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Abstract

This paper describes a simple but flexible family of Haskell programs for drawing pictures

of fractals such as Mandelbrot and Julia sets. Its main goal is to showcase the elegance of a

compositional approach to program construction, and the benefits of a clean separation

between different aspects of program behavior. Aimed at readers with relatively little

experience of functional programming, the paper can be used as a tutorial on functional

programming, as an overview of the Mandelbrot set, or as a motivating example for studies

in computability.

1 Introduction

The Mandelbrot set is probably one of the best known examples of a fractal. From

a mathematical perspective, its definition seems elementary and straightforward. But

attempts to visualize it – including those of Benoit Mandelbrot who, in the late 1970s

(Mandelbrot, 1975, 1988), was the first to apply computer imaging to the task –

reveal an amazingly intricate and attractive structure.

This paper describes some simple but flexible programs, written in Haskell (Peyton

Jones, 2003), that generate pictures of the Mandelbrot set. Thanks to their elegant,

compositional construction, we will see that different aspects of behavior are cleanly

separated as independent concerns. For example, the picture in Figure 1 shows one

view of the Mandelbrot set produced by the program in this paper, using nothing

more than standard characters on a printed page to produce a pleasing image. With

a few minor changes, the same basic program can be used to explore a different

portion of the Mandelbrot set, to visualize a different type of fractal, or to render

the resulting image using colored pixels on a graphical display.

Another interesting observation about the programs in this paper is that there are

no recursive definitions of any kind. Instead, the code uses higher-order functions

from the standard Haskell prelude to capture common patterns of computation,

particularly in the case of list processing. This property was noticed only after all

of the code had been written, and was never an explicit design goal. As such, it

highlights the role that higher-order functions play in supporting a natural, high-

level, and compositional approach to program construction.
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Fig. 1. A picture of the Mandelbrot Set.

In the interests of brevity, some familiarity with Haskell is assumed; newcomers

may find it helpful to read this paper in conjunction with one of the available

introductory textbooks (Bird, 1998; Thompson, 1999; Hudak, 2000).

2 What is the Mandelbrot Set?

At the simplest level, the Mandelbrot set is just a collection of points, each of which

is a pair of floating point numbers.

type Point = (Float , Float)

There are two steps in the procedure for determining whether a given point p is a

member of the Mandelbrot set (or not). In the first step, we use the coordinates of

p to construct a sequence of points, mandelbrot p. In the second step, we examine

the points in this sequence and, if they are all “fairly close” to the origin, then we

conclude that p is a member of the Mandelbrot set. But if the points get further

and further from the origin, then we can be sure that p is not a member of the

Mandelbrot set. (The technical details will be made more precise later in the paper.)

https://doi.org/10.1017/S0956796804005167 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005167


Functional pearl 717

The following function – whose simple definition stands in striking contrast to

the complexity of our fractal images – is the key to the whole process:1

next :: Point → Point → Point

next (u , v ) (x , y) = (x ∗ x − y ∗ y + u , 2 ∗ x ∗ y + v )

If we pick a point p and another point z , then we can apply next p repeatedly to z

to generate the following infinite sequence:

[z , next p z , next p (next p z ), next p (next p (next p z )), . . .

Building such sequences is a perfect application for the iterate function in the Haskell

standard prelude, which relies on lazy evaluation to allow the construction of infinite

lists. For the Mandelbrot set, we pick z to be the origin, (0, 0), and we construct the

sequence corresponding to a point p using the following definition:

mandelbrot :: Point → [Point]

mandelbrot p = iterate (next p) (0, 0)

For example, if we pick p as the origin, then all of the points are the same:

mandelbrot (0, 0)

=⇒ [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), . . .

If we start with larger coordinate values, then the numbers can grow rapidly:

mandelbrot (0.5, 0)

=⇒ [(0.5, 0), (0.75, 0), (1.0625, 0), (1.62891, 0), (3.15334, 0), . . .

There are also cases where the trend is not so clear. For example, at first glance, the

first coordinates in the following sequence seem to be increasing slowly, but steadily,

at each step:

mandelbrot (0.1, 0)

=⇒ [(0.1, 0), (0.11, 0), (0.1121, 0), (0.112566, 0), (0.112671, 0), . . .

However, if we look further down the sequence, for example, at the 100th point,

which is (0.112702, 0.0), then we see that it is still quite close to the initial points.

And, if we look even further, at the 200th point, then we see that the value is

unchanged at (0.112702, 0.0). Wary of the problems that can be caused by rounding

and truncation, the wise reader will always approach examples involving floating

point calculations with great care. However, in this case, a quick calculation confirms

that (0.112702 ∗ 0.112702) + 0.1 = 0.112702, at least to the accuracy shown. It now

follows that all elements in mandelbrot (0.1, 0) from the 100th onwards (and possibly

some before) are in fact equal. (Switching from Float to a double precision floating

point number type like Double will not prevent these problems, although it would

delay their appearance.) From these calculations, we can deduce that (0, 0) and

(0.1, 0) are members of the Mandelbrot set, while (0.5, 0) is not.

1 Readers with a mathematical background may prefer to think of the Mandelbrot set as a set of
complex numbers, with values z = x + iy corresponding to the points (x , y) used here. In that setting,
the next function has an even simpler definition as next p z = z 2 + p, where p = u + iv .
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3 The need for approximation

Our next task is to code up the test on mandelbrot p sequences so that we can

determine whether the corresponding points p are members of the Mandelbrot set.

For reasons that we describe below, it is technically impossible to write a program to

carry out the necessary tests with complete accuracy. Fortunately, for the purposes

of visualization, we do not need complete accuracy; a reasonable approximation

will do. In fact, if our main objective is to produce attractive images, then there are

significant advantages in using approximations because of the way that they allow

us to use a range of different characters or colors in the pictures that we produce.

First, we need to be more precise about what is meant by saying that a point

(u , v ) is “fairly close” to the origin. In fact, we will say that this holds if, and only if,

the point is within a distance of 10 from the origin. (The choice of the constant 10

here is somewhat arbitrary; different values will have an effect on the coloring of our

images, but not on their basic form.) Using Pythagoras’ theorem, this is equivalent

to requiring that
√

u2 + v 2 < 10. Squaring both sides to avoid the square root, we

can capture this condition in the definition of a predicate:

fairlyClose :: Point → Bool

fairlyClose (u , v ) = (u ∗ u + v ∗ v ) < 100

Now we can return to the task of deciding whether a given point p is a member

of the Mandelbrot set. To do this, we need to check that all of the points in the

corresponding sequence are close to the origin. The test can be expressed very

succinctly in Haskell using the prelude function all :

inMandelbrotSet :: Point → Bool

inMandelbrotSet p = all fairlyClose (mandelbrot p)

This function checks each element of the sequence mandelbrot p in turn. If it

encounters a point that does not satisfy the fairlyClose predicate, then it terminates

with result False, and we can conclude that p is not a member of the Mandelbrot

set. However, this computation could be quite expensive: we might have to look at

many different values from the sequence before finding one for which the test fails.

Worse still, until we have found such a point, we cannot be sure that our program

will ever find one. Perhaps the very next point will be the one that we are looking

for? Or perhaps, as yet unknown to the program, p is actually a member of the

Mandelbrot set, and we will never find a point for which the test fails. Instead of

returning a definite True or False, the inMandelbrotSet function will either return

False, possibly after a long delay, or it will go into an infinite loop. What we have

observed here, informally, is that our simple test for determining membership in the

Mandelbrot set is not, in more formal terminology, a computable function.

One way to sidestep this problem is to restrict attention to some fixed number

of points at the beginning of each mandelbrot p sequence; if all of those points are

close to the origin, then chances are good that p is a member of the Mandelbrot

set (or at least close to it). We can capture this idea with a simple modification of
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inMandelbrotSet , using take to select just the first n elements in each sequence:

approxTest :: Int → Point → Bool

approxTest n p = all fairlyClose (take n (mandelbrot p))

Of course, in some cases, approxTest will give a wrong answer. If the first n points

are all close to the origin, then approxTest will return True, even if the very next

point would have caused the test to fail. But, by increasing the value of n , we can

make the test as accurate as we like and still be sure that the test will always produce

either a True or False result after a limited amount of computation.

For the purposes of drawing a picture, a simple Boolean result gives only one

bit of information for each point p that is being considered as a candidate for

membership in the Mandelbrot set. With the rich palette of colors or characters

that are available on typical output devices, it seems a shame to restrict ourselves

to monochrome images! With that in mind, and to avoid prematurely committing

the code to a particular output method, let us suppose that we have a non-empty,

finite list, palette, that contains values representing each of the different ‘colors’ that

we might like to use in our fractal images. Instead of trying to determine whether

all of the points in a sequence are fairlyClose to the origin, we will only count

how many initial points meet this criterion, up to a finite limit (the length of the

palette). If the first point in a sequence fails the test, then we will display it using

the first entry in the palette; if the test fails when it reaches the second point, then

we assign the second color from the palette; and so on. The following definition of

chooseColor shows how this process can be described using function composition to

build a simple pipeline (!! is the list indexing operator):

chooseColor :: [color]→ [Point]→ color

chooseColor palette = (palette !!) . length . take n . takeWhile fairlyClose

where n = length palette − 1

Notice that this definition is polymorphic: the identifier color appearing in the type

is a type variable, so it can be instantiated to different types in different settings. We

will benefit from this flexibility later by using palettes made from a list of characters

for images like the one in Figure 1, and palettes containing RGB color values for

images to be plotted using high-resolution graphics primitives.

4 From points to pictures

Now we turn our attention from individual points to the construction of complete

images. At a high level, and following Pan (Elliott, 2003), an image is just a mapping

that assigns a color value to each point:

type Image color = Point → color

Note here again that color is a type variable, which allows us to accommodate

different types of drawing mechanisms and palettes. Indeed, the Mandelbrot set can

be thought of as a value of type Image Bool , mapping points that are in the set to
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True and points outside it to False. This, of course, is precisely what we tried to do

with the inMandelbrotSet function in the last section.

To obtain a more colorful image, we can combine a fractal sequence generator

(such as mandelbrot) with a suitable palette using the chooseColor function:

fracImage :: (Point → [Point])→ [color]→ Image color

fracImage fractal palette = chooseColor palette . fractal

This gives a function that specifies a color for every point value. On devices like a

monitor or printer, however, images are produced by specifying colors only for the

points on a bounded, evenly-spaced, rectangular grid of rows and columns. We will

represent grids like these as lists of lists:

type Grid a = [[a]]

For example, a picture with r rows and c columns can be described by a list of

length r , with one entry for each row, each of which is a list of length c. The values

in each position will depend on the kind of picture that we are trying to produce: for

example, they might be characters or pixel colors. In fact, it is also useful to work

with grids containing points and with grids containing sequences, which further

motivates the decision to make Grid a parameterized type.

Next we consider the task of constructing these grids. To start with, each of our

pictures covers a range of point values, which can be described by the coordinates

(xmin , ymin ) of the point at the bottom left corner, and the coordinates (xmax , ymax )

of the point at the top right. Of course, there are limits on the number of rows

and columns that we can display on the screen at any one time, so we cannot

expect to deal with all of the points in this region. Instead, we will choose an evenly

spaced grid of points that covers the range with the appropriate number of rows

and columns:

�

�y

x

� � � � � � � � � � �
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� � � � � � � � � � �

�

(xmin , ymin )

�

(xmax , ymax )

��
c

�

r

�

Each grid is determined by four parameters: the number of columns c, the number

of rows r , the point (xmin , ymin ) at the bottom left corner, and the point (xmax , ymax )

at the top right. These can be modified to vary the detail in the final picture. For

example, the simple grid above has just 7 rows and 11 columns, while the picture

in Figure 1 has 37 rows and 79 columns. For a given choice of parameters, we can
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describe the construction of an appropriate grid of points using a function:

grid :: Int → Int → Point → Point → Grid Point

grid c r (xmin , ymin ) (xmax , ymax )

= [[(x , y) | x ← for c xmin xmax ] | y ← for r ymin ymax ]

In constructing this grid, we need to pick c evenly spaced values for x in the range

xmin to xmax , and r evenly spaced values for y in the range ymin to ymax . These two

calculations are carried out in essentially the same way, so we define an auxiliary

function to take care of this:

for :: Int → Float → Float → [Float]

for n min max = take n [min , min + delta ..]

where delta = (max − min)/fromIntegral (n − 1)

The only slight subtlety here is the use of fromIntegral to convert the integer (n − 1)

so that it can be used in floating point arithmetic.

Given a grid point, we can sample the image at each position to obtain a

corresponding grid of colors that is ready for display. This sampling process is easy

to describe using nested calls to map to iterate over the list of lists in the input grid:

sample :: Grid Point → Image color → Grid color

sample points image = map (map image) points

We now have all of the pieces that we need to draw pictures of fractals. In each case,

we use a fractal function (such as mandelbrot) and a suitable palette to build an

image; we sample the image on a given grid of points; and we render the resulting

grid of colors. We can capture this pattern very easily with a higher-order function:

draw points fractal palette render

= render (sample points (fracImage fractal palette))

To a large degree, each of the parameters here can be varied independently of

the others. Of course, the type of colors that we include in our palette must be

compatible with the function that will be used to render the final image. This is

captured naturally by a shared type variable, color , in the type of draw :

draw :: Grid Point

→ (Point → [Point])

→ [color]

→ (Grid color → image)

→ image

Note that draw is also polymorphic in the type of image produced (i.e., image is a type

variable, not a specific type). In specific applications, image might be instantiated to

a type of values representing images, or to the type of an IO action that will draw

the result, write it to a file, or perhaps even post it on the web!

https://doi.org/10.1017/S0956796804005167 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005167


722 M. P. Jones

4.1 Character-based pictures of the Mandelbrot Set

It is possible to produce quite attractive pictures of the Mandelbrot set using only

simple character output. The first step is to define a palette of characters.

charPalette :: [Char]

charPalette = “ ,.‘\"~:;o-!|?/<>X+={^O#%&@8*$”

In choosing a value here for charPalette, we have made a modest attempt to select

characters in a rough progression from light (starting with several spaces) to dark.

Next, we must define the process for rendering a character image: we use unlines

to append newlines and concatenate the strings in each row of a Grid Char , and

then putStr to display the result:

charRender :: Grid Char → IO ()

charRender = putStr . unlines

For example, we can generate Figure 1 using the following:

figure1 = draw points mandelbrot charPalette charRender

where points = grid 79 37 (−2.25, −1.5) (0.75, 1.5)

From this starting point, interested readers can begin to explore the Mandelbrot set

on their own by varying parameters and generating new images. For example, some

images might be enhanced by the use of a different palette; the first two parameters

of grid could be changed to accommodate a different display or page size; and the

last two parameters of grid could be changed to focus more closely on particular

sections of the Mandelbrot set2. We will not explore these possibilities further in this

paper, and instead move on to show how different types of fractals, and different

methods of rendering can be accommodated by other simple changes.

4.2 Pictures of Julia Sets

Mandelbrot’s study of the set that now carries his name was prompted by work

that had been done much earlier (and without the aid of a computer) by the French

mathematician Gaston Julia (1918). Indeed, Mandelbrot’s work revived an interest in

Julia’s work that had been somewhat overlooked, even though it had been awarded

the Grand Prix de l’Académie des Sciences at the time it was first published. Today,

Julia’s name is associated with a collection of fractals known as Julia Sets, and, in

this section, we will show how the framework presented in earlier sections can be

used to draw pictures of Julia Sets like the one shown in Figure 2. In fact, Julia

sets are constructed with the same basic machinery that we used to investigate the

Mandelbrot set. However, instead of fixing the starting point of each sequence that

we produce to the origin and varying the first parameter to next – as we did for the

Mandelbrot Set – we construct sequences for Julia sets by fixing the first parameter,

2 For example, the regions specified by each of the following pairs of points are worth a closer
look: ((−1.15), 0.19) ((−0.75), 0.39), ((−0.19920), 1.01480) ((−0.12954), 1.06707), ((−0.95), 0.23333)
((−0.88333), 0.3), and ((−0.713), 0.49216) ((−0.4082), 0.71429)!
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Fig. 2. The Julia set for (0.32,0.043).

and varying the starting point. This gives us a different way to produce sequences

from points, and hence to produce some new fractal images.

julia :: Point → Point → [Point]

julia c = iterate (next c)

For example, here is the code to produce the picture shown in Figure 2:

figure2 = draw points (julia (0.32, 0.043)) charPalette charRender

where points = grid 79 37 (−1.5, −1.5) (1.5, 1.5)

Again, we encourage the interested reader to probe more deeply into the structure

of Julia sets by playing with different parameter settings. Of course, it is possible

to experiment as before with different palettes and with different parameters for

grid . For Julia Sets, however, there is an additional degree of freedom that can be

explored by varying the choice of point that is passed as the first parameter to julia .

4.3 Using colors and high-resolution graphics

Another way to render fractal images is to display them using high-resolution

graphics with one colored pixel for each point in the input grid. We can modify our

code to draw images like this given only a few simple primitives: a palette of colors;
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Fig. 3. Graphical displays of Mandelbrot and Julia Sets.

a way to create a canvas for drawing; and a way to set the color of individual pixels.

rgbPalette :: [RGB ]

graphicsWindow :: Int → Int → IO Window

setPixel :: Window → Int → Int → RGB → IO ()

It is easy to implement these functions using the facilities provided by the Hugs

graphics library (Reid, 2001). The types above reflect this heritage in their use of the

RGB type for colors and the Window type for a graphics window. Further details of

our implementation, however, are not particularly interesting and hence will not be

shown here. It should be quite simple to reimplement the same functionality using

other graphical toolkits or libraries.

With these pieces in hand, we can define a simple rendering function for grids of

RGB values. Apart from drawing the image, much of the following code has to do

with creating a window, waiting for the user to hit a key when they have seen the

result, and then closing the window:

rgbRender :: Grid RGB → IO ()

rgbRender g = do w ← graphicsWindow (length (head g)) (length g)

sequence [setPixel w x y c | (row , y)← zip g [0..],

(c, x )← zip row [0..]]

getKey w

closeWindow w

Graphical versions of the Mandelbrot and Julia Set images that we saw in previous

Figures are shown in Figure 3. Apart from the change of palette and renderer, these

images use the same parameters as in the original figures but with a finer resolution

grid of 240 by 160 pixels.

figure3left = draw points mandelbrot rgbPalette rgbRender

where points = grid 240 160 (−2.25, −1.5) (0.75, 1.5)

figure3right = draw points (julia (0.32, 0.043)) rgbPalette rgbRender

where points = grid 240 160 (−1.5, −1.5) (1.5, 1.5)

Once again, there are plenty of opportunities for an interested reader to experiment

with other choices of parameters!
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5 Closing thoughts

The programs described in this paper demonstrate how functional languages, like

Haskell, can support an appealing, high-level approach to program construction that

lets independent aspects of program behavior be expressed in independent sections

of program text. We have shown that the resulting code is easy to adapt and modify

so that it can be used in a variety of different settings. Of course, it is possible

to program in a compositional manner in other languages, but the style seems

particularly natural in a functional language, where features like polymorphism,

higher-order functions, laziness, and lightweight syntax can each contribute, quietly,

to elegant and flexible programming solutions.

Several authors have demonstrated the role that functional programming lan-

guages can play in graphics, particularly in describing images like fractals that have

a rich mathematical structure (Henderson, 1982; Hudak, 2000; Elliott, 2003). For

those readers with an interest in learning more about the mathematics of fractals –

or even just in taking a look at many beautiful fractal images – we recommend the

book by Peitgen & Richter (1988). There are, of course, several other books, and

numerous web sites with further information and images.
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