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Taylor's Theorem and Bernoulli's Theorem :
A Historical Note.

By PROFESSOR GEORGE A. GIBSON.

Bead and Received 10th June 1921.

Brill and Noether in their Report, Die Entvncklung der Theorie
der Algebraisehen Funclionen in derer und nlteuerer Zeit, Abschnitt
I., § 16, state in their remarks on Taylor's Theorem that "in its
modern form the Theorem appears only as a Corollary (Prop. VII.,
Cor. II.) and is left without any application."

Again, Mr Cantor in his History (Vol. III., p. 368, 1st Edition)
remarks, " to what extent Taylor in composing his Methodus
Incrementorum may have been clear as to the possibility of the
application of his Theorem to the development in a series of a
function of a binomial [i e., a function of z + v in Taylor's notation]
it is hard to say. In any case actual developments of the kind in
question are not to be found there [i.e., in the Methodus]."

A different point is raised by Voss, who seems to challenge
Taylor's priority. At any rate in the Encyklopddie dtr Mathemali-
tchen Wissenscha/ten, Band 2, Teil 1, p. 74, note (78), Voss refers
to "John Bernoulli's justifiable priority of 1694." On the other
hand, Bernoulli's claim is very emphatically rejected by B.
Williamson (note on page 70 of his Differential Calculus, 4th
Edition.)

I quote these passages from recent writers to indicate the
conflicting views that are held in regard to Taylor's own use of his
Theorem and in respect of his claim to priority. I t is my object in
this paper to test these assertions by an examination of the publi-
cations of Taylor and Bernoulli so far as they bear on the matters
in question. A valuable article by Pringsheim on the history of
Taylor's Theorem appears in the Bibliotheca Mathematica, Band I.
(1900), p. 433. Pringsheim's discussion of the early history is
very impartial, and his main conclusion is in agreement with mine;
there is, however, I think, a sufficient amount of new matter in the
paper to justify its presentation to the Society. Taylor's own
account of his book is too important to be overlooked, and the very
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early use of the Theorem by Stirling deserves greater emphasis
than it has hitherto received.

Taylor's Methodus Incrementorum Directa et Inversa was pub-
lished in 1715, and the Theorem which now bears his name is the
second Corollary to Proposition VII., p. 23; the Theorem, however,
had been communicated to Machin in a letter of date 26th July
1712, but without proof (Bibliotheca Mathematica, Band VII.
(1906-7), p 367). The notation used by Taylor would make too
heavy demands on the printer to justify me in reproducing it here,
and I must therefore employ more modern symbols. Proposition
VII. may be translated as follows :—

Let z and x be two variable quantities of which z increases
uniformly by the given increments h ; let

nh = v, v - h = v', v' - h = v",

Then I say that while z increases to « + « the variable x will
increase to

v , . vv , , v v'v"
x+AxTTh + A'xrTTh> + A*nT73T* + etc"

This proposition is of course a simple re-statement of Newton's
Formula, Case 1 of the well-known Lemma in the Third Book of
the Principia; Taylor's proof is on the lines now generally followed
in works on Finite Differences, though the induction is rather an
analogy than a strict inductive demonstration.

The Second Corollary to the Proposition is :—
If for the evanescent increments the fluxions that are propor-

tional to them are written, the quantities v, v, v" ... being now
made all equal to v, then while z, uniformly flowing, becomes z + v
the variable x will become

v t? — «3

x + x r + x. 75 + x rr + etc. :
1 .2 1 . 2 . 2 1 . 2 . 3 . 3

or, t he s ign of v be ing changed, whi le s decreases to z-v t he
var iab le x will decrease to

v •• V* ••• i > 3

x - x + x ri - x r. + etc.
1.z 1.2.2 1 .2 .3 .2

The notation of the Corollary is that of Taylor (except that the
points on the third fluxion are arranged by Taylor in the form
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of a triangle); the Corollary gives Taylor's own presentation of the
Theorem now known by his name. It may perhaps be noted that
the method of obtaining it, by a passage from a formula in Finite
Differences, is that adopted by Euler in his Calculus Diff'erenlialis.
We need not worry about the validity of the proof; "existence
theorems," fortunately for the progress of mathematics, did not
greatly worry mathematicians of Taylor's day.

The question must now be considered whether Taylor has
shown that he had any real conception of the value of his Theorem,
and I think some information may he obtained from the account he
gave of his book in the Philosophical Transactions, Vol. XXIX ,
pp. 339-350. Expanding a passage in the Preface to the Methodus,
he says that the principles of the method of fluxions " may all be
drawn directly as a corollary from the principles of the method of
increments. ... If in any proposition relating to increments you
make the increments to vanish and to become equal to nothing,
and for their proportion put the fluxions you will have a proposi-
tion that will be true in the method of fluxions. This is but
a corollary to Sir Isaac Newton's demonstration of the fluxions
being proportional to the nascent increments. For this reason, to
make the method of fluxions to be understood more thoroughly, I
thought it proper to treat of these two methods together, and I
have handled them promiscuously as if they were but one method."
He describes the 4th and 5th Propositions as designed to explain
" the method of judging of the nature and number of the condi-
tions that may accompany an incremental or fluxional equation.
This is a circumstance that I don't find to have been explained by
any one before and the propositions are somewhat intricate;
wherefore it will not be improper to explain, this matter a little
more at large." He then points out the special value of the 7th
Proposition, namely, that in the solution furnished by it "you
always have those indetermined coefficients which are necessary to
adapt the equation that is found to the conditions of the problem
proposed," and he states "this I take to be the only genuine and
general solution of the inverse methods."

This last statement shows that Taylor held the 7th Proposition
and its corollary to be of vital moment for the complete solution of
a differential equation, and in the Scholium to Prop. VIII. of the
Methodus, the second corollary to Prop. VII. (i.e. Taylor's
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Theorem) is used to find the general solution of the fluxional
equation

(z + nx) x — x + x

where z = 1. From this equation he calculates the 3rd, 4th and 5th
fluxions of x, and the law shown in these is so obvious that he
accounts for the higher fluxions by the phrase "and so on." He
then develops x in powers of v (in the notation of Prop. "VII.,
Cor. 2) in the form

c v2 cv3 ,
x = c + cv + — + ]——- + etc.

where x = c, x = c when z = a, and the values of c, c, etc., are
obtained from the equation

(a + nc) c = c + c'-

and from the equations for x, etc., when a, c, c, c, etc., are put for
z, x, x, x, etc. In this form the solution satisfies the conditions
o; = c, x = c (any two constants) when z = a. Taylor goes on to seek
a solution in finite form, and obtains it by putting a + nc = n - 1.

Another explicit use of the Theorem is given on the last two
pages of the Methodvs. Further, if we bear in mind Taylor's
statement that he handles the two methods of increments and
fluxions "promiscuously as if they were but one method,"
another testimony to the value he attaches to Prop. VII. is to be
found in his proof of the Binomial Theorem (p. 55), even though
he applies the Proposition itself and not the Corollary.

In view of these examples I think the language of Brill and
Noether and of Cantor does not do justice to Taylor, and, especially
if we consider the passages quoted from the Phil. Trans., I cannot
see that there is any good ground for the assumption that Taylor
was not well aware of the great value of his Theorem for obtaining
a development of a function of z + v in powers of v.

But there is another paper by Taylor in which he calls express
attention to the value of his Theorem. In the Philosophical
Transactions, Vol. XXX. (1717), pp. 610-622, he has an article
with the title An Attempt towards the Improvement of the Method of
Approximating in the Extraction of the Roots of Equations in
Numbers. He there shows (compare the letter to Machin) that
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when an approximation, z say, has been found for a root of the
equation f(y) — v and z + v is put for y, the correction v is
obtained by solving the equation

xv xv' x v*
0=x+ r + . . •., + . . _ • „ + e t c . ,

. z\.z 1 . 2 . z 2 1 . 2 . 3 . ~3

or, putting z= 1,

xv xv" xv:s

00 = a + _ + + n ¥ i + etc.l

where x=f(z). The two equations to which he applies his
method are

(2 /
2+l)V 2 + y - 16 = 0

and log10jr-0.29 = 0

of which the roots obtained are 2-31516 and 1949 844 599 68
respectively. His process is somewhat cumbrous, but he is quite
clear as to the generality of his method, and he states explicitly
that the function/(y) need not be a polynomial but may contain
logarithms, sines, tangents, etc.; in fact, the second of the above
examples requires the expansion of log (z + v).

It is no doubt the fact that Taylor did not use his Theorem in
the way we do now in an elementary course on the Calculus, but I
think he has shown quite clearly that it may be used to obtain the
standard series for logarithms, sines, etc., and he did beyond all
question apply it to obtain solutions of differential equaiions.

I now come to the relation between Taylor's Theorem and
John Bernoulli's. In an article which appeared in the Acta
Eruditorum for 1694, and which is reprinted in his Opera, Vol. I.,
pp. 125-128, Berrioulli gives the following Theorem :—

z2 dn z3 d2n z* d'n
™- T72d~z + 1 7 2 7 3 ^ - 1 . 2 . 8 . 4 d ^ + e t C '

which is the Theorem referred to by Voss. The method of proof is
peculiar; Bernoulli writes the identity, dz being constant,

, z> cPn z1 d'n z3 d3n
ndz-ndz + vln-tdn- — - ^ + — — + ^ ^ — etc.,

" the series being continued to infinity so that ndz alone is left.''
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Each successive pair of terms is a complete differential and integra-
tion gives the Theorem, where it should be noted there is no
constant of integration. (In the original article, as in the reprint,

Integr. ndz is put in place of the later symbol I ndz.)

Bernoulli gives some examples of the use of his Theorem, the
first of which is a series for log (a + x). He puts y for the
logarithm but writes dy = adx/r where r—a+x; then in the
general formula he puts x for z and a\r for n, and finds the series

ax ax2 ax3 ax*
U

If we take a log (a + x) instead of log (a + x) for y and divide
by a the series is equal to log (a + x) — log a; but Bernoulli asserts
that the series " though different from that of Mr Leibniz has
nevertheless the same value." The mistake of course is due to the
neglect of the constant of integration, a neglect which occurs very
often in Bernoulli's early work. But even when the constant is
inserted, the series is not a Taylor series for log (1 +xja) ; it does
not proceed by powers of as.

Another example is tha t of expressing the sine in terms of the
arc. If, for simplicity, the radius a is taken to be unity Bernoulli's
expression is, x being sin y,

y3 y5

x y'"1.2. 3 + l . 2 . 3 . 4 . 5 ~ e t C -

" so that, xj J (1 - x-) being known, x also will be known.''
Bernoulli adds, " i t is worth noting that the series in the denomi-
nator is cos y because according to Mr Leibniz the series in the
numerator is found to be siny."

It is obvious that Bernoulli's Theorem provides the representa-
tion of a function in the form of an infinite series, but the Theorem
as it stands and as it is illustrated by Bernoulli, is of a totally
different character from Taylor's, and, so far as I can discover,
Bernoulli himself never claimed any priority over Taylor in respect
of the Theorem of Prop. VII., Cor. 2 of the Methodus Incremen-
lorum. What Bernoulli (Opera, Vol. II., p. 584) did claim—and
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this is the claim on which Williamson comments so severely—was
that Taylor "after the lapse of more than twenty years thought
that the series [published in 1694] was worthy of being transferred,
with a mere change of notations, to the book de Methodo Incremen-
torum which he published in 1715," and adds " See his book, p. 38."
Had Williamson consulted the page referred to he would have
found that Bernoulli meant, not Prop. VII. but Prop. XL,
namely that the fluent of rs may be expressed by either of the
s e r i e s ,• „•• ,„•••

rs-rs + r s - r s + etc.
or rs' — rs" + rs'" — etc.

where the accents denote fluents and the points fluxions.
Bernoulli's Theorem is in fact most simply represented as the

result of successive "integration by parts"; Taylor's Prop. XI. is
at most a generalisation of Bernoulli's and was certainly suggested
by it. (Mr Cantor's account of Taylor's Prop. XI. [History
Vol. III., p. 368, 1st Edn.] can not be considered a fair reproduc-
tion). The direct proof of Taylor's dependence on Bernoulli is to
be found in his method of investigation. The method is identical
with that of De Moivre in his Animadversiones in D. Georgii
Cheynaei Tractatum de Fluxionum Methodo Inversa (1704).
Oheyne had given Bernoulli's Theorem, but his method of presenta-
tion was severely criticised by De Moivre, who took the oppor-
tunity (p. 69) of giving a proof that was quite different from
Bernoulli's and free from the eccentricities that characterised
Cheyne's. I t is inconceivable that Taylor was not aware of the
fact that his Prop. XI. was substantially the same as Bernoulli's
Theorem, and one can not be surprised that Bernoulli felt
aggrieved at Taylor's omission of any reference to him, especially in
view of the frequent references to Newton.

It is of course the fact that Taylor's Theorem may be estab-
lished by integration by parts, but that fact is by no means
sufficient to justify the suggestion that Bernoulli did so establish
it, and I do not think he ever claimed to have done so. Even so
late as the publication of L'Huilier's Principiorum Calculi...
Expositio (1795) -we find separate investigations of the two
Theorems without any indication of their relations ; it is quite
unhistorical to import into the writings of one age ideas and infer-
ences that were only made clear at a much later date.

https://doi.org/10.1017/S0013091500035768 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035768


32

Stirling in his Lineae Terlii Ordinis (1717) establishes (p. 32)
the form of Taylor's Theorem now usually called Maclaurin's
Theorem; he employs the method of undetermined coefficients, as
Maclaurin also did [Fluxions § 751), and gives various examples of
its use, among them the expansion of (a + x)n and cos x. In fact he
uses the Theorem in the way now common in elementary work, and
there is little doubt that he has no thought of his series as being
anything else than Taylor's. He does not expressly mention
Taylor in this connection in the Lineae, though his establishment
of the series follows immediately a discussion of another Theorem
of Taylor's; but in his Methodus Differentia/is (1730) where he
again deduces the same form of the Theorem (but now by the
passage from a formula in increments in the manner of Taylor) he
has the words (p. 1,02) "the first to discover this Theorem was Mr
Taylor in his Methodus Incrementorum, and afterwards Hermann
in the Appendix to his Phoronomia." The fact that Stirling in
1717 so freely used Taylor's Theorem in the expansion of functions
seems to me to be weighty evidence in favour of the view that in the
circles influenced by Taylor the use of the Theorem for the expan-
sion of the familiar functions, (a + x)", log (a + x), sin x, etc., as
well as for much more complicated cases was quite familiar.

Stirling's reference to Hermann puzzles me. In the Appendix
to his Phoronomia (1716) Hermann presents a proof of Newton's
5th Lemma. The proof is very cumbrous, and it is no easy matter
to ascertain from Hermann's work what the final form of the
coefficients is. But the values, when extracted, are correct. The
difficulty begins with the Corollaries (p. 393). Cor. 2 gives
Newton's Case 1, in which the ordinates are equidistant, but
Hermann is not careful in stating whether a difference is y - yl or
yx - y, and when we come to Cor. 3 this ambiguity is vital. He
there makes the interval between consecutive ordinates infini-
tesimal, equal to dz, but he takes the differences of the ordinates y
in the wrong order, as I think. The odd differences dy, dsy,...
should have their signs changed, and if this change were made
Taylor's Theorem would follow. However that may be, Hermann's
conclusion is quite different. He does not write down the formula
that would be deduced directly from Newton's by making the
interval infinitesimal, i.e., Taylor's Theorem ; he only puts down
the formula obtained by integration and thus arrives at Bernoulli's
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Theorem. I do not think Bernoulli's Theorem is a legitimate
deduction from his work (Stirling's reasoning (Methodus Differenti-
alis, p. 103) does not seem to apply here), but the puzzle is "did
Stirling think that Hermann had established Taylor's Theorem " ]
Of course had Hermann carried out the work correctly he might
have deduced the Theorem, it was Taylor's own method; but he did
not, and instead he arrived at Bernoulli's Theorem. It is possible
that Stirling is merely referring to the method of making the
distance between consecutive ordinates infinitesimal, but his state-
ment is nevertheless somewhat puzzling.

The Appendix to the Phoronomia was written after the MSS. of
the treatise had been sent to the printer. Had Hermann gone
more fully into the Newtonian Lemma he might have come a very
close second to Taylor, but the fact that it is Bernoulli's Theorem
he reaches shows how easy it is to be near a discovery and yet miss
it. I t is, from our present standpoint, strange to see how near
Newton in particular came to Taylor's Theorem and yet did not
actually attain to i t ; the reason for this is not quite easy to under-
stand but we should at least learn the lesson that it is not safe to
credit a writer with the possession of recondite theorems unless on
plain evidence. The tendency to read our own ideas into the work
of previous writers is just as bad as the opposite tendency of credit-
ing to ourselves what was the possession of our predecessors.
Above all, the detestable vice of " nationalism " in science must be
studiously shunned; it would be hard to overstate the loss that
British mathematics suffered from the baleful controversy on the
invention of the Calculus. At the present moment we should take
warning from the experience of the past.
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