.18 · 10⁻⁴ and 1.17 · 10⁻⁵, respectively. Figure 3 is a graphical...
representation of the cumulative values of probability of identity and probability of identity among siblings for the 12 polymorphic loci, in increasing order of single locus value, for the 56 dung samples. Significant deviation from Hardy–Weinberg equilibrium was observed in six loci: Rh10 ($\chi^2 = 7.902$, df = 3, $P < 0.05$), Rh9 ($\chi^2 = 8.074$, df = 1, $P < 0.01$), Rh11 ($\chi^2 = 19.572$, df = 6, $P < 0.01$), Rh5 ($\chi^2 = 43.976$, df = 3, $P < 0.001$), Rh6 ($\chi^2 = 10.979$, df = 1, $P < 0.001$) and SR281 ($\chi^2 = 18.289$, df = 1, $P < 0.001$). No linkage disequilibrium was observed in any of the loci in the 56 dung samples.

Individual identity analysis yielded 43 unique multilocus genotypes in the 56 samples, confirming the presence of 43 individual rhinoceros in Gorumara during the sampling period. Identification of unique multilocus genotypes based on zero and single locus mismatch yielded the same number of individuals. Sex identification analysis indicated there were 34 male and nine female rhinoceros (a male-to-female sex ratio of 3.8:1).

Discussion

We used noninvasive genetic techniques to identify individual greater one-horned rhinoceros in Gorumara National Park. The 12 microsatellite loci selected indicated low probability of identity (1.18×10^{-4}) and probability of identity among siblings of 1.17×10^{-2} for the dung samples collected. These values are comparable to those found in other studies (Vidya et al., 2007; Flagstad et al., 2012). The cut-off number of loci for individual identification was a trade-off between a high probability of identity and increasing risk of introducing higher genotyping error by additional loci, as suggested in other studies (Borthakur et al., 2011; Flagstad et al., 2012).

Quality index criteria allowed 93% of samples to be retained for final analysis, which is a higher proportion than in other studies (e.g. Flagstad et al., 2012). Using a quality index cut-off value of 0.625 retained 68% of samples of elephant dung stored in ethanol; Borthakur et al. (2011), using a quality index cut-off value of 0.667, retained only 50% of...
tiger dung samples stored in silica gel. The mean PCR amplification success was 82%, which is comparable to that reported for other species (e.g. 95% for elephants; Fernando et al., 2003). Vidya & Sukumar (2005) also reported high overall microsatellite PCR amplification success (95.6%) with dung samples, with varied success across loci, as observed in our study.

In 2012 the West Bengal Forest Department counted 42 rhinoceroses in Gorumara, with a male-to-female sex ratio of 3.5:1 (Department of Environment, Government of West Bengal). Our results are similar (43 and 3.8:1, respectively). The genetic-based total count is practical and cost effective for small populations such as in Gorumara, where obtaining samples from every rhinoceros is possible. A comparative analysis of the costs involved in the genetic-based total count and traditional total count methods is not within the scope of this study, however, because data for the latter are unavailable. Generating individual genetic profiles for all rhinoceroses within a protected area provides scope for long-term population monitoring, yielding information on the dispersal of individuals and other parameters required to study the dynamics of a natural population. For large populations, however, such as that of Assam’s Kaziranga National Park (>2,300 rhinoceroses according to a total count census conducted by Assam Forest Department in 2015), sampling strategies need to be developed further to facilitate the use of genetic tools for population monitoring.

Genetic monitoring can provide information on various aspects of genetic diversity, but for regular monitoring purposes the traditional total count method is easier for forest departments to implement. This is primarily because of the need for technical expertise and laboratory facilities rather than because of the costs involved. We recommend a multidisciplinary approach to monitoring populations of greater one-horned rhinoceros in India, based on a combination of traditional and advanced ecological and genetic monitoring techniques, to provide the necessary data for conservation management of the species in situ.

UB conceived the study design, carried out the field work and data analysis, wrote the manuscript and provided guidance to PKD. PKD took part in the field work and carried out the laboratory work. AT participated in the collection of reference tissue samples. BKT contributed towards research planning and collection of reference samples.

Acknowledgements

We thank the West Bengal Forest Department for providing the necessary permission to undertake this work. We thank the Conservation of Forests, Wildlife (north) and the Divisional Forest Officer, Wildlife Division II, Jalpaiguri, West Bengal, for providing the necessary support in undertaking the field work. We thank Mr Bimal Debnath, Range Officer, Gorumara, for his support in the field, and guidance during sample collection in Gorumara National Park. We thank Drs Terri Roth, Monica Stoops and Douglas Winget of the Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, USA, for sharing their primer sequences for rhinoceros sex identification. We thank Ms Rumi Dev Barman and Mr Dipul Saikia of Wildlife Genetics Laboratory, Aaranyak, for their support in the laboratory, and we thank all the officials of Aaranyak for their active support during this work. We thank our donors Taiwan Forestry Bureau and the Asian Rhino Project, Australia, for their financial support of this work.

References

Genetic census: greater one-horned rhino 493

https://doi.org/10.1017/S0030605314001161 Published online by Cambridge University Press

Biographical sketches

Udayan Borthakur uses noninvasive sampling techniques for genetic monitoring of threatened species, including tigers and greater one-horned rhinoceroses in India, Javan and Sumatran rhinoceroses in Indonesia, and snow leopards and white-helied herons in Bhutan. He is a member of the IUCN SSC Asian Rhino Specialist Group. Pranjal Kumar Das is researching population genetics of the greater one-horned rhinoceros in India. He has also contributed to ongoing research on noninvasive genetic monitoring of threatened species in India and Bhutan. Anjan Talukdar is a wildlife veterinarian. He has been involved in the rehabilitation and translocation of wild one-horned rhinoceroses in Kaziranga National Park, and has carried out research on the sedative and analgesic effects of romfilde in Asian elephants. Bibhab Kumar Talukdar is focused on research and conservation of the three rhinoceros species in South and South-east Asia. He is Chair of IUCN SSC Asian Rhino Specialist Group.

https://doi.org/10.1017/S0030605314001161 Published online by Cambridge University Press