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Abstract

We consider the incidence semirings of graphs and prove that every incidence semiring has convenient
visible bases for its right ideals and for its left ideals, and that these visible bases can be used to determine
the weights of all right ideals that have maximum weight and all left ideals that have maximum weight.
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1. Introduction

Visible bases for ideals have been considered in [4, 13], where more explanations of
this concept and its applications are given. In particular, visible bases are convenient
for determining the weights of ideals (see [2, 13]). It was shown in [4] that every
structural matrix semiring has a nice visible basis for ideals.

The present paper is devoted to the more general construction of incidence
semirings of graphs. We consider much larger classes of all right ideals and all left
ideals in this more general construction. It is important to treat these larger classes,
since they may lead to ideals with better properties essential for applications. Finally,
the present paper handles the incidence semirings of graphs over a larger category of
coefficients than that considered for structural matrix semirings in [4].

Our main theorem establishes that every incidence semiring has convenient visible
bases for its right ideals and its left ideals, and that these visible bases can be used to
determine the weights of all right ideals that have maximum weight and all left ideals
that have maximum weight in the incidence semiring of graphs (see Theorem 3.2).
Complete definitions of these terms are given in the next section.
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2. Preliminaries

We use standard terminology and refer readers to the monographs [5, 8, 9, 14] and
research articles [6, 7, 10, 12] for more information. Throughout, the words ‘graph’
and ‘digraph’ mean a finite directed graph without multiple parallel edges but possibly
with loops, and G = (V, E) is a graph with the set V of vertices and the set E of edges.

Following [2, 4], we do not assume that all semirings have identity elements. This
allows us to view every ideal of a semiring as a semiring and consider the incidence
semirings for larger classes of graphs. Let R be a semiring. The incidence semiring
of G over R is denoted by IG(R) and is defined as the set consisting of zero 0 and all
finite sums

∑n
i=1 ri(gi, hi), where n ≥ 1, ri ∈ R, (gi, hi) ∈ E, endowed with the standard

addition and multiplication defined by the distributive law and the rule

(g1, h1) · (g2, h2) =

(g1, h2) if h1 = g2 and (g1, h2) ∈ E,

0 otherwise,
(2.1)

for all (g1, h1), (g2, h2) ∈ E. Empty sums are assumed to be equal to zero. Incidence
semirings are a natural generalisation of incidence rings (see [8, Section 3.15], [11]
and [14]).

The graph G is said to be balanced if, for all g1, g2, g3, g4 ∈ V with (g1, g2), (g2, g3),
(g3, g4), (g1, g4) ∈ E, the following equivalence holds:

(g1, g3) ∈ E⇔ (g2, g4) ∈ E.

It is easy to verify that the multiplication in IG(R) is associative if and only if G is
balanced (see [14]). Therefore IG(R) is a semiring if and only if G is balanced.

The weight wt(r) of an element r =
∑n

i=1 ri(gi, hi) ∈ IG(R) is the number of nonzero
coefficients ri in the sum. The weight of a subset S of IG(R) is defined as the minimum
weight of a nonzero element in S . We refer to [8, 12, 13] for more details. Let N be
the set of all positive integers, and let N0 = N ∪{0}.

Here we deal with right and left ideals in the semiring IG(R). Right ideals and left
ideals were considered, for example, in [1, 3]. Let us recall the definitions. Suppose
that T is a subset of IG(R). An ideal generated by T in IG(R) is the set

id(T ) =

{ k∑
i=1

`igiri

∣∣∣∣∣ k ∈ N0, gi ∈ T, `i, ri ∈ IG(R) ∪ N
}
,

where it is assumed that the identity element 1 of N acts as an identity on the whole
IG(R) too. A right ideal generated by T is the set

idr(T ) =

{ k∑
i=1

giri

∣∣∣∣∣ k ∈ N0, gi ∈ T, ri ∈ IG(R) ∪ N
}
, (2.2)

and a left ideal generated by T is the set

id`(T ) =

{ k∑
i=1

`igi

∣∣∣∣∣ k ∈ N0, gi ∈ T, `i ∈ IG(R) ∪ N
}
.

The set T is called a generating set.
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3. Main results

The following definition introduces the concept of a visible basis for right ideals
and left ideals in semirings. It is an exact analogue of the corresponding definition for
ideals in semirings, given in [4] by analogy to a similar ring notion considered in [13].

D 3.1. A subset S of a semiring R is called a visible basis of ideals
(respectively, right ideals, left ideals) if, for every subset T of S , the weight of the
ideal id(T ) (respectively, right ideal idr(T ), left ideal id`(T )) generated by T in R is
equal to the weight of T .

Let g be a vertex on V . We use the following notation for two sets of vertices:

In(g) = {h ∈ V | (h, g) ∈ E},

Out(g) = {h ∈ V | (g, h) ∈ E}.

Define two sets of edges of the graph G = (V, E) by

Er = {(g, h) ∈ E | Out(g) ∩ Out(h) = ∅}, (3.1)

E` = {(g, h) ∈ E | In(g) ∩ In(h) = ∅}.

For any subset T of Out(g), we put

∆(g, T ) = {h ∈ In(g) | Out(h) ∩ Out(g) = T }, (3.2)

d(g, T ) =
∑

h∈∆(g,T )

(h, g). (3.3)

LetM be the maximum of the cardinalities |∆(g, T )|, for all g ∈G, T ⊆ Out(g). Denote
byZr and Br the sets defined by

Zr =

{ ∑
(g,h)∈Er

r(g,h)(g, h)
∣∣∣∣∣ 0 , r(g,h) ∈ R

}
, (3.4)

Br = {r · d(g, T ) | 0 , r ∈ R, g ∈ V, T ⊆ Out(g), |∆(g, T )| =M}.

Likewise, for any subset T of In(g), let

Θ(g, T ) = {h ∈ Out(g) | In(h) ∩ In(g) = T },

e(g, T ) =
∑

h∈Θ(g,T )

(h, g).

Let N be the maximum of the cardinalities |Θ(g, T )|, for all g ∈G, T ⊆ In(g). Denote
byZ` and B` the sets defined by

Z` =

{ ∑
(g,h)∈E`

r(g,h)(g, h)
∣∣∣∣∣ 0 , r(g,h) ∈ R

}
,

B` = {r · e(g, T ) | 0 , r ∈ R, g ∈ V, T ⊆ In(g), |Θ(g, T )| =N}. (3.5)
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T 3.2. Let G be a balanced graph, and let R be a semiring with identity element.
Then the following conditions hold.

(i) The set Br (respectively, B`) is a visible basis for right (respectively, left) ideals
in IG(R).

(ii) For each right (respectively, left) ideal J that has a maximum weight among all
right (respectively, left) ideals in IG(R), there exists an element x in J ∩ (Br ∪Zr)
(respectively, J ∩ (B` ∪Z`)) such that wt(x) = wt(J).

The following example shows that M may be different from the maximum
outdegree and the maximum indegree of the graph.

E 3.3. Let G = (V, E) be the graph with the set V = {g, h, v1, v2, v3, v4, u1,
u2, u3, u4} of vertices and the set E = {(g, h), (v1, g), (v2, g), (v3, g), (v4, g), (u1, g),
(u2, g), (u3, g), (u4, g), (v1, h), (v2, h), (v3, h), (v4, h)} of edges. Then the set Out(g)
has only two subsets ∅ and {g}. If T = ∅, then ∆(g, T ) = {u1, u2, u3, u4}. If T = {g},
then ∆(g, T ) = {v1, v2, v3, v4}. In both of these cases |∆(g, T )| = 4. ThereforeM = 4.
However, the maximum indegree of a vertex of G is equal to 8, and the maximum
outdegree of a vertex of G is equal to 1.

4. Proofs

Let us begin with a few lemmas required for the proof of the main theorem. For
clarity, we include complete hypotheses in all lemmas.

L 4.1. Let G = (V, E) be a balanced graph, R a semiring with identity element,
g ∈ V, and let T ⊆ Out(g). If the product d(g, T ) · r(g1, g2) is nonzero for some r ∈ R,
(g1, g2) ∈ E, then it belongs to Br and has the same weight as d(g, T ).

P. Take any nonzero product x = d(g, T ) · r(g1, g2), where 0 , r ∈ R and
(g1, g2) ∈ E. Clearly, (2.1) and (3.3) imply that g1 = g. Hence g2 ∈ Out(g). Since
x , 0, there exists v ∈ ∆(g, T ) such that (v, g)(g, g2) , 0. Hence g2 ∈ Out(v) by (2.1).
Thus g2 ∈ Out(v) ∩ Out(g) = T . By (3.2),

g2 ∈ Out(v) for all v ∈ ∆(g, T ). (4.1)

Therefore we can rewrite x as

x = r
∑

v∈∆(g,T )

(v, g) · (g1, g2) = r
∑

v∈∆(g,T )

(v, g2), (4.2)

where all (v, g2) ∈ E.
Denote by T2 the set of all elements v ∈ Out(g2) such that x · (g2, v) , 0. We claim

that x = r
∑

v∈∆(g2,T2)(v, g2) ∈ Br. It suffices to verify that ∆(g, T ) = ∆(g2, T2).
Let us first prove the inclusion ∆(g, T ) ⊆ ∆(g2, T2). Choose and fix any element w

in ∆(g, T ). By (3.2), we get w ∈ In(g) and Out(w) ∩ Out(g) = T . In view of (4.1), we
get w ∈ In(g2). Therefore, in order to show that w ∈ ∆(g2, T2) it remains to prove that
Out(w) ∩ Out(g2) = T2.
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Pick any v ∈ Out(w) ∩ Out(g2). We have (w, v), (g2, v) ∈ E. Given that w ∈ ∆(g, T ),
we also have (w, g2) ∈ E by (4.1). Clearly, (w, g2), (g2, v), (w, v) ∈ E imply that
(w, g2)(g2, v) = (w, v) ∈ ID(R). Hence x · (g2, v) , 0 by (4.2). This means that v ∈ T2.
Therefore Out(w) ∩ Out(g2) ⊆ T2.

Now choose any v ∈ T2. Then we have v ∈ Out(g2) and x · (g2, v) , 0. It
follows from (4.2) that (h, g2)(g2, v) , 0, for some h ∈ ∆(g, T ). Hence v ∈ Out(h).
It follows from (4.2) that v ∈ Out(g). Therefore v ∈ Out(g) ∩ Out(h) = T . Since
w ∈ ∆(g, T ), by (3.2) we get v ∈ Out(w). Thus v ∈ Out(w) ∩ Out(g2); whence Out(w) ∩
Out(g2) = T2. This completes the proof of inclusion ∆(g, T ) ⊆ ∆(g2, T2).

Now the reversed inclusion ∆(g, T ) ⊇ ∆(g2, T2) follows immediately from the
maximality of |∆(g, T )| =M. Thus, we get ∆(g, T ) = ∆(g2, T2). �

L 4.2. Let G = (V, E) be a balanced graph, R a semiring, g ∈ V, and let T1, T2 ⊆

Out(g). If T1 , T2, then the sets ∆(g, T1) and ∆(g, T1) are disjoint.

P. Suppose to the contrary that there exists a vertex v ∈ ∆(g, T1) ∩ ∆(g, T1). Then
it follows from v ∈ ∆(g, T1) and (3.2) that Out(v) ∩ Out(g) = T1. Similarly, v ∈ ∆(g, T2)
and (3.2) imply that Out(v) ∩ Out(g) = T2. This contradicts T1 , T2 and completes the
proof. �

L 4.3. Let G = (V, E) be a balanced graph, R a semiring with identity element,
and let J be the right ideal generated in IG(R) by d(g, T ), where g ∈ V and T ⊆ Out(v).
Then the weight of J is equal to wt(J) = wt(d(g, T )) = |∆(g, T )|.

P. The equality wt(d(g, T )) = |∆(g, T )| follows from (3.3). Therefore it remains to
prove that wt(J) = wt(d(g, T )).

If d(g, T ) = 0, then ∆(g, T ) = ∅ and J = 0; whence the equality holds true. Further,
we assume that d(g, T ) , 0 and ∆(g, T ) , ∅.

Since d(g, T ) ∈ J, we get wt(J) ≤ wt(d(g, T )). To prove the reversed inequality, pick
a nonzero element x in J. It suffices to verify that wt(x) ≥ wt(d(g, T )).

By (2.2), x can be written as

x = k · d(g, T ) +

n∑
i=1

d(g, T ) · ri(gi, hi), (4.3)

where k, n ∈ N0, 0 , ri ∈ R, (gi, hi) ∈ E. It follows from (3.3) that d(g, T ) · ri(gi, hi) = 0
whenever gi , g. We may assume that only nonzero summands have been included in
(4.3), so that all gi are equal to g and x is recorded as

x = k · d(g, T ) +

n∑
i=1

d(g, T ) · ri(g, hi). (4.4)

If hi < T , then it follows from (2.1), (3.5) and (3.3) that d(g, T ) · (g, hi) = 0. Since it
has been assumed that the sum (4.4) contains only nonzero summands, we get hi ∈ T
for all i = 1, . . . , n.
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If hi = g, then it follows that d(g, T ) · ri(g, hi) = rid(g, T ). We can combine all such
terms with k · d(g, T ) in (4.4) and rewrite x as

x = r · d(g, T ) +

n∑
i=1

d(g, T ) · ri(g, hi), (4.5)

where r ∈ R and g , hi ∈ T , for all i = 1, . . . , n. Hence it follows that if r , 0, then we
get wt(x) ≥ wt(r · d(g, T )) = wt(d(g, T )), as required.

It remains to consider the case where r = 0. Substituting (3.3) in (4.5), we can
rewrite x as

x =

n∑
i=1

∑
h∈∆(g,T )

(h, g) · ri(g, hi),

=

n∑
i=1

∑
h∈∆(g,T )

ri(h, hi). (4.6)

Since x , 0, we get n > 0. We may assume that all summands in (4.6) with hi1 = hi2
have been combined. This means that hi1 , hi2 for any 1 ≤ i1 < i2 ≤ n. We may
also assume that only nonzero summands have been recorded in (4.6). In particular,
R − 1 , 0. Hence it follows that all edges included in the sum

∑
h∈∆(g,T ) r1(h, h1) in

(4.6) are different from all edges that occur in all remaining terms. Therefore we get
wt(x) ≥ wt(d(g, T ) · r1(g, h1)) = wt(d(g, T )). This completes the proof. �

It is clear that the graph (V, Zr) is a subgraph of G = (V, E) and I(V,Zr)(R) is a
subsemiring of IG(R).

L 4.4. Let G = (V, E) be a balanced graph, R a semiring with identity element,
and let y ∈ Zr. Then the weight of the right ideal idr(y) is equal to |Er |.

P. Take a nonzero element x that has the minimum weight among all nonzero
elements in the right ideal idr(y). Then wt(x) = wt(idr(y)) = |Er | by (3.4). It follows
from (2.2) that x = ky + yr for some k ∈ N0, r ∈ IG(R). By the definition of IG(R),
there exist n ≥ 1, ri ∈ R, (gi, hi) ∈ E such that r =

∑n
i=1 ri(gi, hi). By (3.4), we have

y =
∑

(g,h)∈Er
r(g,h)(g, h) for some 0 , r(g,h) ∈ R. Therefore we can rewrite x as

x = ky +
∑

(g,h)∈Er

n∑
i=1

r(g,h)ri(g, h)(gi, hi).

By (3.1), we get Out(g) ∩ Out(h) = ∅ for all (g, h) ∈ Er. Hence, for each (g, h) ∈ Er

and every 1 ≤ i ≤ n, either gi , h or hi < Out(h). In any of these cases we get
(g, h)(gi, hi) = 0. Therefore x = ky, and so wt(x) = wt(y) = |Er |, as required. �

P  T 3.2. The case of left ideals is dual to that of right ideals. This is
why we only need to prove the main theorem for right ideals.
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First, let us prove condition (i). Take any subset T of Br and consider the right
ideal idr(T ) generated by T in IG(R). Since the weight of idr(T ) does not exceed the
weight of any nonzero element in idr(T ), it suffices to verify that Br ∩ idr(T ) contains
an element of weight equal to wt(idr(T )).

Choose a nonzero element w of minimum weight among all elements in idr(T ).
Then wt(w) = wt(idr(T )). It follows from (2.2) that w can be written as

w =

k∑
i=1

tizi,

for some k ≥ 0, ti ∈ T , zi ∈ IG(R), because R is a semiring with identity element. Since
every zi is equal to a sum of some edges from E with coefficients in R, we can rewrite
w in the form

w =

k∑
i=1

ki∑
j=1

ri jti(gi j, hi j), (4.7)

where ki ≥ 0, ri j ∈ R, (gi j, hi j) ∈ E. Denote by S the set of all nonzero products
ri jti(gi j, hi j) in (4.7). Clearly, S ⊆ idr(T ); whence idr(T ∪ S ) = idr(T ). Lemma 4.1
shows that S ⊆ Br and that the weight of every nonzero element ri jti(gi j, hi j) is
equal to the weight of ti ∈ T . Therefore it is enough to prove that the weight of
idr(S ∪ T ) = idr(T ) is equal to the weight of an element in (S ∪ T ) ∩ idr(S ∪ T ). To
simplify notation we may replace T by S ∪ T and assume that from the very beginning
every product ri jti(gi j, hi j) in (4.7) belongs to T . This means that (4.7) simplifies to

w =

k∑
i=1

ti. (4.8)

Since ti ∈ Br, we get ti = rid(gi, Ti) ∈ Br for some 0 , ri ∈ R, gi ∈ V , Ti ⊆ Out(gi),
|∆(gi, Ti)| =M. Substituting these expressions for the elements ti in (4.8), by (3.3)

w =

k∑
i=1

rid(gi, Ti) =

k∑
i=1

∑
hi∈∆(gi,Ti)

ri(hi, gi). (4.9)

We claim that the weight of w is equal to the sum of the weights of all the elements
d(gi, Ti) in (4.9). Suppose that gi1 = gi2 for some i1 , i2. Lemma 4.2 tells us that the
sets ∆(gi1 , Ti1 ) and ∆(gi2 , Ti2 ) are disjoint, and so

wt(ri1 d(gi1 , Ti1 ) + ri2 d(gi2 , Ti2 )) = wt(ri1 d(gi1 , Ti1 )) + wt(ri2 d(gi2 , Ti2 )). (4.10)

On the other hand, if gi1 , gi2 for some i1 , i2, then it is clear that all edges (hi1 , gi1 )
that occur in d(gi1 , Ti1 ) are different from all edges (hi2 , gi2 ) occurring in d(gi2 , Ti2 ).
Therefore (4.10) holds true again.

It follows from (4.10) that wt(w) =
∑k

i=1 wt(rid(gi, Ti)) =
∑k

i=1 wt(ti). Therefore
wt(w) ≥ wt(t1). The minimality of the weight of w implies that wt(w) = wt(t1). This
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means that the set Br is a visible basis for right ideals in IG(R), and so condition (i)
holds.

Second, let us prove condition (ii). Consider a right ideal J that has a maximum
weight among all right ideals in IG(R). Pick an element y of minimum weight in J, so
that wt(y) = wt(J). Since y ∈ IG(R), it can be recorded in the form y =

∑n
i=1 yi(gi, hi),

for some 0 , yi ∈ R, gi, hi ∈ V . Consider two possible cases.

Case 1. y(u, v) = 0 for all (u, v) ∈ E. Since (V, Zr) is a subgraph of G = (V, E), we see
that in this case (2.1) and (3.1) imply that y ∈ I(V,Er)(R). Hence wt(y) ≤ |Er |. Lemma 4.4
and the maximality of the weight of J show that wt(y) = |Er |. Hence (3.4) yields that
y ∈ Zr. Thus y ∈ J ∩Zr, and so we are done in this case.

Case 2. There exists (u, v) ∈ E such that y(u, v) , 0. Then (gi, hi)(u, v) , 0 for some
0 ≤ i ≤ n. Without loss of generality we may assume that the elements (gi, hi) have
been ordered so that (gi, hi)(u, v) , 0 for i = 0, . . . , m and (gi, hi)(u, v) = 0 for i = m +

1, . . . , n, where m ∈ N0. By (2.1), we get hi = u and (gi, v) ∈ E, for all i = 0, . . . , m.
Putting z = y(u, v), by (2.1),

z =

m∑
i=1

yi(gi, v). (4.11)

Clearly, wt(z) = m and wt(y) = n. Since z ∈ J, the minimality of the weight of y implies
that m = n = wt(J). Further, we may also assume that the elements g1, . . . , gm in (4.11)
have been ordered so that

|Out(g1) ∩ Out(v)| ≤ |Out(g2) ∩ Out(v)| ≤ · · · ≤ |Out(gm) ∩ Out(v)|.

Suppose that there exist w ∈ (Out(g2) ∩ Out(v)) \ (Out(g1) ∩ Out(v)). Then
(g1, v)(v, w) = 0 and (g2, v)(v, w) = (g2, w) , 0. Hence wt(z(v, w)) < wt(z) = wt(y).
Since z(v, w) ∈ J, this contradicts the minimality of the weight of y in J, and shows
that Out(g2) ∩ Out(v) = Out(g1) ∩ Out(v). Likewise,

|Out(g1) ∩ Out(v)| = |Out(g2) ∩ Out(v)| = · · · = |Out(gm) ∩ Out(v)|.

Letting T = Out(g1) ∩ Out(v), by (3.2) we get g1, . . . , gm ∈ ∆(v, T ). Lemma 4.3
shows that wt(idr(d(v, T ))) = |∆(v, T )| ≥ m = wt(J). It follows from the maximality of
the weight of J that m = |∆(v, T )|. Hence {g1, . . . , gm} = ∆(v, T ), and so z = d(v, T ).
Thus, in this case the element z belongs to J ∩ Br and satisfies wt(z) = wt(J). We see
that in both cases condition (ii) holds true. This completes the proof. �
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