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The aim of this work is to better understand fluid displacement mechanisms at
the pore scale in relation to capillary-filling rules. Using specifically designed
micro-models we investigate the role of pore body shape on fluid displacement during
drainage and imbibition via quasi-static and spontaneous experiments at ambient
conditions. The experimental results are directly compared to lattice Boltzmann (LB)
simulations. The critical pore-filling pressures for the quasi-static experiments agree
well with those predicted by the Young–Laplace equation and follow the expected
filling events. However, the spontaneous imbibition experimental results differ from
those predicted by the Young–Laplace equation; instead of entering the narrowest
available downstream throat the wetting phase enters an adjacent throat first. Thus,
pore geometry plays a vital role as it becomes the main deciding factor in the
displacement pathways. Current pore network models used to predict displacement
at the field scale may need to be revised as they currently use the filling rules
proposed by Lenormand et al. (J. Fluid Mech., vol. 135, 1983, pp. 337–353). Energy
balance arguments are particularly insightful in understanding the aspects affecting
capillary-filling rules. Moreover, simulation results on spontaneous imbibition, in
excellent agreement with theoretical predictions, reveal that the capillary number
itself is not sufficient to characterise the two phase flow. The Ohnesorge number,
which gives the relative importance of viscous forces over inertial and capillary
forces, is required to fully describe the fluid flow, along with the viscosity ratio.

Key words: capillary flows, interfacial flows (free surface), porous media

1. Introduction
Understanding the fundamentals of fluid displacement processes in porous media

is essential for multiple applications, from fluid uptake in diapers, humidity and
fluid uptake in proton exchange membranes to carbon sequestration and enhanced
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oil recovery. This involves understanding the dynamics of drainage and imbibition,
which however is often hard to unravel due to the complexity of the porous medium
in terms of pore geometry, surface roughness and wetting properties. Attempts to
simplify the problem, in order to determine the fluid displacement pathways and
the associated fluid distributions, have been carried out with pore network models
(Blunt et al. 2002, 2013). Pore network models decompose the porous medium into
an ensemble of geometric shapes and, based on the pioneering work of Lenormand,
Zarcone & Sarr (1983), predict the fluid displacement at the field scale in a sequential
manner. These models have been successful especially for the drainage case, but do
not work so well for the imbibition case. Our aim in this paper is to demonstrate the
importance of the pore geometry in determining the displacement pathways, especially
for spontaneous imbibition, by studying the displacement dynamics in well-defined
single capillaries and pore junctions.

A significant amount of work has been carried out on the subject of imbibition or
capillary filling. A fluid penetrates a hydrophilic capillary due to the Laplace pressure
across the fluid–fluid interface, or equivalently due to the decrease in the free energy
of the system as the hydrophilic liquid wets the walls of the capillary. The system
uses the energy liberated from wetting the walls to drive the fluid inside the capillary.
Lucas (1918) and Washburn (1921) gave the first account of this phenomenon, but
considered only the regime when all influences apart from the driving force and the
viscous drag cease to exist. Still, their predictions could describe the experimentally
observed time dependency of the filled length of the penetrating fluid, i.e. l∼ sqrt(t).
Several authors have further progressed the subject by considering effects not taken
into account by Lucas and Washburn such as inertial (Quéré 1997; Diotallevi et al.
2009) and gravitational effects (Raiskinmäki et al. 2002), deviations from a Poiseuille
velocity profile at the inlet of the capillary or at the interface (Levine et al. 1980;
Dimitrov, Milchev & Binder 2007; Diotallevi et al. 2009) and variations of the
dynamic contact angle (Quéré 1997; Pooley, Kusumaatmaja & Yeomans 2008). The
effect of the solid surfaces on the imbibition process, whether this involves the
roughness (Stukan et al. 2010) or patterned surfaces (Kusumaatmaja et al. 2008;
Mognetti & Yeomans 2009) was also investigated. Finally, as the Lucas–Washburn
regime is the asymptotic limit for long times, extensive work was devoted on the
initial stages of capillary filling (Siegel 1961; Petrash, Nelson & Otto 1963; Dreyer,
Delgado & Path 1994; Ichikawa & Satoda 1994; Quéré 1997; Zhmud, Tiberg &
Hallstensson 2000; Zacharoudiou & Boek 2016).

In order to unravel the fundamentals of fluid displacement processes at the pore
scale, experimental research with micro-models has been on-going for the past several
decades. This has progressed considerably, from bead packs to complex networks
representing rock thin sections (Chatenever & Calhoun Jr 1952; Lenormand et al.
1983; Hornbrook, Castanier & Pettit 1991; Giordano & Cheng 2001; Bico & Quéré
2003; Kavehpour, Ovryn & McKinley 2003; Rangel-German & Kovscek 2006; Kumar
Gunda et al. 2011; Karadimitriou & Hassanizadeh 2012). Of particular interest are the
displacement mechanisms controlling both primary drainage and imbibition processes
(Lenormand et al. 1983; Yu & Wardlaw 1986; Lenormand 1990; Morrow & Mason
2001; Chang et al. 2009), especially with regards to capillary trapping during carbon
sequestration (Chalbaud et al. 2007; Taku, Jessen & Orr 2007; Saadatpoor, Bryant &
Sepehrnoori 2011; Tokunaga et al. 2013).

Lenormand et al. (1983) investigated these fluid displacement mechanisms in
resin etched networks of straight throats varying in width, with multiple menisci
displacement processes identified. In the case of two immiscible fluids (oil–air),
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FIGURE 1. Schematic drainage/imbibition capillary pressure curve. During primary
drainage the capillary pressure Pc systematically increases with increasing non-wetting
phase saturation to connate water saturation (SWC), whereas the capillary pressure decreases
with increasing wetting phase saturation during imbibition.

Lenormand et al. (1983) illustrated that the Young–Laplace equation was sufficient
to describe all menisci displacement mechanisms. The Young–Laplace equation
(Rowlinson & Widom 1982) states

Pc = Pnw − Pw = γ

(
1
r1
+

1
r2

)
, (1.1)

where Pc is the capillary pressure, Pnw and Pw are the non-wetting phase (NWP) and
wetting phase (WP) pressures respectively, γ is the surface tension and r1, r2 are
the principal radii of curvature of the fluid interface. For throats with a rectangular
cross-section this becomes Pc = 2γ cos θ(1/d + 1/wt), where θ is the contact angle
and d, wt are the depth and width of the throat. For primary drainage the porous
medium is initially saturated with WP before NWP is forcibly injected, displacing the
WP and thus causing the capillary pressure to systematically increase with increasing
NWP saturation, see figure 1. Considering a pore junction with different throat widths,
where the NWP enters from one of the throats, the Young–Laplace law (1.1) says
that the NWP should select the downstream throat with the lowest capillary entry
pressure first, i.e. by entering the widest throat. In the case of CO2 sequestration in a
saline aquifer, once injection of the NWP (CO2) (Chiquet & Broseta 2007; Doughty,
Freifeld & Trautz 2008; Hesse, Orr & Tchelepi 2008; Chalbaud et al. 2009) has
stopped, the WP (brine) re-enters the porous medium via imbibition. During the
imbibition process, the capillary pressure systematically decreases with increasing
WP saturation, see figure 1. This means that, following (1.1), we expect that the WP
will enter the narrowest downstream throat first, before sequentially filling all other
throats in order of increasing diameter.

In reality, displacement processes are more complex as they are dependent on
the pore geometry along with the WP and NWP location. In order to observe
these displacement mechanisms experimentally, we used: (i) micro-fluidic devices
as their transparent nature makes visualisation of fluid dynamics relatively simple
and (ii) single pore geometries, rather than more complex networks, as single pore
geometries allow us to accurately control the displacement processes in each throat
individually; see figure 2 for schematic micro-model designs used. Furthermore, the
models’ characteristics, like pore geometry, surface energy and roughness, can be
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(a) (b) (c)
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FIGURE 2. (Colour online) Schematic micro-model designs, including throat configuration
and connectors. (a) Geometry 1: square pore with equal throats. (b) Geometry 2: square
pore with unequal throats. (c) Geometry 3: pore with unequal throats. (d) Top down view
of chip including confocal cross-section of a throat and (e) schematic cross-section of
micro-model and connectors.

carefully controlled. The above enabled us to examine real-time primary drainage and
imbibition events systematically via both quasi-static and spontaneous methods.

The quasi-static experiments are performed in a sequence of pressure steps, with
hydrostatic equilibrium reached before progressing to the next pressure step. These
quasi-static experiments are relevant to displacement processes occurring in the far
field during CO2 storage and enhanced oil recovery operations, associated with low
Reynolds numbers. Displacement processes within pore network models (Øren, Bakke
& Arntzen 1998; Øren & Bakke 2003; Valvatne & Blunt 2003; Sorbie & Skauge
2012) are performed in this fashion. The dynamic experiments were conducted as
they are relevant to drainage and imbibition processes occurring near the well bore
at relatively high Reynolds numbers. Further details on the experimental methods will
be provided in the next section.

To further elucidate our experimental findings we compare experiments to lattice
Boltzmann simulations in the same geometries. These provide the opportunity for a
detailed investigation of the problem by varying the parameters under investigation
over a wider range, not easily accessible to the experiments. The overall goal of this
study is to challenge the pore-filling rules on which network models are based by
comparing the sequence of throat filling in simple geometries for which the Laplace
pressures can be calculated exactly and without ambiguity.

This paper is organised as follows; in the next section we provide the details of
the experiments and the numerical scheme. We present and discuss our results in § 3.
Finally conclusions drawn from this work are discussed in § 4.
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2. Methodology
2.1. Experimental section

2.1.1. Micro-fluidic models
To conduct these experiments we had specifically designed micro-models fabricated

in poly(methyl methacrylate) (PMMA), figure 2(a–c), by Epigem (Redcar). The
fabrication procedure involves defining the pattern in the base layer of the model by
using SU-8 (an epoxy based photoresist) via photolithography, which is achieved in
two stages. Initially an under-layer is deposited (spin coated then dried) and fully
cured before a secondary layer is deposited in the same way. The pattern is then
created by exposing the coated models through a photo-mask and developing it to
form the features. The top layer has a partially cured SU-8 layer deposited on the
underside (this will form the top of the pattern) before the inlet/outlet holes are
drilled into it. Finally, the base and top layer are assembled; figure 2(e) illustrates the
cross-section of an assembled model. All the models have been chemically treated
by Epigem, in order to increase the hydrophobicity of the surface. Additionally all
models have an approximate etch depth of d = 50 µm. The designs are intended
to explore pore geometry and the influence of varying throat diameters, providing a
range of different capillary entry pressures.

2.1.2. Experimental set-up
All of the fluid displacement observations were captured via a high-speed video

microscope (FastCam MC2.1, Photron) which is housed within a laminar flow
cabinet (PurAir-48, Air Science). This is necessary due to the intricate nature of the
micro-models, where unnecessary exposure to dust can lead to blockages rendering the
micro-models unusable. Due to the hydrophobic nature of the micro-models, n-decane
(viscosity ηw= 0.85 mPa s (Dymond & Øye 1994), surface tension γ = 0.024 N m−1

(Kuhn, Försterling & Waldeck 2009), density ρ = 730 kg m−3, 99 %, Sigma-Aldrich)
and air (viscosity ηnw= 18.2 µPa s, density ρ= 1.2 kg m−3) were selected as the WP
and NWP respectively. However, due to the unique fabrication of each micro-model,
the etch depth/width and contact angle varied for each chip, with the contact angle
always measured through the denser phase (Lyons 2009), resulting in different
capillary entry pressures. All experiments were conducted at ambient conditions.

2.1.3. Experimental procedure – primary drainage and imbibition
The primary drainage experiments began with the models fully saturated with the

WP. The NWP entered the model via either: (i) quasi-static displacement, achieved by
gradually decreasing the WP pressure by siphoning the WP into a reservoir located
below the model via the narrowest throat, or (ii) dynamic displacement – injection of
the NWP at a constant flow rate of 0.5 µl min−1 via a programmable syringe pump
(BS-8000, Braintree Scientific Ltd).

For imbibition the models were initially saturated with the NWP. During quasi-static
displacement the model was connected to a reservoir of the WP and Pw was then
gradually increased by raising the height of the reservoir. In contrast, spontaneous
displacement was attained by placing a droplet of the WP over an inlet port which
then spontaneously penetrated into the model.

2.2. Numerical method
In this section we describe the numerical method we shall use, starting with the
thermodynamics in § 2.2.1, the dynamical equations of motion in § 2.2.2 and the
lattice Boltzmann implementation in § 2.2.3.
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2.2.1. Thermodynamics of the fluid
The equilibrium properties of a binary fluid can be described by a Landau free

energy functional (Briant & Yeomans 2004)

F =
∫

V

(
fb +

κφ

2
(∂αφ)

2
)

dV +
∫

S
fs dS. (2.1)

The first term in the integrand is the bulk free energy density given by

fb =−
A
2
φ2
+

A
4
φ4
+

c2

3
ρ ln ρ, (2.2)

where φ is the concentration or order parameter, ρ is the fluid mass density and c is a
lattice velocity parameter. A is a constant with dimensions of energy per unit volume.
This choice of fb allows binary phase separation into two phases with bulk equilibrium
solutions φeq=±1. The position of the interface is chosen to be the locus φ= 0. The
term in ρ controls the compressibility of the fluid (Kendon et al. 2001).

The presence of interfaces is accounted for by the gradient term (κφ/2)(∂αφ)2,
which penalises spatial variations of the order parameter φ. This gives rise to the
interface tension γ =

√
8κφA/9 and to the interface width ξ =

√
κφ/A (Briant &

Yeomans 2004).
The final term in the free energy functional, equation (2.1), describes the

interactions between the fluid and the solid surface. Following Cahn (1977), the
surface energy density is taken to be of the form fs = −hφs, where φs is the value
of the order parameter at the surface. Minimisation of the free energy gives an
equilibrium wetting boundary condition (Briant & Yeomans 2004)

κφ∂⊥φ =−
dfs

dφs
=−h. (2.3)

The value of the parameter h (the surface excess chemical potential) is related to the
equilibrium contact angle θ eq via (Briant & Yeomans 2004)

h=
√

2κφA sign
[π

2
− θ eq

]√
cos
(α

3

) {
1− cos

(α
3

)}
, (2.4)

where α = arccos(sin2 θ eq) and the function sign returns the sign of its argument.
This choice of the free energy leads to the chemical potential

µ=
δF
δφ
=−Aφ + Aφ3

− κφ∂γ γφ, (2.5)

and the pressure tensor (Anderson, McFadden & Wheeler 1998)

Pαβ =

[
pb − κφφ∂γ γφ −

κφ

2
(∂γφ)

2
]
δαβ + κφ(∂αφ)(∂βφ), (2.6)

where pb = (c2/3)ρ − (Aφ2)/2+ (3/4)Aφ4 is the bulk pressure.
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2.2.2. Equations of motion
The hydrodynamic equations for the system are the continuity, (2.7), and the Navier–

Stokes, (2.8), equations for a non-ideal fluid

∂tρ + ∂α(ρuα)= 0, (2.7)
∂t(ρuα)+ ∂β(ρuαuβ)=−∂βPαβ + ∂β[η(∂βuα + ∂αuβ)], (2.8)

where u, P, η are the fluid velocity, pressure tensor and dynamic viscosity respectively.
For a binary fluid the equations of motion are coupled with a convection–diffusion
equation,

∂tφ + ∂α(φuα)=M∇2µ, (2.9)

that describes the dynamics of the order parameter φ. M is a mobility coefficient.

2.2.3. Lattice Boltzmann method
The equations of motion are solved using a standard free energy lattice Boltzmann

algorithm for a binary fluid (Briant & Yeomans 2004). In particular we use a
three-dimensional model with 19 discrete velocity vectors (D3Q19) and adopt a
multiple relaxation time (MRT) (D’Humières et al. 2002) approach for the evolution
of the distribution functions, fi, associated with the fluid density ρ. Following Pooley,
Kusumaatmaja & Yeomans (2009), the relaxation times responsible for generating the
viscous terms in the Navier–Stokes equation are set to τf (based on the fluid viscosity
η= ρ(τf − 0.5)/3), those related to conserved quantities to infinity and all the others,
which correspond to non-hydrodynamic modes, to unity. A single relaxation time
approach is sufficient for the order parameter φ. The relaxation time for the evolution
of the distribution functions, gi, associated with the concentration φ is set to τg = 1.
As shown by Pooley et al. (2009), this approach suppresses spurious currents at the
contact line, while improving significantly the numerical stability of the algorithm as
well (Lallemand & Luo 2000). For a detailed description of the lattice Boltzmann
(LB) implementation we refer the reader to (Briant & Yeomans 2004; Yeomans 2006;
Pooley et al. 2008, 2009).

Numerically we solve the equations of motion using graphics processing units
(NVIDIA Tesla K40 GPU cards), taking advantage of the fact that the LB method
is particularly well suited for computations on a parallel architecture (Gray, Cen &
Boek 2016). Running the simulations in parallel on 8 Tesla K40 cards reduces the
required computational time to a few days for the most computationally intensive
simulation.

3. Results and discussion
In this section we will present our results. We start with primary drainage, which

also serves as a validation for our experiments. Then we turn our attention to the
imbibition case, where we examine pore filling events and investigate the role of pore
geometry in determining the displacement pathways.

3.1. Primary drainage
The model was initially filled with the WP. For the quasi-static displacement, the Pw
was gradually decreased, allowing the NWP to enter the largest throat first, before
sequentially displacing the WP from the throats in decreasing size order, as can be
seen in figure 3. This type of displacement is referred to as ‘piston-type’ motion
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FIGURE 3. Quasi-static primary drainage images in a micro-model (Geometry 2) with
etch depth d= 45 µm and throat widths wt: 33, 51, 65, 107 µm (WP-white, NWP-grey).
Contact angle 26◦.

Throat Young–Laplace equation Young–Laplace Experimental pressure (Pa)
Critical pressure (Pa)

T4 Pp = 2γ cos θ eq

(
1
d
+

1
wt

)
1357 1361± 7

T3 — 1620 1590± 7
T2 — 1794 1790± 7

TABLE 1. Critical pressures for drainage in a micro-model (Geometry 2) with etch depth
d = 45 µm and unequal throat widths wt: 33, 51, 65 and 107 µm, calculated via (1.1)
and experimental data. Contact angle: 26◦, interfacial tension: 0.024 N m−1. Experimental
error of ±7 Pa is attained by the 1 mm accuracy the height of the reservoir can be set to.

(Lenormand et al. 1983), when the NWP enters the throat filled with the WP only
if the capillary pressure is equal to or greater than a given value Pp = Pnw − Pw =

2γ cos θ eq(1/d+ 1/wt), which we call ‘the critical pressure’. The calculated theoretical
and experimental critical pressures for drainage within the throats are displayed in
table 1. Generally there is good agreement between the two.

For the dynamic drainage, the NWP is injected into the chip at a constant flow
rate of 0.5 µl min−1. This leads to the displacement of the WP at a constant mean
velocity u in each throat, prior to and after the square pore body. The corresponding
capillary number for the interface motion in the throat prior to the pore body is Ca=
ηwu/γ ∼ 10−4. Typical values for the ratio of viscous to capillary forces at the pore
scale, quantified by the capillary number, are in the range of 10−3–10−10, depending
on the distance from the injection point in the well bore (Blunt & Scher 1995). Again,
as can be seen in figure 4(a), the NWP displaces the WP via the largest downstream
throat first, as predicted by (1.1). To validate the displacement sequence, we have
carried out LB simulations in exactly the same geometry, the same value for Ca and
contact angle as in the experiment. The fluid flow was driven by applying velocity
boundary conditions (Hecht & Harting 2010) at the inlet and outlet of the simulation
domain to match the experimental conditions. The results are presented in figure 4(b)
and display a good agreement with the experimental displacement sequence.

3.2. Imbibition
3.2.1. Quasi-static imbibition

Pore-filling events are dependent on the number of throats connected to the pore
that are occupied with the NWP along with their orientation. Generally, pore-filling
events are designated as I1, I2, I3 . . . In, with n indicating the number of throats
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(a)
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FIGURE 4. (Colour online) Primary dynamic drainage images: (a) experimental images of
forced injection of NWP at 0.5 µl min−1. (b) Corresponding LB simulations. The dashed
arrow denotes the direction of the flow.

Pore-filling Young–Laplace Young–Laplace Experimental pressure (Pa)
events for pore-filling event Critical pressure (Pa)

I1 Pp = γ

(
2 cos θ eq

d
+

1
r

)
931 932± 7

I2 — 838 838± 7
I2A — 745 754± 7
I3 — 709 708± 7

TABLE 2. Critical pressures for each pore-filling event in a micro-model (Geometry 1)
with equal throat widths. Contact angle: 28◦, etch depth d = 56 µm, throat width wt =

73 µm, pore width: 238 µm, interfacial tension: 0.024 N m−1. The critical radii in the
plane of the micro-model r2 = r used in the calculation of the critical pressures is shown
in figure 5. The principal radii of curvature, equation (1.1), are r1 = d/2 cos θ eq, r2 = r.
Experimental error of ±7 Pa is attained by the 1 mm accuracy the height of the reservoir
can be set to.

filled with the NWP (Lenormand et al. 1983). Here I1,2,2A,3 pore-filling events were
investigated via quasi-static imbibition experiments, by gradually increasing Pw, in
a micro-model with equal throat widths (Geometry 1: etch depth d = 56 µm, throat
width wt = 73 µm, pore width 238 µm), see figure 5. At a critical capillary pressure
the WP spontaneously displaces the NWP via ‘piston-type’ displacement. In all cases
the critical pressure of the pore-filling event calculated from the Young–Laplace
equation is very close to the experimentally determined critical pressure, as shown
in table 2. Good agreement is achieved as we know the exact pore geometry and
can observe the meniscus shape, allowing the critical radii to be well defined, as
illustrated for each case in figure 5.

Quasi-static experiments were also conducted in a micro-model (Geometry 3) with
unequal throats (etch depth d = 55 µm, throat widths wt = 27, 47, 60, 100 µm
pore: 155, 236 µm). The predicted displacement sequence for this geometry,
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(a)

(b)

(c)

(d)

r

r

FIGURE 5. (Colour online) Quasi-static I1, I2, I2A and I3 imbibition experimental results
(WP – white, NWP – grey). The critical radii in the plane of the micro-model, r2 = r,
used to calculate the displacement pressures for each case are also illustrated together with
r1 = d/2 cos θ eq.

using the Young–Laplace equation and a contact angle of 16◦, is first snap
off (Ps) in the narrowest throat at 1240 Pa, followed by pore body filling via
‘piston-type’ displacement (Pp) at 869 Pa, see figure 6(a). The snap-off pressure,
Ps = 2γ (cos θ eq

− sin θ eq)/ min(d, wt), was estimated from the pressure at which
two growing corner menisci meet on the channel wall (Valvatne & Blunt 2004).
Snap off is able to occur during the quasi-static experiments, as there is time for the
advancing WP films to develop ahead of the main meniscus, which swell and become
unstable (Bico & Quéré 2003; Kavehpour et al. 2003), see figure 6(b), and because
‘piston-type’ displacement is not possible for topological reasons (Lenormand et al.
1983). The WP films can be clearly seen in figure 7 as the darker lines outlining the
model geometry.

3.2.2. Spontaneous imbibition
Extending our research to spontaneous imbibition, we investigated the I3 displace-

ment mechanism, which was compared to LB simulations, figure 8. During our
spontaneous imbibition experiments we observed that the advancing meniscus did
travel down an adjacent throat (T2) first instead of filling the smallest throat, as the
WP films do not have time to develop ahead of the advancing meniscus. Indeed,
Lenormand (1990) noted that when no wetting films are present along the corners
of the models, the imbibing WP should enter an adjacent throat first, but no direct
evidence was provided. Here we confirm this hypothesis directly and show our results
in a series of snapshots from experiment and corresponding LB simulations in figure 8.
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FIGURE 6. (a) Predicted displacement sequence for quasi-static I3 imbibition (Geometry
3) using the Young–Laplace equation for a contact angle of 16◦, with the narrowest throat
filling first via snap off (Ps), followed by the body filling through piston-like displacement
(Pp). (b) Schematic illustration of the snap-off mechanism. Swelling of the corner WP
films leads to snap off when the menisci meet on the channel wall (dashed line) and
become unstable. Top panel: configuration in the plane of the micro-model at the channel
wall. Bottom panel: cross-sectional view in the orthogonal plane.

FIGURE 7. Quasi-static I3 imbibition experimental results (WP – white, NWP – grey,
wetting films – black). Snap off occurs in the narrowest throat before the meniscus enters
the pore as predicted by the Young–Laplace equation.

x
y

z

nw

nw

w

w

(a)
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FIGURE 8. (Colour online) Spontaneous I3 imbibition experimental results ((a), Geometry
3, throat widths: (T1)wt= 27 µm, (T2)wt= 47 µm, (T3)wt= 60 µm, (T4)wt= 100 µm, etch
depth d= 55 µm), with the corresponding LB simulations (b); here the WP travels down
the adjacent throat first. This behaviour is not predicted by the Young–Laplace law (1.1).
Equilibrium contact angle θ eq

= 16◦, viscosity ratio rη = ηw/ηnw = 50.
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Thus, displacement does not occur in the order predicted by the Young–Laplace
equation. This is understandable as all the downstream throats have lower critical
entry pressures than the pore body. Therefore, as soon as the critical pore-filling
pressure has been exceeded, the WP can enter any of the downstream throats. Hence,
in the case of spontaneous imbibition, the pore body geometry becomes a key factor
in determining in which order the downstream throats will fill.

Capillary-filling dynamics in a rectangular throat
A reasonable assumption then could be that the dynamics of imbibition in the throat

prior to the junction (T3) may affect the pore filling sequence and the selection of the
displacement pathway. Hence, we turn our attention to the imbibition dynamics. We
recently (Zacharoudiou & Boek 2016) examined the dynamics of capillary filling in
two-dimensional channels and covered both: (i) the limit of long times for both high
and low viscosity ratios rη = ηw/ηnw and (ii) the limit of short times, demonstrating
that the free energy LB method can capture the correct dynamics for the process. We
recall that in the limit of high viscosity ratios and long times, when the total time is
much larger than the viscous time scale tv ∼ ρL2

s/ηw (Quéré 1997; Stange, Dreyer &
Rath 2003), the Lucas–Washburn regime (l∼ sqrt(t)) (Lucas 1918; Washburn 1921) is
expected. In the limit of short times two regimes, namely (i) inertial regime (l∼ t2)
and (ii) visco–inertial regime (l∼ t) can precede the Lucas–Washburn regime (Dreyer
et al. 1994; Stange et al. 2003). The hydraulic diameter Dh = 2dwt/(d + wt) is used
as the characteristic length scale Ls for evaluating tv.

Ichikawa, Hosokawa & Maeda (2004) examined the interface motion driven
by capillary action in the case of three-dimensional channels with a rectangular
cross-section. Using the analytical solution of Brody, Yager & Austin (1996) for the
velocity profile in a rectangular channel of aspect ratio ε = d/wt and balancing the
relevant forces, they estimated the dimensionless relation for the interface position as
a function of time

l∗2 = cos θ eq(t∗ − 1+ e−t∗). (3.1)

The rescaled time and length are defined as t∗ = t/tc and l∗ = l/lc respectively, where

tc =

8ε2

[
1−

2ε
π

tanh
( π

2ε

)]
π4

× tv, lc = 2tc

√
(1+ ε)γ
ερwt

. (3.2a,b)

Here, we first compare our results with the theoretical prediction of Ichikawa et al.
(2004), equation (3.1), before examining whether the capillary-filling dynamics affects
the displacement pathway after the junction. We considered equilibrium contact angles
of θ eq

= 30◦ and 16◦ (experimental condition). Starting with a situation with a high
viscosity ratio rη = ηw/ηnw = 500 by choosing relaxation rates τf ,w = 1.5 and τf ,nw =

0.502, we decrease the viscosity ratio to rη = 5 by decreasing ηw, while ηnw is kept
fixed. This choice decreases the rate of viscous dissipation in the WP as the viscosity
ratio decreases from rη = 500 to rη = 5, allowing for more energy to be available to
the interface motion as it enters the junction region.

Figure 9(a) shows the length of the penetrating WP column in throat T3 for
simulations with varying viscosity ratio rη and θ eq

= 30◦. In the limit of long times
and high viscosity ratios the Lucas–Washburn regime (l ∼ sqrt(t)) (Lucas 1918;
Washburn 1921) is clearly observed. The viscous time scale tv is of the order of
104 in lattice units (l.u.) for rη = 25, 50, thus enabling us to also obtain the l ∼ t2
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FIGURE 9. (Colour online) (a) Length of the penetrating fluid column in throat T3 for
simulations with varying viscosity ratio rη = ηw/ηnw as a function of time in lattice units
(l.u.). What appears as a deviation from the l ∼ t2 regime at early times (first point for
rη=5) is due to the interface retracting initially in the connected reservoir which can result
in interfacial oscillations (Stange et al. 2003; Zacharoudiou & Boek 2016). (b) Length
versus time in scaled units according to (3.2). The theoretical prediction of Ichikawa et al.
(2004), equation (3.1), is given with the dashed line.

regime at early times, as the interface accelerates initially penetrating the throat. This
initial acceleration of the interface for rη = 5, 25 and 50 is reflected in the increasing
dynamic contact angle θαxz, shown in figure 10(a).

Rescaling length and time using (3.2) reveals that our numerical results approach
the theoretical prediction of Ichikawa et al. (2004), equation (3.1), in the limit of long
times as shown in figure 9(b). Here we used the equilibrium value of the contact angle
θ eq
= 30◦, although actually the dynamic contact angle, shown in figure 10(a), varies

with time as it depends on the interfacial velocity and Ca (Cox 1986; Sheng & Zhou
1992). Using the dynamic contact angle instead would decrease slightly l∗ improving
the agreement further. The dynamic contact angle, in the xy and xz planes, is evaluated
by fitting the interface in the central region of the advancing meniscus to a circle, as
shown in figure 10(c). The angle of intersection this circle makes with the side walls
is θαxy,xz.

Figure 10(b) depicts the variation of cos(θαxz) as a function of the capillary number
Ca. This is in agreement with the theoretical predicted dependency of θαxz on Ca (Cox
1986; Sheng & Zhou 1992)

cos θα = cos θ eq
−Ca ln(KLs/ls). (3.3)

K is a fitting constant, Ls is a characteristic length scale of the system and ls is the
effective slip length at the contact line. High interfacial velocities translate to high θαxz,
while as the interface slows down θαxz approaches the equilibrium value θ eq. Fitting
the results for each simulation set to (3.3) and extrapolating to Ca = 0 reveals the
following θαCa=0= 29.2◦, 30.3◦, 30.9◦ and 29.4◦ for rη = 5, 25, 50 and 500 respectively.
Hence, this verifies that the dynamic contact angle tends to the correct value for
the equilibrium contact angle of θ eq

= 30◦. The deviation increases for the case of
θ eq
= 16◦ and is of the order of a few degrees (∼ 5◦). This is expected for very small

or large contact angles due to the finite width of the interface and has been observed
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FIGURE 10. (Colour online) (a) Time variation of the dynamic contact angle in the xz
plane (etch depth direction) θαxz for the imbibition process in throat T3. The behaviour
of θαxy is the same. The increase observed in θαxz at the end of each simulation set is
due to the interface reaching the end of throat T3 and entering the junction region. The
equilibrium value of the contact angle θ eq

=30◦ (dashed line). (b) The cosine of θαxz plotted
against the capillary number Ca. Results affected by the interface approaching the junction
region were excluded. The solid lines correspond to linear fits of each data set to Ca to
enable comparison with the theoretical prediction of Cox (1986), Sheng & Zhou (1992),
equation (3.3). (c) Illustration of the WP column configuration, as it imbibes throat T3,
and the definition for the dynamic contact angle.

for binary and ternary systems as well (Pooley et al. 2009; Semprebon, Krüger &
Kusumaatmaja 2016).

We next examined the velocity of the interface front. Decreasing the viscosity ratio
by decreasing the viscosity of the WP results in less viscous dissipation in the WP
and hence more energy becomes available for driving the interface in the channel.
Figure 11(a) shows the corresponding Ca = ηwu/γ . The experimental Ca is of the
order of 10−2 (rη ∼ 50). Ichikawa et al. (2004) estimated the dimensionless velocity

u∗ =
dl∗

dt∗
=

1
2

√
ερwt

(1+ ε)γ
u, (3.4)

which, in the limit of long times, approaches

u∗ =
1
2

√
cos θ eq

t∗
. (3.5)

Although they neglected variations in the advancing dynamic contact angle θα,
equation (3.5) can still be considered valid in the limit of long times as the advancing
contact angle θα approaches the equilibrium value θ eq. It is evident that the numerical
results demonstrate excellent agreement with the theoretical prediction of Ichikawa
et al. (2004) (figure 11b).
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FIGURE 11. (Colour online) (a) The capillary number, Ca= ηwu/γ , for the interface front
motion in throat T3 as a function of time (in l.u.) for varying rη and θ eq

= 30◦. At the end
of throat T3 the velocity decreases significantly, as the interface enters the junction region.
(b) Interfacial velocity and time in scaled units. The theoretical prediction of Ichikawa
et al. (2004), equation (3.5), is given with the dashed line.

Junction region
Having validated the interface motion in the throat prior to the junction, we next

examine the interface motion in the wider pore body. As the interface approaches the
end of throat T3 and enters the junction region, it decelerates at first as the driving
capillary forces per unit area decrease and the interface adapts a concave shape in
the xy-plane. This reduction in the interfacial velocity is evident in figure 11. On the
other hand inertial forces can keep the interface moving in the junction, while the
motion is opposed by viscous forces that can damp this forward movement. Hence, an
important dimensionless number that can affect the dynamics of the interface entering
the junction is the Ohnesorge number

Oh=
ηw
√
ργLs

, (3.6)

which gives the relative importance of viscous forces over inertial and capillary forces.
Inertial forces (per unit volume), which scale as ∼ρu2/Ls, are in the range 10−6 (rη=
5)–10−9 (rη = 500) in l.u. Viscous forces (per unit volume), which scale as ∼ηwu/L2

s ,
are in the range 10−8 in l.u. for all cases as rη increases from 5 to 500. Capillary
forces Fcap = 2γ cos θα(d+wt) are of the order of 1 in l.u. for all cases.

On a second stage, the contact line in the xy-plane makes contact with the side
walls, see figure 12(a). As this favours energetically a transition from a concave
to a convex configuration (dashed yellow line to the solid black line configuration),
the surface energy released and the interface configuration transition can lead to
interfacial oscillations, which, as demonstrated in figure 12(b), are more profound
with decreasing Oh. Time is normalised by the time tcont when the interface imbibes
throat T2. Similar interfacial oscillations have been observed by Ferrari & Lunati
(2013), who examined a forced imbibition situation. Here we demonstrate that these
oscillations can be generated as the interface travels through a narrow throat to a
wider pore body in a spontaneous imbibition scenario as well, due to the small Oh,
with the mechanism behind this being the same. As the interface progresses further
in the junction, the kinetic energy that was available is gradually dissipated and the
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FIGURE 12. (Colour online) (a) Interface configuration in the xy-plane at z= d/2 as the
interface enters the junction region. When the contact line makes contact with the side
walls the interface configuration can change from concave to convex leading to interfacial
oscillations. (b) Velocity of the interface (in l.u.) measured along the dashed line shown
in figure 13 for simulations with varying rη and Ohnesorge number (Oh). Interfacial
oscillations are evident, especially as Oh decreases. Results are plotted as a function
of dimensionless time t∗ = t/tcont, where time is normalised by the time tcont when the
interface imbibes throat T2.
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FIGURE 13. (Colour online) Interface configuration in the xy-plane (z= d/2) in the
junction for (a) rη = 5, Oh= 6× 10−3 and (b) rη = 50, Oh= 6× 10−2.

forward movement is due to the action of capillary filling. This becomes more clear
when looking at the interface configuration in the junction at a level z = d/2 for
viscosity ratios rη = 5 (Oh= 6× 10−3) and rη = 50 (Oh= 6× 10−2), figure 13.

Figure 14(a) shows the length travelled by the meniscus in the junction, measured
along the dashed line in figure 13, for varying rη and Oh. The similar shape of the
curves, with two peaks – labelled as (1) and (3) – and two troughs – points (2)
and (4) – is due to the transition from a concave to convex configuration, favoured
by the shape of the junction. As expected, increasing the viscosity of the wetting
phase (increasing rη) increases the time it takes for the interface to imbibe into the
next downstream throat, tcont. For all situations examined here, the fluid imbibes
throat T2 first, which is achieved when the interface has progressed a length l ∼ 85
in the junction region. In other words, geometry dictates the pore-filling sequence,
irrespective of the dynamics prior to the selection of the next downstream throat
or the filling rules proposed by Lenormand et al. (1983). The same is observed
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FIGURE 14. (Colour online) Junction region: (a) length versus time (in l.u.) for varying
viscosity ratios rη, measured along the line shown in figure 13(a). The wetting fluid starts
imbibing the next downstream throat (T2) when l∼ 85 and t= tcont. (b) Simulation results
with rη= 50 and different Oh, by varying the viscosities of both phases. Increasing fluids’
viscosities increases Oh and tcont. The average Ca = ηwū/γ for the interface motion in
the junction is 8.1 × 10−4 (Oh = 6 × 10−2), 8.4 × 10−4 (Oh = 2 × 10−1) and 7.9 × 10−4

(Oh= 1× 100). The labels (0)–(4) correspond to the snapshots in figure 13(b). Inset: the
moment the wetting phase starts imbibing the throat T2 (t= tcont) the interface retracts in
the middle of the junction (reduction in l).

for the simulations reported in figure 14(b), which examines simulations with the
same viscosity ratio (rη = 50) and different Oh, achieved by varying the viscosity of
both phases. We note here that the capillary number is approximately the same in
these simulations (Ca ∼ 8 × 10−4); tcont varies significantly though as can be clearly
observed, as a consequence of the different rates at which energy is dissipated in
the system. Therefore, an important remark here is that Ca itself is not sufficient to
characterise the fluid flow. The dimensionless numbers, relevant to the specific type
of fluid flow, must be matched, for example the viscosity ratio rη and the Oh, in
order to characterise the fluid flow dynamics.

Examining the imbibition process in the junction in terms of the surface energies,
and given that we kept all parameters fixed except for the fluid viscosities, we note
that the surface energy released, due to wetting, and used to drive the fluid–fluid
interface, is the same for all runs. What changes is the rate of viscous dissipation,

Φ = 2
∫

V
ηiε̇αβ ε̇αβ dV > 0, (3.7)

which dictates how much energy is left available as kinetic energy for the fluid motion.
ηi (i = w, nw) is the local viscosity and ε̇αβ = (∂αuβ + ∂βuα)/2 is the rate of strain
tensor. For the spontaneous imbibition situation we examine here, the energy balance
states (Ferrari & Lunati 2013)

dEk

dt
=−

dF
dt
−Φ, (3.8)

where Ek and F are the kinetic energy and surface free energy respectively. In
figure 15(a) the viscous dissipation rate is plotted as a function of time for two of
the simulations reported in figure 14(b), covering the interface motion both in throat
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FIGURE 15. (Colour online) (a) Viscous dissipation rate as a function of time (in l.u.)
for the simulations reported in figure 14(b). This covers the fluid–fluid interface motion
in the throat T3 (t 6 t1) and in the junction region (t > t1). The corresponding values of
viscosities are ηw = 8.33× 10−2, ηnw = 1.67× 10−3 (Oh= 2× 10−1) and ηw = 6.67× 10−1,
ηnw= 1.33× 10−2 (Oh= 1× 100). (b) Viscous dissipation rate versus time in scaled units.

T3 (prior the junction) and in the junction region. In figure 15(b) viscous dissipation
rate in dimensionless form Φ∗ = Φ/γDhū is plotted as a function of dimensionless
time t∗= t/tcont. As the viscosity of both fluids increases to maintain the same rη, the
total amount of energy dissipated (area under the curves, i.e.

∫
Φ dt) increases, and

hence the change in kinetic energy decreases. The peak which is clearly visible for
each case, corresponds to time t= tcont, when the wetting fluid starts imbibing throat
T2, resulting in an increase in the fluid velocity.

The change in the total surface energy can be expressed as

dF= γ dAint + γws dAws + γns dAns, (3.9)

where dAint, dAws and dAns are the increments of the areas of the fluid–fluid, solid–
wetting phase fluid and solid–non-wetting phase fluid interfaces respectively and γ ,
γws, γns the corresponding surface tensions. Given that the total solid surface area
As

tot = Ans + Aws is constant and that dAns =−dAws, then

dF= γ (dAint − cos θ eq dAws). (3.10)

The total surface energy is given by F = γ (Aint − cos θ eqAws) + F0, where F0 =

γnsAs
tot is constant. Plotting F − F0 as a function of dimensionless time t∗ = t/tcont

in figure 16(a), reveals that the total surface energy decreases monotonically. It also
demonstrates that the released energy is approximately the same for all simulations,
as expected.

Finally, an interesting feature was observed when comparing situations with the
same viscosity ratio (rη = 50), see figure 14(b). The longer times tcont observed, as
viscous dissipation (and Oh) increases, allow more time to the interface to progress
along the corners of the side throats. This is shown in figure 16(b), where we
plot the area of the fluid–fluid interface as well as in figure 17, where we show
snapshots of the interface configuration in the junction. In a complex geometry, as
in porous media, swelling of these films and the consequent collapse can affect the
displacement pathways. Especially in porous media and natural rock formations the
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FIGURE 16. (Colour online) (a) The total surface energy F − F0 (in l.u.) as a function
of dimensionless time t∗ = t/tcont in the junction region for varying viscosity ratios rη.
The energy released from wetting the solid surfaces (dF < 0) drives the fluid inside the
micro-model geometry. (b) The area of the fluid–fluid interface (in l.u.). This is measured
using the marching cubes algorithm.
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FIGURE 17. (Colour online) Wetting film growth in the side throats, along the dashed
lines, for the simulations reported in figures 14(b) and 15 with rη = 50 and (a) Oh =
2× 10−1, (b) Oh= 1× 100. A situation with higher viscous dissipation rate (b) decreases
the amount of energy converted to kinetic energy and hence the mean velocity along the
x-direction. This gives more time for the development of thin wetting films progressing
along the corners of the micro-channel. The snapshots correspond at the same length
travelled in the x-direction and approximately at the same normalised time t∗ = t/tcont.

effective diameter varies continuously with length, favouring filling of the narrowest
downstream throat as predicted by the filling rules of Lenormand et al. (1983).
Here, however, and examining a wide range of parameters relevant to spontaneous
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imbibition dynamics, LB simulations revealed that the pore-filling sequence remained
the same, with the pore geometry being the major influencing factor.

4. Conclusions

It was observed that for both the drainage and quasi-static imbibition experiments
the displacement pathways predicted by the Young–Laplace law are obeyed. LB
simulations also followed these displacement predictions for drainage. In addition, the
theoretical critical pressures for displacement events were in good agreement with
calculated experimental events. For our spontaneous imbibition experiments, on the
other hand, we found that the WP enters an adjacent throat first due to the absence
of WP film growth. Lenormand (1990) suggested that the imbibing WP should
enter an adjacent throat first, but no direct evidence was provided. Here we confirm
this hypothesis, for the first time, directly using experiment and corresponding LB
simulations. Thus, pore geometry plays a vital role as it becomes the main deciding
factor in the displacement pathways. Once the critical pressure of the pore has been
exceeded, all downstream throats are able to be filled. This displacement choice was
observed in both our spontaneous imbibition experiments, and the corresponding LB
simulations for models of the same geometry. The implications of the absence of WP
films within the models have not been investigated.

Furthermore, we observe that the displacement of the meniscus in a throat and
the scaling of the imbibing fluid column with time can fall in the early time
flow regimes of capillary filling ((i) l ∼ t2, (ii) l ∼ t) prior the Lucas–Washburn
regime ((iii) l ∼ sqrt(t)). An in-depth investigation of imbibition dynamics using
lattice Boltzmann simulations was carried out in Zacharoudiou & Boek (2016). We
emphasise here that matching the relevant dimensionless numbers is essential in
correctly resolving the multiphase flow dynamics, as Ca itself is not sufficient to
uniquely describe the flow. For example, we need to match the viscosity ratio and
the Ohnesorge number, which for fluid flow at the pore scale is typically Oh� 1.
Nevertheless, for the range of parameters examined here, LB simulations revealed
that the pore-filling sequence remained the same. Therefore, the main message of the
current paper is that the filling order of channels connected to a junction depends
primarily on the geometry of the pore body and is largely independent of the details
of the dynamic meniscus shape influenced by inertial effects.

In addition to the above, in real porous media, microscopic WP films can develop
under strong wetting conditions and flow through the cervices and the micro-roughness
of the pore walls, whereas in our micro-fluidic devices WP films develop at the
right-angled wedges. This, however, will not change the main message of the current
paper. Several papers in the literature have discussed the development of thin WP
films in porous media, including Vizika, Avraam & Payatakes (1994), Constantinides
& Payatakes (2000), Bico & Quéré (2003). Depending on the time scales associated
with the general advancement of the fluid–fluid interface (tadv) and the time scales
for thin films to develop and swell (tfilm), the displacement pathways can be very
different. If the fluid flow is fast, for example in the manuscript the spontaneous
imbibition situation (tfilm > tadv), then the displacement pathway is mainly affected
by the geometry. On the other hand, if the fluid flow is very slow (providing time
for thin films to develop and swell), for example in the manuscript the quasi-static
imbibition situation (tfilm < tadv), then the displacement pathway and the pore-filling
sequence is likely to follow the filling rules proposed by Lenormand et al. (1983),
based on the Young–Laplace equation.
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The advancement of the invading WP fluid in a real porous medium, under
strong wetting conditions, involves two distinct macroscopic fronts (Constantinides
& Payatakes 2000; Bico & Quéré 2003). The primary displacement front, which
saturates the medium, is due to the piston-type motion of menisci in the main pores.
The secondary front is due to the precursor WP films, which propagate ahead of
the primary front using the fine structures of the porous material. The distance
between the two fronts depends on the capillary number Ca and the viscosity
ratio and may be many times larger than the mean pore length (Constantinides
& Payatakes 2000). Under certain conditions the WP films can swell and cause
disconnection and entrapment of the NWP. In these situations the displacement
pathways can be significantly different from situations with no WP films. The impact
of this phenomenon can be significant. For example Constantinides & Payatakes
(2000) report that these WP films cause a substantial increase of the residual NWP
saturation. Rücker et al. (2015) report on regimes of corner flow and film swelling
in real porous media, decreasing the connectivity of the NWP. Micro-fluidic devices
and simulations can be used to investigate the dynamics and mechanisms involved in
two phase flow at the pore scale and elucidate the role of wettability, viscosity ratio,
Ca or even roughness using patterned micro-fluidic devices on the advancement of
the displacement fronts.
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