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REPRESENTATIONS OF CHEVALLEY GROUPS

IN CHARACTERISTIC p

WJ. WONG*

Introduction

If Gκ is a Chevalley group over a field K of prime characteristic φ,

the irreducible representations of Gκ over K form a natural object of study.

The basic results have been obtained by Steinberg [15], who showed that,

if K is perfect, then each irreducible rational representation of Gκ over K

is a tensor product of representations obtained from certain basic represen-

tations by composing them with field automorphisms. These basic represen-

tations were obtained by ' 'integrating" the irreducible restricted representa-

tions of a restricted Lie algebra associated with the group, which had been

studied earlier by Curtis [7]. The present author had obtained the main

results previously for the groups SL{n, K), Sp{2n, K) by different means,

involving reduction (mod φ) from the characteristic 0 case [16]. In this

paper we extend this method to the other types of groups, in the hope

that some additional insight may be gained.

We restrict ourselves to the case when K is finite, since the essential

aspects of the situation already appear then. By a consideration of Brauer

characters, we obtain the classification of the irreducible G^-modules by

highest weight in Theorem (3ZJ). In Theorem {AH), we obtain a simple

necessary and sufficient condition under which an irreducible module in

the characteristic 0 case remains irreducible (mod φ). This criterion is in

terms of the discriminant of a certain integral quadratic form, and can be

computed in any given case, although not as easily as Springer's sufficient

condition [13].

We are able to give an explicit description of the irreducible G^-modu-

les (Theorem (5F)), and another proof of the tensor product theorem
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40 W.J. WONG

(Theorem (6C)), on the assumption that a certain property of the irreducible

modules in the characteristic 0 case holds. It seems likely that this property

is always valid, since it has been verified in the cases An, Bn, Cn, Dn, EQ,

F4, G2 (Theorem (7E)).

Basic tools for this work are the notions of an admissible lattice on a

module V for a classical semi-simple Lie algebra [9], and a non-degenerate

bilinear form on V having a certain "contravariance" property. These

ideas are developed in Sections 1 and 2.

In order to make the exposition as elementary as possible, we have

avoided the language of group schemes, which might otherwise have been

used to shorten the paper somewhat.

I would like to thank Professor Richard Brauer for the encouragement

he gave me during the time I worked on my thesis at Harvard University,

and for the gentle prodding since then which finally stimulated me to return

to this subject after the lapse of so many years.

1. Lie Algebras

We shall use some standard facts about semi-simple Lie algebras and

their modules. Proofs may be found in [8], [12].

Let g be a (finite-dimensional) semi-simple Lie algebra over a field L

of characteristic 0, which has a splitting Cartan subalgebra ϊj (i.e., each

element of ϊ) is mapped by the adjoint representation of g on a linear

transformation whose eigenvalues lie in L). The theory of such split semi-

simple Lie algebras is identical with the classical Cartan-Killing theory of

semi-simple Lie algebras over the complex field. If r is a member of the

root system 2 of § in g, and gr, g_r are the root subspaces of Q corres-

ponding to r, — r, then the subspace [g_r, gr] of ϊj contains a unique ele-

ment Hr such that r(Hr) = 2.

If 5? is the rational vector space generated by 2 and Π = {«i, αw}

is the fundamental system of positive roots corresponding to some ordering

of ϊ)o> then Π is a basis of §* and we may assume that the ordering on §*

is the lexicographical one, in which 2&i«* is positive if the first non-zero

coefficient kt is positive.

If V is a (finite-dimensional) g-module, then V is the direct sum of its

weight spaces. The multiplicity of a weight is defined to be the dimension

of the corresponding weight space. We denote by P(V) the group generated

by the weights of V, and by P the group generated by all weights of g in
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REPRESENTATIONS OF CHEVALLEY GROUPS 41

all modules. Then P is contained in ϊj*, and inherits the lexicographcal

ordering. If μ is a positive element of P, there is only a finite number of

positive elements of P lower than μ. In particular, we may carry out in-

duction on the positive elements of P.

The elements of P are characterized as those linear functions on ί)

which take integer values on all the #r(r<=Σ), or, equivalently, on Hai, , Han.

The fundamental weights are the elements λl9 , λn of P such that, for all

i, J\

λi(Haj) = δij.

We denote by P+ the set of all μ in P such that μ(Haj) ^ 0, all j . These

μ are called dominant integral functions, and are just the non-negative in-

tegral linear combinations of λu ,Λn. The λt are positive in the ordering

of P.

The weights of a g-module are permuted among themselves by the

action of the Weyl group W of g. Each orbit of W in P contains exactly

one element of P+, and this is the largest member of the orbit. The

highest weight of an irreducible g-module occurs with multiplicity 1, and

this gives a 1-1 correspondence between P+ and the set of isomorphism

classes of irreducible g-modules. Since every g-module is completely reducible,

the isomorphism class of a g-module is determined by its weights and their

multiplicities.

In [6], Chevalley proved that a set of root vectors Xr can be chosen

in g so that

and, whenever r, s, r + 5 G Σ and m is the greatest integer such that s—mr

is a root,

(1) IXr, Xsl = nrtSXr+s,

where nrtS = + (m + 1). Further,

(2) n.ri.s = —nr,s.

(lA) LEMMA. There exists an automorphism & of & of order 2, such that

Θ(H) = ~H, θ(Xr) = ~ X-r,

for all i/eϊj,
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Proof. By [8, p. 127], g has an automorphism Θ of order 2 such that

Θ(Hai) = - Hao θ{Xat) = - X_atf for / = 1, , n. If r, s, r + s e 2 and

#(Xr) = — χ_ r > #(XS) = — χ_s> then by (1), (2), and the fact that nr,s Ψ 0, we

have

θ(Xr+s) = X-r-s.

An obvious induction shows that θ{Xr) = — X-r for all positive roots r, and

hence for all roots r, since 0 has order 2. Since the i/αί generate ϊ), 0(77) = —.if

for all H in §.

(IB) COROLLARY. If V is any Q-module, there exists a non-degenerate bilinear

form ( , ) on V suck that

(3) (vXr, W) = (V, U)X-r)

for all y , w ; e F , r e 2 . Weight vectors in V belonging to different weights are ortho-

gonal with respect to this form. If V is irreducible, the form is symmetric and is

unique to within multiplication by a scalar.

Proof. A new action of g on V defined by setting

voX=vθ(X) (V(=V,X<ΞQ)

makes V into a new g-module V*f whose weights are clearly the negatives

of those of V. Hence F* is isomorphic with the contragredient module to

V, and there exists a non-degenerate bilinear form ( , ) on V such that

(υX, w) + (v, w o X) = 0

for y,«;£F,lGg. Since θ{Xr) = — X-r, (3) is satisfied. If υ and w are

weight vectors belonging to distinct weights λ, μ, then we see by taking

X= H^ that

λ(H)(v,w)-μ(H)(v,w) =0,

so that {υ, w) = 0.

If V is irreducible, then V is absolutely irreducible. Since the form ( , )

amounts to a g-homomorphism of V into the contragredient of V*9 it is

unique to within multiplication by a scalar, by Schur's Lemma. If v, w

are interchanged and r is replaced by — r in (3), we see that the "reversed"

form < , > given by

https://doi.org/10.1017/S0027763000014653 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014653


REPRESENTATIONS OF CEHVALLEY GROUPS 43

<V, W> = (W, V)

satisfies (3). Hence, there is a scalar c such that

(w, υ) = c(v, w)

for all v,w^V. Clearly c2 = 1, so that ( , ) is symmetric or skew-symmetric.

Since a vector v0 of highest weight in V is orthogonal to vectors of lower

weights, and the highest weight occurs with multiplicity 1, (vo,vo) is non-

zero, by non-degeneracy of ( , ). Hence the form is symmetric.

We shall call a form satisfying (3) contravariant. If {υu v2, } is a basis

of V, we shall call the dual basis {wuw2, •}, defined by

(vi9Wj) = δij9

a basis contragredient to {vl9v2i •}. If the Vi are weight vectors correspond-

ing to weights μu the wt are also weight vectors corresponding to the same

μt

2. Chevalley Groups and Derived Modules

From now on we assume that K is a finite field of characteristic p.

We choose a field L of characteristic 0 with a (discrete) valuation ring R

having K as residue field. Thus,

K=R/πR,

where π is a prime element of R.

Let a be a split semi-simple Lie algebra over L and suppose root vec-

tors Xr to be chosen as in Section 1. We denote by VLR the i?-subalgebra of

the universal enveloping algebra U of g generated by the elements Xr

m/m!,

r e 2 , ^ ^ 0 . Following Ree and Kostant [11], [9], we define an admissible

lattice on a g-module V to be a finitely generated i?-submodule VR of V,

which generates V as a vector space over L, and which is invariant under

UR. Such a lattice is a free i?-module, and an i?-basis is a basis of V over

L. In fact, an admissible lattice has an i?-basis consisting of weight vectors

such a basis is called a regular basis of V. If V is irreducible and v0 is a

vector of highest weight in V then v0VLR is the smallest admissible lattice on

V containing v0,

(2A) LEMMA. Let v0 be a vector of highest weight in an irreducible ̂ -module V

and let ( , ) be the contravariant form on V> normalized so that (v0, vQ) = 1. Then
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the form is integral on the admissible lattice VR = v0UR, i.e., (VR,VR)QR. Every

^-module possesses a non-degenerate contravariant form and an admissible lattice on

which the form is integral.

Proof. The dual i?-module to VR with respect to the form ( , ),

V%= {VΪΞV\(V,VR) c: R]

is easily checked to be an admissible lattice on V. Now VR is the direct

sum of Rv0 and submodules consisting of vectors of lower weights. By (IB)

and the condition that (v0, v0) = 1, we see that V% contains vQ. Since VR is

the smallest admissible lattice containing υ0, V% Ώ. VR, so that (VR, VR) c R,

The last statement of the lemma follows by complete reducibility.

If V is irreducible, v0 is a vector of highest weight, and ( , ) is the

contravariant form on V normalized so that (vθ9 v0) = 1, we shall call the

discriminant of the integral form ( , ) on F Λ = v0UR the discriminant of V.

(This can always be taken to be an ordinary integer.) We call V φ-uni-

modular if its discriminant is a unit of R.

(2B) LEMMA. If V is a p-unimodular irreducible Q-module, there is only one

admissible lattice on V, to within multiplication by a scalar.

Proof Let v0 be a vector of highest weight in V. If VR is an admis-

sible lattice on V, then by multiplication by a scalar we may assume that

VR is the direct sum of RvQ with submodules of vectors of lower weights.

If ( , ) is the contravariant form on V such that {v0, v0) = 1, and V% is the

corresponding dual lattice to VR, we see as in (2A) that v0ViR^V%. Hence,

VR is contained in the dual of v0VίR, which is v0UR itself, since the form is

unimodular on v0ViR. Hence, VR = V0VLR.

We remark that the proof shows that every admissible lattice on an

irreducible g-module V with vector v0 of highest weight may be transformed

by multiplication by a scalar into one which contains v0UR and is contained

in the dual of V0VLR with respect to the contravariant form, normalized so

that (vo,vo) = l. It follows easily that, to within multiplication by scalars,

there is only a finite number of admissible lattices on V.

If VR is an admissible lattice on V, then

is a vector space over K. If V^VR, we denote the residue class of v in V
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by ϋ. If {vu ,vm] is a basis of VR over R, then {vίy -,vm] is a basis

of F over K. Thus, dim^F = dim^F. Clearly, WR acts on F as well as on

F. For X e Uβ, denote the corresponding linear transformations of V, V

by jθ(X), p(X), respectively. If r G ^ , m^O, denote the element X™\m\ of

U^ by I r , r a . Since F is a direct sum of finitely many weight spaces, it

follows that p(Xr) is nilpotent on F. Hence, for t<=R, t^K, the invertible

linear transformations

xΛt ;V)=

xΛt ;V)=
m = 0

of F, F are defined, the sums being finite. The sets

{xr(t ; 7 )

generate groups GΛ(F), G^(F) of linear transformations on F, F. (The

notation differs slightly from that of [11], where, for example, GK{V) is denoted

G'K(V)). To within isomorphism, these groups depend only on the weight

group P(V) and not on F itself. Clearly, there is an epimorphism

GR(V)-+GK(V)

such that xr(t F) is mapped on xr{t F), where ? is the residue class in

K of the element / of R.

If % is a character of the full weight group Pin K, i.e., a homomorphism

of P into the multiplicative group of K, then there is a linear transformation

h{X, V) of V such that if υ is any vector of weight μ in Fi? and v is the

corresponding vector of F, then

vA(Z, F) = %(/^.

These Λ(χ, F) form an Abelian subgroup §K{V) of G/C(F). Since the Weyl

group permutes the weights of g, it acts in a natural way on the characters

1 and hence on the group &K(V).

If VΊ is a faithful g-module such that P{VX) Ώ P(V), then there are

epimorphisms

φ : GR(yx) -> GΛ(7), ί : G^ί^
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such that

Φ(χΛt Vi)) = χr(t V),

φ(χΛt Vύ) = xΛt V),

φ(h(x, V,)) = h(x9 V),

for r e j ] , t^R, t&K, and % a character of P in K. In particular, this

holds if P(Vi) = P. In this case we denote GR{VX)9 GK{VX) simply as GR, Gκ,

so that we have epimorphisms

GR-+GR(V), GK-+GK(V),

for every g-module V. We shall also write xr(t), xr{t), h(ϊ)9 $Kf for xr(t VΊ),

%r(t Vi), A(Z, Vi), ©jf(VO. The group Gκ is the "simply-connected" Chevalley

group of type g over K. More precisely, Gκ is the group of rational points

over K of a simply connected semi-simple algebraic group defined over the

prime field. Thus, in particular, if q is of type An, Cn, Bn, Dn, then Gκ

is isomorphic respectively to SL(n + l,K)9 Sp(2n,K), Spin (2n +1, K)9 Spin

(2n9 K), the last two groups being defined relative to forms of maximal Witt

index.

We shall be concerned with modules for the group algebra of Gκ over

K which are finite-dimensional over K, and call these simply G^-modules.

Similarly a finite-dimensional module for the group algebra of GR over L will

be called a G^-module. Since GK{V) is a group of linear transformations

on V, the homomorphism Gκ -+GK{V) makes V into a G^-module, which

we call the module derived from the g-module V by means of the admissible

lattice VR. Similarly, V itself becomes a G^-module.

If x^GRf we denote its image in Gκ under the natural epimorphism

GR-*GK by x. From our definitions it is clear that

vx = vx

The derived module V is in general not independent of the choice of

admissible lattice VR.

(2C) LEMMA. If VRi VR are two admissible lattices on a ^-module V, then

the corresponding derived Gκ-modules V, ψ have the same irreducible constituents. If

V is irreducible and p-unimodular, then V is independent of the choice of admissible

lattice VR, to within isomorphism.
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Proof. The first statement is essentially the same as a result of Brauer

[2, p. 954]. An alternative argument is as follows. Since VRV\VR is another

admissible lattice on V, we may suppose that VR 2 VR. We consider VR

and VR as U^-modules. We have ttVisomorphisms

(*VR+Vί)IV'B~πVRl(πVRΓίV'R).

Since VRjVR is finite, it follows that VRl(πVR+VR) and {πVRΠVR)lπVR have

the same composition factors. Since

(xVR+Vί)lπVR~Vίl(πVRnV'R)f

it follows that V = VRjπVR and V' = VίJπVR have the same composition

factors, as lU-modules. This implies that they have the same composition

factors as G^-modules.

The second assertion of the lemma follows immediately from (2B).

The lemma implies in particular that whether or not V is irreducible

does not depend on the choice of admissible lattice VR. It is possible for

V to be a reducible Gκ-module even though V is an irreducible g-module.

(2D) LEMMA. If V is an irreducible ^-module which is not p-unimodular,

then V is a reducible Gκ-module.

Proof Let v0 be a vector of highest weight in V, and ( , ) the contra-

variant form on V such that (vθ9 v0) = 1. By (2A), the form is integral on

the admissible lattice VR = v0UR.

We define a symmetric bilinear form on the derived module V, which

we shall also denote by ( , ), by taking (v,w) to be the residue class in K of

the element [v,uή of R, where v9 w^VR. By induction on m, using (3), we

have

{vp{Xr,m),w) = (ϋ,Wp{X-r,m)),

where r e Σ , m^O. It follows that

{vxr{i),w) = {ϋ,wx-r{t)),

where i^K. Thus, the radical of the form ( , ) on V,

Vo= {ϋ<ΞΫ\(ϋ,V)= {0}}

is a G^-submodule of V.
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Since the discriminant of the form on VR is not a unit of R, the form

( , ) on V is degenerate. It is not identically zero, since {vθ9 v0) = 1. Hence,

{OJcFocF, so that V is reducible.

On the other hand, an irreducible g-module is irreducible as a G^-module

by the following result.

(2E) LEMMA. If V is any ̂ -module, the &-submodules of V are the same as

the GR-submodules of V.

Proof By definition of GR(V), every g-submodule of V is a GΛ-submodule.

If r e 2 , ttΞR, then

xr(t ;V) = 1 + tp(Xr) + *Wr)2/2! + + t»p(Xr)»INl,

for some N. If we choose i V + 1 distinct values of tl9 t2, ,tN+1 of t in

R, then we can solve the resulting equations to obtain

N+l

p(Xr) = HatXrίtϊiV)
ί = l

for suitable at in L. It now follows that every G^-submodule of V is a

g-submodule.

We shall need some information concerning the arrangement of the

constituents of V, V' in (2C) in a special situation.

(2F) LEMMA. Let VR, VR be admissible lattices on a ^-module V, giving

derived Gκ-modules V, V'. Suppose that VR Ώ. VR9 and that V'R contains an element

v which is not in πVR. Then V' has a non-trivial quotient module which is isomorphic

with a submodule of V containing the residue class v of v modulo πVR.

Proof The inclusion map of V'R in VR induces a G^-homomorphism

Vf-+V whose image contains ϋ9 since v^VR. Since v$πVR9 v is non-zero.

The proof of the following lemma is straightforward and is omitted.

(2G) LEMMA. Let VR be an admissible lattice on a g-module V. If W is a

&-submodule of V, then WR = W Π VR is an admissible lattice on W and the derived

Gκ-module W may be identified with a submodule of V. When embedded in the

natural way, VR/WR is an admissible lattice on V/W and the corresponding derived

Gκ-module is isomorphic with V/W. If UR is an admissible lattice on another Q-

module U9 then UR ®R VR is an admissible lattice on U (£)L V when embedded in the

natural way, and the corresponding derived Gκ-module is isomorphic with U®KV.
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If F* is the dual space of V, regarded as the contragredient ̂ -module, then the dual

module V% of VR, naturally embedded in F*, is an admissible lattice on V*, and the

corresponding derived Gκ-module is isomorphic with the contragredient of V.

The group analogue of (lA) is the following result.

(2H) LEMMA. There exist automorphisms φ, φ of GR, Gκ respectively, both

of order 2, such that

φ(Xr(t)) = X-r(t),

φ{Xr{t)) = X-r{t),

for fl//YG2, t&R, teK.

Proof. We take a faithful g-module V such that P(V) = P9 so that

GR = GR{V), GK = GK{V). Using the automorphism θ of g given in (lA),

we make V into a new g-module F* by setting

voX = υθ{X) (z;eF,Xeg).

We have seen that F* is the g-module contragredient to V. If p, p* are

the representations of the universal enveloping algebra U in V, F* respect-

ively, then we see that

for all r e 2 , rn^>0. Thus, an admissible lattice VR on V is also an admis-

sible lattice on V*, and an analogous relation holds for the action of UR

on the derived V, V*. It follows that

Xr(t ;V*)=X-r(-t),

xr(t Vη = χ_r(- I),

for all r ε Σ , t&R, i<=K. Hence, GR(V*) = GR, GK{V*) = Gκ.

Since P{V*) = P{V), there are isomorphisms φ, φ of GR = GR(V) and

Gκ = GK{V) on GR(V*) and GK{V*) respectively, transforming xr{t) into

xr{t V*) and xr{i) into xr(t V*). These are the desired automorphisms.

If g<^GR, g<^Gκ, we shall denote φ{g), φ[g) as g*, g*. We remark that

if {vltυ2, } is a basis of an admissible lattice VR on a ^-module V and

{wu w2, ' } is the contragredient basis relative to a contravariant form

( , ), then
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(4)

where the matrices (gtj), (g*j) are contragredients of each other. If the

form is integral and unimodular on VRy so that the wt also form a basis of

VR, then we have the corresponding relations also for the action of Gκ on

the derived module V:

(5)

where the matrices (gtj), {gtj) are contragredients of each other.

Finally, we remark that the construction of Gκ can be carried out with

K replaced by any commutative ϋNalgebra with identity. In particular, if

Ω is an extension field of K and VR is an admissible lattice on a g-module

V9 then GQ(V) is defined as a group of linear transformations on the vector

space VR®RΩ over Ω. There is an obvious embedding of GK{V) in G0{V).

If P{V) = Pf then G0{V) is simply denoted GΩ, and Gκ is embedded in GΩ.

3. Brauer Characters

We require some results of Steinberg concerning the p-regular classes

of Gκ [15]. From now on, q will denote the number of elements of K.

Let Ω be the algebraic closure of K and take Gκ as embedded in GΩ,

Then, two p-regular elements of Gκ are conjugate in Gκ if and only if

they are conjugate in GΩ> and each p-regular element of Gκ is conjugate

in GΩ to an element of the Cartan subgroup φf l. Two elements of ξ)Ω are

conjugate in GΩ if and only if they are conjugate under the action of the

Weyl group W. If X is a character of P in Ω, then the element h{X) of ξ><?

is conjugate to an element of Gκ if and only if X is conjugate to Xq under

W. Thus, if A is the set of all such X, there is a 1-1 correspondence

between the set of ^-regular classes of Gκ and the set of orbits in A under

W. The number of p-regular classes in Gκ is qn, where n is the rank of

Let m be the #'-part of IG^I. We choose a fixed isomorphism between

the group of m-th roots of 1 in Ω and the group of m-th roots of 1 in the

complex field C. If ε is an m-th root of 1 in Ω, we denote the correspond-
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ing complex m-th root of 1 by ε0. Since the order of every p-regular

element of Gκ divides m, Xm = 1 for all χ e A Thus, for μ e P, X{μ)0 is

defined. Since X is determined by its values on the fundamental weights

λu every complex valued function / on the finite set A can be expressed

as a polynomial in the functions X \—> X{λi)0, and thus as a linear combination

(6) f(X)=J]cμX(μ)0,
β

where μ ranges over certain elements of P. If / is constant on each orbit

in A under W, then

f(X) = Σ CμX(w(μ))0,
β

for all w^W. Summing over W and dividing by \W\, we see that the

expression (6) for / may be taken to be symmetric under the action of W.

By the 1-1 correspondence between the ^-regular classes of Gκ and the orbits

in A under W, these symmetric expressions give all the complex valued

functions on the p-regular classes of Gκ.

For each element μ of the set P + of dominant integral functions in P,

we now define a complex valued function sμ on the p-regular classes of Gκ

by the formula

(7) 5,(0) = Σ * M o ,
v

where g is conjugate in GΩ to h(X) (X^A), and the sum is taken over all v

in the orbit of μ under W, Since every orbit in P under W contains an

element of P+, the symmetric expression (6) shows that every complex valued

function on the p-regular classes of Gκ is a linear combination of the sμ9

for various μ^P+. Since X and Xq are conjugate under W when X<=A, we

see easily from (7) that

(8) sqμ = sμ.

Since μ is the highest element of P occurring in (7), it follows easily that,

if μ9 p(^P+, then

V

where the sum is taken over certain elements v of P+ lower than μ + f>

(with possible repetitions).
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(3A) LEMMA. Let μ~^2lmili^.PJc. If m^q for some i, then s^=
i

where the sum is taken over certain elements v of P+ lower than μ.

Proof Since μ — qλi&P*, we see from (8) and (9) that

sμ = sμ-qλ.sλι — t e rms sV9 v < μ,

sμ-qhsh = sμ-iq-ί)λi + terms sp, p < μ — [q — ϊ)λi.

Since λt is positive, μ — (q — l)λt is lower than μ, and we obtain the desired

expression for sμ.

We now write Pq for the set of all elements μ = 2 nt^t of P+ such that

ϋ^ nti^q ~ 1 for all i. Since the number of ^-regular classes of Gκ is qn

9

the number of elements of Pq, we deduce the following result from (3A) by

induction in P+ .

(3B) COROLLARY. The qn functions sμ, μ e Pq, form a basis for the vector

space of complex valued functions on the p-regular classes of Gκ. In particular, if
+, then sp is a linear combination of certain sμ9 where J « G P 3 and μ^ίp.

Now let U(μ) be the irreducible g-module with highest weight μ,

The derived G^-module U(μ) obtained with a choice of admissible lattice in

U(μ) corresponds to the representation Gκ -> Gκ (U{μ)), which obviously ex-

tends to the representation Go-> GΩ{U{μ)). An element h(X) of $Ω is repre-

sented by a linear transformation whose matrix with respect to a suitable

basis is diagonal, with entries %(/**), where μt ranges over the weights of

U{μ), each counted with its multiplicities. If g is a p-regular element of

Gκ and X is an element of A such that g is conjugate to h(X) in GΩt then

the X(μi) are w-th roots of 1 in Ω9 and the Brauer character ψμ of U{μ) is

given by

(If L is taken as a subfield of the complex field C, so that Gc is defined

as remarked at the end of Section 2, and Xo is the character of P in C

given by X0{ι>) = Z(v)0(veP), then ψμ(g) = Ψ°μ(h(X0)), where ψQ

μ is the character

of the irreducible representation of Gc with highest weight μ. Thus, ψμ can

be computed from WeyPs character formula [12]. We remark also that ψ

is independent of the choice of admissible lattice on U(μ), and this gives

an alternative method of proving (2C).)

μ
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Since the μt are permuted among themselves by the Weyl group W,

and μ occurs only once, we can express ψμ in the form

(10) Φμ = sμ + Σlbμvsv9

where the coefficients bμv are positive integers and the sum ranges over

certain elements v of P+ which are lower than μ, By (3B), we can express

the sv in terms of various sp9 where ρ^Pqy p < μ. Thus, we may assume

that all the v appearing in (10) are elements of Pq lower than μ, if we

allow the bμv to be possibly negative integers.

For μ^Pqi we see by induction that we can solve the equations (10) to

obtain the sμ in terms of the ψμ :

(11) sμ = φμ + Σ cμ9φ9,

where the cμv are integers and the sum is taken over elements v of Pq lower

than μ. By (3B), we obtain the following result.

(3C) LEMMA. The qn Brauer characters ψμy μ^Pq, form a basis for the

vector space of complex valued functions on the p-regular classes of Gκ. Hence every

absolutely irreducible module of Gκ over an extension field of K is a constituent of

U(μ), for some

We shall write σ for the highest member of PQ,

(3D) LEMMA. The Gκ-module U(σ) is absolutely irreducible, of dimension qN

f

where N is the number of positive roots in Σ All other absolutely irreducible

modules of Gκ over an extension field of K have lower dimension. U{σ) is not a

constituent of U(μ), for

Proof We have WeyFs formula [12],

άmiκϋ{μ) = άιmLU(μ) = Π (*% δ + μ)l{r, δ)9

r>0

where δ = ΣUt a n ( i the product is taken over all positive roots r. For such
i

an r9 {r9λι) = - ^ (r, r)λi{Hr) ^ 0, and ( r ^ ^ O for some f, so that {r9δ)>0.

If JM = Σ ^ A, then

(r,δ
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Clearly, for JMG??, the largest dimension for ϋ(μ) is qN, where N is the

number of positive roots, and is obtained only when μ — σ.

By a result of Steinberg [14], Gκ has an absolutely irreducible module

of dimension qN in a field of characteristic p. It follows from (3C) that

U(σ) must be absolutely irreducible. Since dim U(μ) < dim U{σ) when

the other assertions follow.

(3E) THEOREM. Let' \K\ = q. For each μ e Pq, there exists exactly one

absolutely irreducible module F{μ) of Gκ over an extension field of K whose Brauer

character φμ has the expansion

(12) φμ = Sμ + Σ bμvsv,

where the bμv are integers, and the sum is taken over elements v of Pq lower than

μ. The F{μ) form a complete set of absolutely irreducible modules of Gκ in

characteristic p. For μ^Pq, F(μ) occurs as a constituent of U{μ) exactly once. For

any μ^P+, all constituents F{v) of U(μ) correspond to elements v of Pq such that

Proof Since the number of ^-regular classes in Gκ is qn, there are qn

absolutely irreducible modules in characteristic p. Denote these as Fi9

l^i^ίqn, and let φt be the Brauer character of Ft. By (3B), we have

equations

Ψί = Σ divsv,
V

where the div are complex numbers, and the sum is taken over all v e Pq.

Suppose that there exists an element μ of Pq such that U{μ) has a con-

stituent Ft for which dίv ψ 0 for some v in Pq higher than μ. Assume that

v is the highest member of Pq with this property. Of course, μψσ, and

By (9), (10), (11),

where the kp are complex numbers and the sum is taken over elements p

of Pq different from σ. Expanding both sides in terms of the irreducible

Brauer characters, we see by (3D) that ψa occurs as an irreducible part of

the character ψiφa-v of the module Ft (x) U(σ — v). Thus, ϋ{σ) is a constituent

of Ft (x) U(σ - v), and hence of U{μ) (g) U(σ - v). Now, by (9), (10), (11),
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ΦμΦc-u = Φo-»*μ + Σ Crφt ~

where the cr, df, are positive integers and the sums are taken over certain

τ, p in Pg lower than σ — v + μ. Thus, the module

(U(μ)(g)U(σ-v))®ΣdpU(p)
P

has the same absolutely irreducible constituents as

Hence, ϋ{σ) is a constituent of the latter module, contradicting (3D).

Thus, if μ^Pq, every irreducible part of ψμ can be expressed in terms

of the sv with vGPς, v<μ. In particular, there is an absolutely irreducible

constituent of U{μ) whose Brauer character has highest terms sμ (with some

non-zero coefficient). Since this is so for each of the qn elements of Pq9

it follows that, for μ^Pq, there is exactly one irreducible Brauer character

with sμ as highest term. We call this character <pμ> and the corresponding

module F(μ). Then the absolutely irreducible constituents of U(μ) are F(μ),

occurring with some multiplicity, and possibly certain F{v), with v < μ.

Suppose that F(μ) occurs in ϋ(μ) with multiplicity aμ. Then we see

that

ΨμΨa-μ = aμaσ.μψμψa.μ + ,

where the missing terms involve products ψvψp9 where v, p^Pq, v + ρ<σ.

Since sσ occurs in the expansion of <pμφa-μ in terms of the sT9 ψσ occurs in

its expansion in terms of the φt. Thus, U{σ) = F{σ) occurs as a constituent

of U{μ) (x) U(σ — μ) at least aμaβ~μ times. But we know that it occurs exactly

once, from the expression of the Brauer characters by the sτ. Hence,

aμ = aa..μ = 1.

We now have equations of the form

ψμ = Ψμ + lower φ's,

which can be solved, giving

Ψμ = Ψμ + Σ Cμvφv9
V

where the cμv are integers and the sum is taken over elements v of Pq lower

than μ. Using (10), we obtain the expression (12).
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Finally, for any element μ of P+, let v be the highest element of Pq

such that F{v) is a constituent of U(μ). Using (12), we see that the expres-

sion for the Brauer character ψμ of ϋ[μ) in terms of the sp,p^Pq, has highest

term sv (with some coefficient). Hence, v<μ, by (10) and (3B).

(3F) COROLLARY. All the absolutely irreducible modules for Gκ in character-

istic φ can be realized over K. Every irreducible module for Gκ over K is absolutely

irreducible.

Proof The trace φμ of the absolutely irreducible module F{μ) for Gκ

over Ω is obtained from (12) as

ψμ = sμ + Σ bμvsv,
V

where, for each μ^Pq, sμ is the function from the p-regular calsses of Gκ to

Ω given by the corresponding formula to (7),

sμ(g) =

where g is conjugate in GΩ to h{X) {X^A), and the sum is taken over all v

in the orbit of μ under W. Since Xq is conjugate to X under W, we obtain

so that sμ{g)^K. Hence, all the traces φμ have their values in K. By a

theorem of Brauer [1], all the F{μ) can be realized over K. The second

assertion follows from the first, since K is a perfect field [4],

(3G) COROLLARY. Let μ,v,p(ΞPQ. If F(p) is a constituent of F{μ)(g)F(v),

then p^Lμ + v. If μ + v^Pq, then F(μ+v) occurs exactly once as a constituent of

F(μ)®F(υ).

Proof For μ^Pq, we can solve the equations (12) to obtain

Sμ = ψμ + Hcμvφv,
V

where the sum is taken over elements v of Pq lower than μ, and the cμv are

integers. Using (12), (9) and (3B), we can calculate an expression for ψμψv

in terms of the ψp to obtain the result.

4. An lrreducibility Criterion

We shall now determine a necessary and sufficient condition for the

lrreducibility of the G^-module derived from an irreducible β-module whose
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highest weight lies in Pq. We shall use an argument which will be adapted

to the construction of the irreducible G^-modules F(μ) in general in the

next section.

For i = 1, , n, let V(i) denote a g-module whose highest weight is

λu occurring with multiplicity 1. For example, V{i) can be taken as the

irreducible module of highest weight λu We choose an admissible lattice

V(i)R on V(i), and take a regular basis {x(i)0, x(i)u •}, where x(i)0 has

weight λu so that the other x(i)j have lower weights. Choose a non-

degenerate contravariant form on V(i) and let {y(i)θ9 y(i)i, •} be the basis

of V(i) dual to {x{i)Ot x(i)u •} with respect to this form. Then the y(i)j

are also weight vectors and we may assume that y(i)0 = x(i)0.

Now take any element μ of P+, say

n

μ = Σ wiiλu
i = l

where the mt are non-negative integers. Let V(i)(m^ be the mt-th symmetric

power of V(i), i.e., the space of all homogeneous polynomials over L of

total degree mt in x(i)0, x{i)i, . Then

V(μ) = F(l) ( mi }(x). -0V(nYm^

is a β-module, consisting of homogeneous polynomials υ = f(x{i)j) in the

x{i)j. Thus, V(μ) is also a G^-module, the action of an element g of GR

being given by

vg = f{x(i)jg),

where x(i)jg is the image of x{i)j under the action of g on V(i), considered

as a G^-module.

We now form a regular basis of V(μ), consisting of the monomials

(13) x,= U x(i)βjuφ,

where, for each i, *ξ}β{i,j) = mί9 and β stands for the family of exponents
J

β(i,j). We shall similarly write

and remark that these elements form another regular basis of V(μ). The

monomial
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%o = Π x(i)om'
i

is a vector of weight μ and all other monomials xβ have lower weights. I t

follows that t h e ' g-submodule U(μ) of V(μ) generated by x0 is irreducible of

highest weight μ.

By (2E), U(μ) is the subspace generated by all the vectors xog, g e GR.

We have equations

(14) x{i)og = Έlg{i)jX(i)j9
j

for i = 1, , n, where g{i)j&R. A calculation shows that, in terms of the

basis (13),

(15) #o0 = Σ cβgβxβ

where gβ is the element of R obtained by substituting g{i)j for x{i)j in the

expression for xβ9

(16) ft= ITrti)?"'".

and C0 is a product of polynomial coefficients,

cβ=U(mtllβ(i90)lβ(i9l) ! • . . ) .

We remark that ĉ  is always an integer.

An element of V(μ),

(17) v = ξ l r f ^ ,

lies in U(μ) if and only if ψ(v) = 0 for all elements ψ of the dual space of

V{μ) which vanish on the elements (15). Setting aβ = <f>{xβ), we see that

if and only if

(18) J f l ^ = 0,

for all aβ such that

(19) ^ cβaβgβ = 0,

for all

For each ft define an operator Δβ on F(/0 by setting
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Jβ = Π

where the partial differentiations are carried out in the usual way on the

elements of V(μ) regarded as polynomials in the x{i)j. We see that for the

element (17),

(20) CβJβV = mχ\ mn\dβ.

If an element w of V(μ) is expressed in terms of the y(i)j (rather than the

x{i) j) in the form

w =

we define an operator

(21) Λ*=

by replacing each y(i)j by djdx{i)j. Also, if g is an element of GR giving

coefficients g{i)j9 gβ as in (14), (16), we write

(22) w{g) = | ] eβgβf

the element of L obtained by substituting g(i)j for y(i)j in the expression

for w. We say that w vanishes upon specialization to elements of GR if w{g) = 0

for all g^GR, and set

(23) W(μ) = {we V(μ) I w(g) = 0, all gtΞ GR].

Setting eβ — cβaβy and using (20), (21), (22), (23), we see that the conditions

(18), (19) may be restated in the form

U(μ) = {veV(μ)\Jw{υ) = 0, all weW(/0}.

If we now set

(24) (v,w) =Δw{υ),

we obtain a non-degenerate bilinear form on V(μ), the elements

{Cβ/tnil - mn\)wβ

forming a basis dual to the vβ. Thus, U(μ) and W{μ) are orthogonal com-

plements in V(μ) with respect to this form.
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(4A) LEMMA. Let v,w<=V(μ), g,h^GR, and let g* be the image of g under

the automorphism given by (2H). Then

(a) Δwg*(vg) = Δw{υ),

(b) (wg*)(h) = w(hg~η.

Proof. As the calculations for both assertions are quite similar, we prove

only (a). Express v, w as polynomials in the x(i)j9 y(i)j respectively,

υ = f(x{i)j), w = h(y(i)j).

By (4), tix(i)'j = x(i)jg, y(i)/ = y(i)jg, then

yd)/ = Έgd)

where, for each /, the matrices {g(i)Jk)9 (g{i)%) are contragredients of each

other,

ψg{i)*kg(t)mk = δjm.

We now compute that

dldx(i)k = I]g(i)mAdld%{iΏ,
m

(f);) = Hg(i)%(dldχ(i)kj.
k

Thus, substitution of djdx{i)k for y(i)k in the expression for wg* is tantamount

to substitution of djdx{i)/ for y(i)/. Since wg* = h(y{i)/)9 vg = f(x(i)/)t we

see that

Δwg*(vg) = h(dldx(t)/)f(x(i)/) = Δw(v).

(4B) COROLLARY. W{μ) is a Q-submodule of V(μ).

Proof This is immediate from (4A) (b), (2E).

(4C) COROLLARY. V(μ) = U{μ) © W(μ).

Proof Using the assumption that y(i)0 = x{i)Oy we calculate for the

monomial x0 of weight μ that

ΔxJx0) = m1! mn !τ f c0,
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so that xo<£W(μ). Since U{μ) is an irreducible g-submodule of V{μ)9 U{μ)Π

W{μ) = {0}. Since U(μ) and W(μ) are orthogonal complements with respect

to the form ( , ), we have the result.

For i = 1, ,n, let V(— i) be the dual space of V(i), regarded as the

g-module contragredient to V(i)9 and let {x(—i)0, x(— i)u •••} be the

(regular) basis of V(— i) dual to the basis {x{i)0, x{i)u •} of V{i). The

basis {y{— i)θ9 y{— i)u - •} of V{— i) dual to the basis {y{i)0, y{i)i, •}

of V(i) is easily checked to b e c o n t r a g r e d i e n t to {x{— i)θ9 x{— i)u * •} in

t h e sense of Section 1. T h e g-module

V(- μ ) = V{- i)<mi> (g). . . (x) V(- n)
{mn\

consisting of h o m o g e n e o u s polynomials in the x(— i)Jf has a regu lar basis

consisting of t h e m o n o m i a l s

There is a vector space isomorphism of V(μ) with V(— μ)9 mapping yβ

on X-β, for all β. If w^V(μ), we denote the corresponding element of

V{-μ) by w*. Then, if

(wg*)* = w*g.

If we now define, for v, w

then, by (4A) (a), we obtain a non-degenerate bilinear pairing of V(μ) and

V(—μ) which is invariant under GRt i.e.,

<vg, w*g> = <pf w*>,

for g^GR. An argument as in the proof of (2E) shows that

(υXf w*> + <ϋ, w*X> = 0

for Zeg. We note that the basis of V(μ) dual to the basis {x-β} of V{—μ)

is the basis {cβxβ}.

Now set

U{-μ) = {u*\ut=U(μ)}9 W(-μ) = {w*\w

Then ί/(— i«) is the irreducible g-submodule of V(—μ) generated by the

monomial
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i

of to&rt weight —μ in F(— μ), and W{—μ) is the set of all elements of V(—μ)

which vanish upon specialization to elements of GR, in the obvious sense.

Since U(—μ) is the subspace of V{—μ) orthogonal to W{μ) with respect to

the form < , >, we have an induced non-degenerate invariant bilinear pairing

between U{—μ) and V(μ)IW{μ), which are thus contragredient g-modules.

We have admissible lattices

V(μ)R = ]ξj Rxβ, V(-μ)R =

on V(μ), V(—μ), and obtain admissible lattices

U(μ)R = U(μ) Π V(μ)R, W(μ)R = W(μ)

tf (-J«)* = U(-μ) Π 7(-/i)Λ TΓ(—/f)Λ = W(-μ) Π 7(-/ι)Λ

on ί/(j«), W(μ), U(—μ), W{—μ). We also have admissible lattices

on F(JM), F(—j«). These are the dual i?-modules to V{—μ)Rf V{μ)Ri with

respect to the bilinear pairing < , >. We set

U(μW = U(μ)ΠV(μ)R', U{-μ)R' = U(-μ)ΓlV(-μ)R'9

admissible lattices on U(μ), U{—μ).

We now obtain derived G^-modules Ϋ(μ), ϋ(μ), W(μ), Ϋ(μ)', ϋ(μ)'f etc.

from the admissible lattices V(μ)R, U(μ)R, W{μ)R, V(μ)R,U(μ)Rf etc., and, by

(2G), we immediately have

(4D) LEMMA. Ϋ{μ)'9 Ϋ(μ), ϋ{μ)\ V{μ)IW{μ) are contragredient to Ϋ(-μ),

Ϋ(-μY, Ϋ(~μW{-μ), ϋ(-μ)'9 respectively.

Clearly, V(μ)R'QV(μ)R, xoeV(μ)R'$ x«$πV(μ)R.

By (2C), (2F), we obtain

(4E) LEMMA. U(μ), U(μY andV(μ)/W(μ) have the same irreducible constituents;

and U(μY has a non-trivial quotient module isomorphic with a submodule of ϋ(μ)

containing xQ.

(4F) LEMMA. Let /ί,yG?+. Then,

(a) V(μ)IW(μ) is isomorphic with a submodule of
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(V(μ + v)IW{μ + i>)) (X) V{-v).

(b) U{μ) is isomorphic with a quotient module of

U(μ + v)® V(-v).

Vroof Let v — Σ Mifa The ^-module V{μ + v) (x) V{—u) consists of

homogeneous polynomials

w =

of certain degrees in the y{i)j9 x(—i)j9 and W(μ + v) (x) V(—v) consists of

those for which

f(g(i)j, *(-i)j) =0,

for all g in Gβ, where the left side is the polynomial in the x(—i)j obtained

by substituting the appropriate g(i)j for the y(i)j.

Now set

i j

Since the x{—i)j form the basis of V{—i) dual to the basis of V{i) formed

by the x(i)jΊ with respect to an invariant bilinear form, z is annihilated by

the action of g. Hence, the map

η : V(μ) -> V(μ + v) <g> 7(-v),

ίy(i ) = VZ,

is an injective g-homomorphism.

Let g&GR. For a given /, if Σ\x(i)jX{—i)j is expressed in terms of
j

the y(i)j and α;( —z)^, and then g{i)j is substituted for 3/(f)/» the result-

ing linear polynomial in the x(—i)j is non-zero, since the g(i)j are not all

0, and the x{i)j are related to the y{i)j by an invertible linear transforma-

tion. Hence the same procedure applied to z gives a non-zero polynomial

in the x(~i)j. Thus, for t/εFW, vz^W{μ + ι>) (x) 7(—v) if and only if

In other words,

η(W{μ)) = η{V(μ)) Π (W(jW + v) (X) F(—p)).

Hence, V{μ)/W{μ) is isomorphic with a submodule of V(μ + v) (x) F(—

(W(jκ + v) (x) F(~y)), which in turn is isomorphic with (V(μ + v)fW{μ + v))

V{—v), and (a) is proved.
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The same argument with i and —i interchanged proves the same result

with μ, v replaced by — μf — v. Taking contragredients, we obtain (b).

Of course, since U(μ) ~ V{μ)/W{μ), and U(μ + *) — V(μ + v)IW{μ + v), (b)

follows immediately from (a) by complete reducibility. However, we give

the above argument because of its application to the situation in character-

istic p (see (5D)).

We shall use a rather special result about contragredient modules for

a group.

(4G) LEMMA. Let X, Y, Z be modules for a group G over a field K, and

let X* denote the contragredient of X.

a) X and Y have non-trivial quotient modules which are contragredients of each

other, if and only if X(x)Y has a quotient module isomorpkic with the trivial G-

module K.

(b) If Y is irreducible and Z is isomorphic with a submodule of X*(x)Γ,

then Y is isomorphic with a quotient module of X(g)Z.

(c) If Y is irreducible and Z is isomorphic with a quotient module of X*(x)Γ,

then Y is isomorphic with a submodule of X(g)Z.

Proof. If X®Y has a quotient module isomorphic with K then there

is a non-trivial bilinear pairing ( , ) of X and Y into K which is invariant

under G. If

Xo= {XΪΞX\(X,Y) = {0}}, Yo= {y<ΞY\(X,y) = {0}},

then Xo, YQ are proper submodules of X, Y, and ( , ) induces a non-degenerate

invariant bilinear pairing of X/Xo and Y/Yo, so that these are contragredients.

The reverse argument proves the converse. This proves (a).

If Z is isomorphic with a submodule of X* (x) Y, then Z* is isomorphic

with a quotient module of X®Y*9 so that, by (a), {X®Y*)®Z has a

quotient module isomorphic with the trivial module K. Since

γη®z~(X(g)Z)® Y*,

and Y ~ (F*)*, it follows from (a) that, if Y is irreducible, then Y is iso-

morphic with a quotient module of X®Z. This proves (b), and (c) follows

by taking contragredients.

We can now prove the following irreducibility criterion.
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(4H) THEOREM. Let μ^PQ9 i.e., O^mi^q — 1 for all i, and let U(μ)

be the irreducible %-module of highest weight μ. Then the derived Gκ-module U{μ)

is irreducible if and only if U(μ) is φ-unimodular.

Proof By (2D) we need prove only that ϋ(μ) is irreducible if U{μ) is

2>-unimodular. In this case the derived module U{μ) is independent of the

choice of admissible lattice, by (2C).

Suppose that U{μ) has an irreducible submodule isomorphic with F{p),

ptΞPq. By (3E), p^μ. By (4E), (4F) and (2G), we see that F{p) is iso-

morphic with a submodule of (V{σ)/W{σ)) (x)F(—(σ—μ))9 where σ is the highest

element fa-l) ΣJU of Pq. By (3D) and {4E),V(σ)IW(σ) is irreducible, V(σ)/W(σ)

~F(σ). By (4D) and (4G), F{σ) is isomorphic with a quotient module of

V{σ—μY (x) F(p). Every irreducible constituent of the g-module V{σ — μ) is

isomorphic with some U(τ), where τ^σ — μ. By (2C) and (3E), every

irreducible constituent of the G^-module V{σ — μ)' is isomorphic with some

F(v), where v<=Pq, v<σ-μ. By (3G),

σ ^σ — μ -r P,

so that p ^ μ, and so p = μ. Thus every irreducible submodule of U(μ) is

isomorphic with F{μ).

Using (4F) (b) and (4G) (c), we prove in the same way that every

irreducible quotient module of ϋ{μ) is isomorphic with F(μ). Since F(μ)

occurs ΊnU{μ) with multiplicity 1, by (3E), it follows that U(μ) is irreducible,

U(μ)~F(μ).

EXAMPLE. We illustrate (4H) by applying it to the fundamental irre-

ducible g-module U{λi)> in the case that g is simple of type Bn.

We may take g as the orthogonal Lie algebra of a (2n + l)-dimensional

vector space V with a non-degenerate symmetric bilinear form of maximal

Witt index [8, p. 138]. We may assume that the form has matrix

/ * \

1 *
2

1
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with respect to a basis {#_n, ,X-U %o> %u *

roots of q may be expressed in the form

cύj ±ωk, 1 ^ ; <k<n,

and then the fundamental roots are

>#nl of V. The positive

Denote by ejk the linear transformation on V such that

Then root vectors Xr satisfying Chevalley's conditions may be chosen as in

the following table

teo.j —

ej0 — 2e0»— j

e-,Λ — e-k.j

— eJ,-k

<Oj-

ekj-e

ωk

-j,-k

-k,-j

Xr

For i = 1, , n — 1, the irreducible module U{λt) is the exterior power

K acted on by Q in the natural way. The vector v0 = XXA Λ#< is of

the highest weight Λf, and one checks easily that V^R has an i?-basis con-

sisting of all vectors

v = xklΛ * ΛVki, — n ̂ ki <k2 < ' <ki^n,

Further, this is an orthogonal basis of U{λi) with respect to the contravariant

form, and with the normalization (vOf v0) = 1, the value of (v9 v) for the above

vector v is 2 if 0 occurs as one of the indices klf , ku and 1 otherwise.

Thus the discriminant of U(λi) is

Hence, U{λi) is irreducible if and only if p ψ 2.

The spin module U(λn) has discriminant 1 and so U(λn) is irreducible,

whatever p is (see (7E)).

These results may be compared with that of Springer [13, Thm. 4.2],

which implies in this case that, for i = 1, , n — 1, a sufficient condition
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for U(λi) to be irreducible is that p should not divide

(2w - 2ί + 2) (2w - 2ί + 3) (2w - i + 1).

We remark that Springer's condition is computed just from a knowledge of

the weight structure of the g-module concerned.

A similar calculation in the case that g is simple of type Dn shows that

the two spin modules U{λn-ι), U{λn) and the module Ufa) corresponding to

the representation of g as an orthogonal Lie algebra of a 2n-dimensional

space all have discriminant 1, so that Ufa), U(λn-i), U{λn) are irreducible.

For i = 2, , n — 2, Ufa) is irreducible if and only if φ ψ 2.

Calculation of the discriminants of the Ufa) in the case when g is

simple of type Cn appears to be difficult. Numbering the fundamental

weights λi in the way corresponding to the numbering of fundamental roots

given in [8, p. 135], we find that the discriminants of Ufa), Ufa), Ufa) are

1, n, (n — l)2n, respectively. For i > 3, we have not computed the discrimi-

nant of Ufa), but we can show that it is divisible

Springer's condition implies that it is a divisor of some power of

(n - i + 2) (n - i + 3) (n - i + j + 1),

where j is the integer part of ~^~ i.

In the case when g is simple of type Any all the fundamental modules

Ufa) have discriminant 1 (see (7E))5 and so the Ufa) are always ir-

reducible.

5. The Irreducible Modules

In order to give a description of the irreducible Gκ -modules, we shall

assume that g satisfies the following property:

(*) For i — 1, , n, g has a module V{i) whose highest weight is λit

occurring with multiplicity 1, such that V(i) has an admissible lattice V{i)R

and a contravariant form which is integral and unimodular on V(i)R.

In general, the irreducible g-module of highest weight λi does not fulfil

the above condition. However, it seems likely that the property (*) is al-

ways satisfied. In the last section we shall indicate how it is verified for

the cases when g is simple of type An, Bn, Cn, Dn, Eβ, F4, G2.
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We now suppose that, in the situation set up in Section 4, the modules

V(i) are chosen in accordance with (*). The significance of the property

is that the contravariant form on V(i) induces a non-degenerate form on

the derived module V{i). Equivalently, both the basis {x[i)0, %{i)i, •} and

the contragredient basis {2/(1)0, V(i)u } are bases of V(i)R over R, so that

Λve have corresponding bases [x[i)θ9 x{i)u " * * L {y{i)o, y{i)u * *} oΐV(i) over ϋC.

The derived module V(μ) of F(μ) may be identified with

and has a basis consisting of monomials

*, = π *(i)5« '\

and another basis consisting of monomials

If g^Gκ, we write equations analogous to (14), (16),

J

[ g(i)flij:>,

and if w = Σ /̂92/̂  is an element of V{μ), we set

analogously to (22). We say that w vanishes upon specialization to elements

of Gκ if ω(g) = 0 for all g&Gκ, and set

W(μ) = {weΞΫ(μ)\w(g) = 0, all

(5A) LEMMA. W'(JW) W a Gκ-submodule of V{μ), containing W{μ).

Proof. The analogue of (4A) (b) holds, and the first statement follows

immediately. If w^V{μ)Ry g^GR, and w, g are the corresponding elements

of V{μ), Gκ, under the natural maps, then w{g) is the image of w{g) under

the residue class map R-+K. If also w^W(μ), it follows that w^W{μ)9

since the natural map GR-+GK is an epimorphism. Hence W{μ)QW{μ).

In an exactly similar way, we obtain a submodule W(—μ) of V{—μ)

consisting of the elements vanishing upon specialization to elements of Gκ,

in the appropriate sense.
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We now let U(μ), U{—μ) be the submodules of V(μ)'9 V(—μ)' orthogonal

to W{—μ), W{μ) with respect to the non-degenerate invariant pairings of

V(μY with V(—μ), and V(—μ)' with V(μ), obtained from the pairings of V(μ)ί

with V{—μ)R, and V(—μ)ί with V{μ)R, given in Section 4. Let xOf x% be

the elements of V(μ)'9 V(—μ)' corresponding to the elements x0, x* of V(μ)'R,

V{—μ)ϊι Using calculations like those at the beginning of Section 4, we see

that the following holds.

(5B) LEMMA. U{μ), U(—μ) are the Gκ-submodules ofϋ{μ)', Ό{—μ)f generated

by xθ9 x* respectively. U(μ)9 V(μ)/W(μ) are contragredient to V{—μ)/W{—μ), U{—μ)

respectively.

In the G^-homomorphism of U{μ)' into ϋ{μ) given in (4E), the element

x0 maps on x0, as may be seen by the proof of (2F). Hence, we have

(5C) LEMMA. ϋ(μ) has a non-trivial quotient module isomorphic with a

submodule of ϋ{μ) containing x0.

Now a proof completely analogous to that of (4F) gives the following

result.

(5D) LEMMA. Let μ, yG?+. Then

(a) V{μ)/W{μ) is isomorphic with a submodule of

(b) U{μ) is isomorphic with a quotient module of

The argument of the proof of (4H) may be applied to give the next

result.

(5E) LEMMA. Let μ(=Pq, i.e., O ^ m ^ ^ - 1 for all i. Then V(μ)/W(μ)

has a unique irreducible submodule, which is isomorphic with F{μ), and ϋ(μ) has a

unique irreducible quotient module, which is also isomorphic with F{μ).

(5F) THEOREM. Assume that g has the property (*). Let μ<^Pq, and let

X{μ) be the Gκ-submodule of V(μ) generated by x0. Then X{μ) n W(μ) is the unique

maximal submodule of X(μ)9 and

X(μ)lX(μ)nw(μ))~F(μ).
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Proof. Since xo$W{μ), X(μ)/{X(μ)Γ\W(μ)) is isomorphic with a non-trivial

G^-submodule of V{μ)IW{μ), and so, by (5E), it has a unique irreducible

submodule ZI(X{μ)ΠW(μ)), which is isomorphic with F(μ). By (5C), U{μ)

has a quotient module isomorphic with a submodule Y of U{μ) such that

Y Ώ X(μ) 2 Z.

By (5E), F has a unique irreducible quotient module, isomorphic with F{μ).

If Y ψZ> F(μ) would occur with multiplicity at least 2 in U(μ), contradict-

ing (3E). Hence, X(μ) — Z, so that we have the asserted isomorphism, and

X(μ) =Y, so that X{μ)Γ\W(μ) is the unique maximal submodule of X(μ).

6. Tensor Product Theorem

We continue to assume that Q has the property (*), and proceed to

give a proof of Steinberg's tensor product theorem, which expresses the

irreducible modules F{μ) in terms of those for which 0 < μ(Hi) ̂  p — 1 for

all i.

Every automorphism 7 of the field K induces an automorphism of GKy

which we also denote by 7, carrying each xr,κ{t) into xr,κ(ir). Then, any

G#-module X is made into a new G^-module Xr by defining the new action

vog = vgr (v(=X,g^Gκ).

Clearly X7 is irreducible if X is. In particular, if ϊ is the automorphism

t -+ tp of K, we write X*» for Xr\

Clearly 7 extends to an automorphism of the algebraic closure Ω of K

which induces an automorphism of GΩ transforming an element h(X) of ξb

into h(Xp). Hence, if an element g of Gκ is conjugate in GΩ to A(χ), then

gr is conjugate to h{Xp). Now, if j«εP+, it is clear from (7) that

sμ{gr) = spμ{g).

If μ^Pq and φμ&.Pq9 then a computation of Brauer characters shows that

F(pμ) is a constituent of F(μ)p. Since the latter is irreducible,

F{μ)*~F{φμ).

This situation can occur with some non-zero μ only if q = pr

t r > l , and

we now assume this is the case. Set

*ι = (P ~ 1) Sλi σi = W ~

https://doi.org/10.1017/S0027763000014653 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014653


REPRESENTATIONS OF CHEVALLEY GROUPS 71

so that σu σ2ePg, and

the highest element of Pq.

(6A) LEMMA. ϋ{σx) (g) U(σ2)
p 21 U(σ).

Proof. The left side contains as constituent the module F(σx) (g) F{σ2)
p =

F{ax) (x) F(pσ2), which in turn has as constituent F{σx + pσ2) = F{σ) = U{σ).

By WeyΓs dimension formula, U(σi) (x) U{σ2)
p has the same dimension as U{σ)f

and so is isomorphic with it.

We notice that the proof shows that U(σχ) is irreducible. A similar

argument shows that U(μ) is irreducible when μ. has the form (ps —

< s < r.

If μ^Pp, μ2^P<iiv, i.e.

μi = yΣιmίλίf O^nii^φ — 1, all /,
i

^2 = Σ3 ̂ ^ i > 0 ^ ^ i ^ ί? 7"" 1 — 1, a l l /,

then clearly μx + ^ 2 e ? g , σ\ — μ\^Pv, σ2 —

(6B) LEMMA. If μx&Pq, μ2^P<i/P, then

Proof We know that the left side, which is isomorphic with i 7 ^ ) (8)F{/pμ2),

has highest constituent F ^ + pμ2), occurring with multiplicity 1.

Suppose that F(r) is isomorphic with a submodule of F{μ1)®F{μ2)
p

y so

that τ ^ μx + pj"2. By (5E), (5D), F(τ) is isomorphic with a submodule of

) ® F(-(cn-^)) ® (V(σ2)IW(σ2))p (x) F(-(σ2 - /£2))̂ .

By (5A), (4E), (6A), this is isomorphic with

U{σ) (g) F(-(*i ~ Λi)) (X) F(-(σ2 - μύ)*.

Since J7(σ) is irreducible, we may apply (4G), (4D) to see that U{σ) is iso-

morphic with a quotient module of

F(τ) (X) Ϋ(σi - μι)
r ® (V(σ2 - μ2)T

The highest irreducible constituents of V(σι — μx)' and {V(σ2 — μ2)
r)p are

F{σx — ̂ 2) and F(^σ2 — P/Ί) respectively. By (3G), we must have
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σ ^ τ + [σx — μj + {pσ2 — pμ2),

SO that τ^μi + pμ2y and SO τ = μx + Pi«2.

Similarly, we may use (5E), (5D) (b) and (4G) (c) to show that an

irreducible quotient module of F{μλ) ®F{μ^p must be isomorphic with

F(μi + jP/̂ 2). Since this occurs just once as a constituent, we have the

asserted isomorphism.

(6C) THEOREM. Assume that 3 has the property (*). Let \K\ = q = pr.

Then, every irreducible Gκ-module can be written uniquely in the form

where μj^PPfj = 0,1, , r — 1. Conversely, every such Gκ-module is irreducible.

Proof Since the number of such tensor product expressions is

\PP\
r = Pnr = Qn,

which is the number of irreducible G^-modules, it is enough to show that

every irreducible G^-module F{μ) can be written in the desired form.

If μ = Σ m^eP^, we can expand each coefficient mt p-adically
i

mt = Σ ntijPJ, 0 ̂  πiij ^ p — 1.

Setting μj = ^mijλu we have
i

r-1
, μ = Jl

Repeated application of (5B) now shows that F(μ) is isomorphic with the

tensor product of the asserted form.

We remark that the theorems (3E), (5F), (6C) were proved by Brauer

and Nesbitt in the case when g is simple of type Λlf by Mark in the case

of type A2y and by the author in the case of types An, Cn [3], [10], [16].

Completely explicit descriptions of the modules F{μ) and formulas for their

dimensions and Brauer characters were found by Brauer and Nesbitt, and

Mark, in the cases Λu A2.

https://doi.org/10.1017/S0027763000014653 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014653


REPRESENTATIONS OF CHEVALLEY GROUPS 73

7. The Property (*)

For brevity we shall say that a g-module V is suitable if it has an ad-

missible lattice VR and a contravariant form which is integral and unimodular

on VR.

(7A) LEMMA. If V is a suitable ^-module, then so is every exterior power
k

ΛK

Proof. Take an admissible lattice VR on V, and a contravariant form

( , ) which is integral and unimodular on VR. With Xr,m denoting Xΐ/ml

as in Section 2, we have the formula

(ί>lΛ AVk)Xr%n = Σfal^r.m^Λ Λ(^X r > mJ,

the sum being taken over all ^-tuples (mu ,mk) of non-negative integers
k

such that mi + + mk = .m. This shows that the exterior power ί\VR,
k

naturally embedded in f\V, is an admissible lattice. The form ( , ) on V
k

induces naturally a bilinear form on /\V, which we denote also by ( , ), such

that
Λvk, wiA hwk) = Σ eWfe, «Ui))(ι;2, woω) {vk, wβ(k)),

the sum being taken over all permutations σ of {1,2, ,fc), with ε(σ) being

the sign of σ. This form is easily checked to be contravariant. We can

choose two bases {#J, {yt} for VR which are dual with respect to the

original form ( , ), i.e., (xi9yj) = dij. Then the bases {xtlA AXik},

k

{y^A Aylk] (iί < < ik) are dual bases of /\VR, so that the contra-
k

variant form we have defined is integral and unimodular on AVR.

We recall that weights of a g-module V which are conjugate under the

Weyl group W occur with the same multiplicity. A weight μ for V is called

a frontier weight if there is no root r such that μ + r, μ—r are both weights

of V. If V is irreducible, the frontier weights are precisely the conjugates

of the highest weight under W, and so occur with multiplicity 1.

(7B) LEMMA. Let μ be a frontier weight of a Q-module V which occurs with

multiplicity 1, and let v be a conjugate of μ under the Weyl group W. Let vμ, υv

be the vectors of a regular basis of V, of weights μ, v. Then, if ( , ) is a contra-

variant form on V,
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(vμ, vμ) = u2(vv, vv),

for some unit u of R.

Proof. Clearly, we may assume that v is obtained from μ by reflection

with respect to a root r. Replacing r by — r if necessary, we then have

v = μ — mr,

for some positive integer m. Setting

and using the fact that μ is a frontier weight, we see as in [8, p. 113], that

the β'-submodule of V generated by vμ has a basis yOf yl9 ,ym, where

y0 = υμ and

ViX-r = Vi+U VmX-r = 0, I = 0, , m — 1,

y0Xr = 0, ytX"r = i(m — i + l)yt-i, i = 1, , m.

Since t/m has weight μ — mr = v and y occurs with multiplicity 1, we have

for some a^L, aψQ. A calculation shows that

Thus, (mlJ^Gi?, so that a= τn\u, for some κ in i?.

Also, we calculate that

*λX,m = a-ιymXr,m = arιm\y0 = u~ιυμf

so that u~x^R. Hence, u is a unit of i?.

Now the contravariance property (3) shows that

{Vμ,Vμ) = {uVvXrtm,Vμ) = {uVv,VμX_rtm) = (uVvfUVv),

proving the assertion of the lemma.

(7C) COROLLARY. TjΓ F w αw irreducible ^-module whose weights are all

frontier weights, then V is suitable.

Proof. Let v0 be the vector of highest weight in a regular basis of V

and choose the contravariant form on V so that {vθ9vo) = l. Since all frontier

weights are conjugate under the Weyl group, and since vectors of different

weights are orthogonal with respect to ( , ), the result follows immediately
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from (7B).

(7D) LEMMA. If V is an irreducible q-module such that 0 is the only weight

which is not a frontier weight, then there exists a trivial ^-module W such that

V@W is a suitable ^-module.

Proof We take a vector v0 of highest weight in V and a contravariant

form on V such that (vθ9vo) = 1. If VR is the smallest admissible lattice on

V containing vθ9 then, by (2A), the form is integral on VR. We have an

orthogonal decomposition

V = S ® T,

where S is the subspace spanned by vectors of non-zero weights and T is

the zero weight space. Correspondingly,

vR = sR@τR

where SR = SΓ\VR, TR= TΓιVR. We now take the dual space T* of T, with

the dual module T% to TR naturally embedded in it, and form

U = V® T* = S® T® T*,

We extend the bilinear form ( , ) on V to the whole of U by defining, for

5GS, ίεT, t*, ίίeT*,

(t91*) = (t*91) = value of t* on t.

From (7B), the form is unimodular on SR. For a suitable basis of TR@T%

the form has matrix of the form

(A I(A I\

Thus, the form is integral and unimodular on UR.

Now let W be the orthogonal complement of V in U. (Since the form

is symmetric by (IB), W is well-defined). By the non-degeneracy of the

form on V, we have

u = v®w.

We now make U into a g-module by requiring the action of Q on W to be
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trivial,

wX=0,

Now it is easily checked that the bilinear form on U is contravariant.

Finally, we show that UR is an admissible lattice on U. It is enough

to show that if v^T% then vXrtm^UR for all roots r, and all integers m>0.

Since T®T* = T®Wf we can write

v = t + w,

Now, (TR,t) = (TR,v) c Rf so that

where fR is the 7?-submodule of T dual to TR with respect to the form ( , )•

Since the form is unimodular on SR, the ivN-submodule of V dual to VR with

respect to the form is

This is another admissible lattice on V, by the argument of (2B). Hence.

vXr,m = tXr,mtEVR.

Since tXrtm is 0 or a weight vector of weight mr, we must have

vXr,m^SR c UR.

Thus, UR is an admissible lattice, and the lemma is proved.

(7E) THEOREM. If g is simple of type Any Bn, Cn, Dn, E6, F4 or G2, then

g satisfies the property (*).

Proof. We use the descriptions of the fundamental irreducible g-modules

and their weights given by Cartan [5, pp. 369-398]. We number the funda-

mental weights λi in the order corresponding to the numbering of the

fundamental roots of the Dynkin diagram as given in [8, pp. 134-135]. We

denote the irreducible module of highest weight λt as Vt.

For g = Ani all weights of Vt are frontier weights. By (7C), (*) is

satisfied, with V{i) = Vt.

For g = Bn, all non-zero weights of VΊ are frontier weights. By (7D),

there exists a trivial g-module W such that V(l) = Vx © W is suitable. For
i

i = 2, ,H — 1, set V(i) = ΛF(1). The spin module V(n) = Vn has only
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frontier weights. Then these V{i) satisfy (*).

For Q = Cny all weights of VΊ are frontier weights. For i = 1, , n,
i

set V(i) = /\Vχ. Then (*) is satisfied.

For Q = Dny all weights of Vu Vn-u Vn are frontier weights. Set V(i) =

\VU i = 1, , n - 2, F(n - 1) = Vn.u V(n) = F». Then (*) is satisfied.
For 3 = E6, the weights of Vu F5 are all frontier weights while all non-

2

zero weights of F6 are frontier weights. Set F(l) = Fi, F(2) = ΛFi, F(3) =

ΛFi, F(4) = ΛF5, F(5) = F5, and let F(β) be the suitable module obtained

from VQ by the process of (7D). Then (*) is satisfied.

For Q = F4, the non-zero weights of VΊ are all frontier weights. Let

V(l) be the suitable module obtained from Vι by the process of (7D), and
2

let V(2) = ΛV(1). Now, ^4 may be realized as the derivation algebra of the

exceptional Jordan algebra / of 3 x 3 Hermitian matrices over the Cayley

numbers, and is a subalgebra of Eβ, regarded as a certain algebra of linear

transformations on / [8, pp. 144-145]. Then the suitable module V(6) for E6

2

constructed above is a suitable module V{4) for F4. Set V(3)= ΛF(4). Then

(*) is satisfied.

For a = G2, the non-zero weights of V2 are frontier weights. Let V{2)

be the suitable module obtained from V2 by the process of (7D), and let

V(l) = ΛF(2). Then, (*) is satisfied. This proves (7E).

For g = EΊi Vί has only frontier weights while the non-zero weights of

F6 are all frontier weights. Using (7D), we obtain suitable F(l), V{6), and

then F(2)=ΛF(1), F(3)=ΛF(1), F(5)=ΛF(6), F(4)=ΛF(6) are suitable. How-

ever, F7 has non-zero weights which are not frontier weights, so that our

methods do not apply for the construction of a suitable F(7).

For g = £ 8, the non-zero weights of Vx are all frontier weights so that

we can form F(l) by (7D) and then take V{i) = ΛF(1), i =2,3,4,5. Our
methods do not apply for the construction of suitable F(7), F(8). (A suit-

2

able F(β) would be obtained as ΛF(7).)

It seems likely that the property (*) is always satisfied, and further that

there is a proof that this is so which does not require the detailed know-

ledge of the fundamental irreducible modules used in (7E).
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